1
|
Bhuia MS, Chowdhury R, Afroz M, Akbor MS, Al Hasan MS, Ferdous J, Hasan R, de Alencar MVOB, Mubarak MS, Islam MT. Therapeutic Efficacy Studies on the Monoterpenoid Hinokitiol in the Treatment of Different Types of Cancer. Chem Biodivers 2025; 22:e202401904. [PMID: 39776341 DOI: 10.1002/cbdv.202401904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Hinokitiol (HK), a monoterpenoid that naturally occurs in plants belonging to the Cupressaceae family, possesses important biological activities, including an anticancer effect. This review summarizes its anticancer potential and draws possible molecular interventions. In addition, it evaluates the biopharmaceutical, toxicological properties, and clinical application of HK to establish its viability for future advancement as a dependable anticancer medication. The assessment is based on the most recent information available from various databases. Findings demonstrate that HK possesses substantial therapeutic advantages against diverse types of cancer (colon, cervical, breast, bone, endometrial, liver, prostate, oral, and skin) through various molecular mechanisms. HK induces oxidative stress, cytotoxicity, apoptosis, cell-cycle arrest at the G and S phases, and autophagy through modulation of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), p38/ERK/MAPK, nuclear factor kappa B, and c-Jun N-terminal kinase signaling pathways. Furthermore, this compound exhibits good oral bioavailability with excellent plasma clearance. Clinical uses of HK demonstrate therapeutic advantages without any significant negative effects. A thorough study of the pertinent data suggests that HK may serve as a viable candidate for developing novel cancer therapies. Consequently, more extensive studies are necessary to evaluate its cancer treatment efficacy, safety, and possible long-term hazards.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | - Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
| | - Md Showkot Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
| | - Rubel Hasan
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | | | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Dhaka, Bangladesh
| |
Collapse
|
2
|
Aldhafiri WN, Chhonker YS, Ahmed N, Singh SK, Haney SL, Ford JB, Holstein SA, Murry DJ. Development and Validation of an LC-MS/MS Assay for the Quantitation of MO-OH-Nap Tropolone in Mouse Plasma: Application to In Vitro and In Vivo Pharmacokinetic Studies. Molecules 2024; 29:4424. [PMID: 39339419 PMCID: PMC11434026 DOI: 10.3390/molecules29184424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
A rapid, selective, and sensitive liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitation of MO-OH-Nap tropolone (MO-OH-Nap) in mouse plasma. MO-OH-Nap is an α-substituted tropolone with anti-proliferative properties in various cancer cell lines. Detection and separation of analytes was achieved on an ACE Excel C18 (1.7 µm, 100 × 2.1 mm, MAC-MOD Analytical, Chadds Ford, PA, USA) column with mobile phase consisting of 0.05% trifluoroacetic acid in water (mobile phase A) and 0.05% trifluoroacetic acid in acetonitrile (mobile phase B), with an isocratic elution of 15:85% (A:B) at a total flow rate of 0.25 mL/min. The LC-MS/MS system was operated at unit resolution in multiple reaction monitoring (MRM) mode, using precursor ion > product ion combination of 249.10 > 202.15 m/z for MO-OH-Nap and 305.10 > 215.05 m/z for the internal standard (IS), BA-SM-OM. The MS/MS response was linear over a concentration range of 1 to 500 ng/mL with a correlation coefficient (r2) of ≥0.987. The within- and between-batch precision (%RSD) and accuracy (%Bias) were within acceptable limits. The validated method was successfully applied to determine MO-OH-Nap metabolic stability, plasma protein binding, and bio-distribution studies of MO-OH-Nap in CD-1 mice.
Collapse
Affiliation(s)
- Wafaa N. Aldhafiri
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.N.A.); (Y.S.C.); (N.A.); (S.K.S.)
| | - Yashpal S. Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.N.A.); (Y.S.C.); (N.A.); (S.K.S.)
| | - Nusrat Ahmed
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.N.A.); (Y.S.C.); (N.A.); (S.K.S.)
| | - Sandeep K. Singh
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.N.A.); (Y.S.C.); (N.A.); (S.K.S.)
| | - Staci L. Haney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.L.H.); (S.A.H.)
| | - James B. Ford
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84113, USA;
| | - Sarah A. Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.L.H.); (S.A.H.)
| | - Daryl J. Murry
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.N.A.); (Y.S.C.); (N.A.); (S.K.S.)
| |
Collapse
|
3
|
Zhang Y, Bejaoui M, Linh TN, Arimura T, Isoda H. A novel amphiphilic squalene-based compound with open-chain polyethers reduces malignant melanoma metastasis in-vitro and in-vivo. Cell Commun Signal 2024; 22:437. [PMID: 39261954 PMCID: PMC11389383 DOI: 10.1186/s12964-024-01813-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Squalene (SQ) is a well-known antioxidant and anti-inflammatory agent that provides promising anti-aging and UV-protective roles on human skin. However, its strong hydrophobic nature, accompanied by issues such as poor solubility and limited tissue permeation, has created challenges for scientists to investigate its untapped potential in more complex conditions, including cancer progression. The present study assessed the potent anti-metastatic properties of a newly synthesized amphiphilic ethylene glycol SQ derivative (SQ-diEG) in melanoma, the most fatal skin cancer. In vitro and in vivo experiments have discovered that SQ-diEG may exert its potential on melanoma malignancy through the mitochondria-mediated caspase activation apoptotic signaling pathway. The potent anti-metastatic effect of SQ-diEG was observed in vitro using highly proliferative and aggressive melanoma cells. Administration of SQ-diEG (25 mg/kg) significantly decreased the tumor burden on the lung and inhibited the metastasis-associated proteins and gene markers in B16F10 lung colonization mice model. Furthermore, global gene profiling also revealed a promising role of SQ-diEG in tumor microenvironment. We anticipated that the amphiphilic nature of the SQ compound bearing ethylene glycol oligomers could potentially augment its ability to reach the pathology site, thus enhancing its therapeutic potential in melanoma.
Collapse
Affiliation(s)
- Yaman Zhang
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Japan
| | - Meriem Bejaoui
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Alliance for Research On the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - Tran Ngoc Linh
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takashi Arimura
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hiroko Isoda
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Japan.
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
- Alliance for Research On the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.
- Institution of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
4
|
Molski M. Enhancing Bioactivity through the Transfer of the 2-(Hydroxymethoxy)Vinyl Moiety: Application in the Modification of Tyrosol and Hinokitiol. Molecules 2024; 29:3414. [PMID: 39064992 PMCID: PMC11280045 DOI: 10.3390/molecules29143414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Utilizing Density Functional Theory (DFT) calculations at the B3LYP/QZVP level and incorporating the Conductor-like Polarizable Continuum Model (C-PCM) for solvation, the thermodynamic and chemical activity properties of 21-(hydroxymethoxy)henicosadecaenal, identified in cultured freshwater pearls from the mollusk Hyriopsis cumingii, have been elucidated. The study demonstrates that this compound releases formaldehyde, a potent antimicrobial agent, through dehydrogenation and deprotonation processes in both hydrophilic and lipophilic environments. Moreover, this polyenal exhibits strong anti-reductant properties, effectively scavenging free radicals. These critical properties classify the pearl-derived ingredient as a natural multi-functional compound, serving as a coloring, antiradical, and antimicrobial agent. The 2-(hydroxymethoxy)vinyl (HMV) moiety responsible for the formaldehyde release can be transferred to other compounds, thereby enhancing their biological activity. For instance, tyrosol (4-(2-hydroxyethyl)phenol) can be modified by substituting the less active 2-hydroxyethyl group with the active HMV one, and hinokitiol (4-isopropylotropolone) can be functionalized by attaching this moiety to the tropolone ring. A new type of meso-carrier, structurally modeled on pearls, with active substances loaded both in the layers and the mineral part, has been proposed.
Collapse
Affiliation(s)
- Marcin Molski
- Department of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University of Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
5
|
Chiang YF, Huang KC, Chen HY, Hamdy NM, Huang TC, Chang HY, Shieh TM, Huang YJ, Hsia SM. Hinokitiol Inhibits Breast Cancer Cells In Vitro Stemness-Progression and Self-Renewal with Apoptosis and Autophagy Modulation via the CD44/Nanog/SOX2/Oct4 Pathway. Int J Mol Sci 2024; 25:3904. [PMID: 38612715 PMCID: PMC11011552 DOI: 10.3390/ijms25073904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer (BC) represents one of the most prevalent malignant threats to women globally. Tumor relapse or metastasis is facilitated by BC stemness progression, contributing to tumorigenicity. Therefore, comprehending the characteristics of stemness progression and the underlying molecular mechanisms is pivotal for BC advancement. Hinokitiol (β-thujaplicin), a tropolone-related compound abundant in the heartwood of cupressaceous plants, exhibits antimicrobial activity. In our study, we employed three BC cell lines (MDA-MB-231, MCF-7, and T47D) to assess the expression of stemness-, apoptosis-, and autophagy-related proteins. Hinokitiol significantly reduced the viability of cancer cells in a dose-dependent manner. Furthermore, we observed that hinokitiol enhances apoptosis by increasing the levels of cleaved poly-ADP-ribose polymerase (PARP) and phospho-p53. It also induces dysfunction in autophagy through the upregulation of LC3B and p62 protein expression. Additionally, hinokitiol significantly suppressed the number and diameter of cancer cell line spheres by reducing the expression of cluster of differentiation44 (CD44) and key transcription factors. These findings underscore hinokitiol's potential as a therapeutic agent for breast cancer, particularly as a stemness-progression inhibitor. Further research and clinical studies are warranted to explore the full therapeutic potential of hinokitiol in the treatment of breast cancer.
Collapse
Affiliation(s)
- Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan; (Y.-F.C.); (K.-C.H.); (H.-Y.C.)
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan; (Y.-F.C.); (K.-C.H.); (H.-Y.C.)
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan; (Y.-F.C.); (K.-C.H.); (H.-Y.C.)
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt;
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan;
| | - Hsin-Yi Chang
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Yun-Ju Huang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan City 710301, Taiwan;
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan; (Y.-F.C.); (K.-C.H.); (H.-Y.C.)
- School of Food and Safety, Taipei Medical University, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
6
|
Synowiec-Wojtarowicz A, Krawczyk A, Kimsa-Dudek M. Static Magnetic Field Reduces the Anticancer Effect of Hinokitiol on Melanoma Malignant Cells-Gene Expression and Redox Homeostasis Studies. Pharmaceuticals (Basel) 2024; 17:430. [PMID: 38675392 PMCID: PMC11054113 DOI: 10.3390/ph17040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Melanoma malignant is characterized by a high mortality rate, accounting for as much as 65% of deaths caused by skin cancer. A potential strategy in cancer treatment may be the use of natural compounds, which include hinokitiol (β-Thujaplicin), a phenolic component of essential oils extracted from cypress trees. Many studies confirm that a high-induction SMF (static magnetic field) has anticancer effects and can be used as a non-invasive anticancer therapy in combination with or without drugs. AIM The aim of this experiment was to evaluate the effect of a static magnetic field on melanoma cell cultures (C32 and COLO 829) treated with hinokitiol. METHODS AND RESULTS Melanoma cells were exposed to a static magnetic field of moderate induction and hinokitiol. The research included determining the activity of the antioxidant enzymes (SOD, GPx, and CAT) and MDA concentration as well as the gene expression profile. CONCLUSION Hinokitiol disturbs the redox homeostasis of C32 and COLO 829 melanoma malignant cells. Moreover, a static magnetic field has a protective effect on melanoma malignant cells and abolishes the anticancer effect of hinokitiol.
Collapse
Affiliation(s)
- Agnieszka Synowiec-Wojtarowicz
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jednosci Street, 41-200 Sosnowiec, Poland; (A.K.); (M.K.-D.)
| | | | | |
Collapse
|
7
|
Mathur A, Meena A, Luqman S. Monoterpenoids: An upcoming class of therapeutic agents for modulating cancer metastasis. Phytother Res 2024; 38:939-969. [PMID: 38102850 DOI: 10.1002/ptr.8081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Monoterpenoids, a sub-class of terpenoids, are secondary metabolites frequently extracted from the essential oils of aromatic plants. Their antitumor properties including antiproliferative, apoptotic, antiangiogenic, and antimetastatic effects along with other biological activities have been the subject of extensive study due to their diverse characteristics. In recent years, numerous investigations have been conducted to understand its potential anticancer impacts, specifically focusing on antiproliferative and apoptotic mechanisms. Metastasis, a malignancy hallmark, can exert either protective or destructive influences on tumor cells. Despite this, the potential antimetastatic and antiangiogenic attributes of monoterpenoids need further exploration. This review focuses on specific monoterpenoids, examining their effects on metastasis and relevant signaling pathways. The monoterpenoids exhibit a high level of complexity as natural products that regulate metastatic proteins through various signaling pathways, including phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin, mitogen-activated protein kinase/extracellular signal-regulated kinase/jun N-terminal kinase, nuclear factor kappa B, vascular endothelial growth factor, and epithelial mesenchymal transition process. Additionally, this review delves into the biosynthesis and classification of monoterpenoids, their potential antitumor impacts on cell lines, the plant sources of monoterpenoids, and the current status of limited clinical trials investigating their efficacy against cancer. Moreover, monoterpenoids depict promising potential in preventing cancer metastasis, however, inadequate clinical trials limit their drug usage. State-of-the-art techniques and technologies are being employed to overcome the challenges of utilizing monoterpenoids as an anticancer agent.
Collapse
Affiliation(s)
- Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Haney SL, Feng D, Kollala SS, Chhonker YS, Varney ML, Williams JT, Ford JB, Murry DJ, Holstein SA. Investigation of the activity of a novel tropolone in osteosarcoma. Drug Dev Res 2024; 85:e22129. [PMID: 37961833 PMCID: PMC10922124 DOI: 10.1002/ddr.22129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor characterized by frequent metastasis, rapid disease progression, and a high rate of mortality. Treatment options for OS have remained largely unchanged for decades, consisting primarily of cytotoxic chemotherapy and surgery, thus necessitating the urgent need for novel therapies. Tropolones are naturally occurring seven-membered non-benzenoid aromatic compounds that possess antiproliferative effects in a wide array of cancer cell types. MO-OH-Nap is an α-substituted tropolone that has activity as an iron chelator. Here, we demonstrate that MO-OH-Nap activates all three arms of the unfolded protein response (UPR) pathway and induces apoptosis in a panel of human OS cell lines. Co-incubation with ferric chloride or ammonium ferrous sulfate completely prevents the induction of apoptotic and UPR markers in MO-OH-Nap-treated OS cells. MO-OH-Nap upregulates transferrin receptor 1 (TFR1) protein levels, as well as TFR1, divalent metal transporter 1 (DMT1), iron-regulatory proteins (IRP1, IRP2), ferroportin (FPN), and zinc transporter 14 (ZIP14) transcript levels, demonstrating the impact of MO-OH-Nap on iron-homeostasis pathways in OS cells. Furthermore, MO-OH-Nap treatment restricts the migration and invasion of OS cells in vitro. Lastly, metabolomic profiling of MO-OH-Nap-treated OS cells revealed distinct changes in purine and pyrimidine metabolism. Collectively, we demonstrate that MO-OH-Nap-induced cytotoxic effects in OS cells are dependent on the tropolone's ability to alter cellular iron availability and that this agent exploits key metabolic pathways. These studies support further evaluation of MO-OH-Nap as a novel treatment for OS.
Collapse
Affiliation(s)
- Staci L. Haney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Dan Feng
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Sai Sundeep Kollala
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Yashpal S. Chhonker
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE
| | - Michelle L. Varney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Jacob T. Williams
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - James B. Ford
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE
| | - Daryl J. Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE
| | - Sarah A. Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
9
|
Zhao H, Zhang M, Zhang J, Sun Z, Zhang W, Dong W, Cheng C, Yao Y, Li K. Hinokitiol-iron complex is a ferroptosis inducer to inhibit triple-negative breast tumor growth. Cell Biosci 2023; 13:87. [PMID: 37179385 PMCID: PMC10182687 DOI: 10.1186/s13578-023-01044-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Ferroptosis is a unique cell death, dependent on iron and phospholipid peroxidation, involved in massive processes of physiopathology. Tremendous attention has been caught in oncology, particularly for those therapy-resistant cancers in the mesenchymal state prone to metastasis due to their exquisite vulnerability to ferroptosis. Therefore, a therapeutical ferroptosis inducer is now underway to be exploited. RESULTS A natural compound, hinokitiol (hino), has been considered to be an iron chelator. We have a novel finding that hino complexed with iron to form Fe(hino)3 can function as a ferroptosis inducer in vitro. The efficiency, compared with the same concentration of iron, increases nearly 1000 folds. Other iron chelators, ferroptosis inhibitors, or antioxidants can inhibit Fe(hino)3-induced ferroptosis. The complex Fe(hino)3 efficacy is further confirmed in orthotopic triple-negative breast cancer (TNBC) tumor models that Fe(hino)3 significantly boosted lipid peroxidation to induce ferroptosis and significantly reduced the sizes of TNBC cell-derived tumors. The drug's safety was also evaluated, and no detrimental side effects were found with the tested dosage. CONCLUSIONS When entering cells, the chelated iron by hinokitiol as a complex Fe(hino)3 is proposed to be redox-active to vigorously promote the production of free radicals via the Fenton reaction. Thus, Fe(hino)3 is a ferroptosis inducer and, therapeutically, exhibits anti-TNBC activity.
Collapse
Affiliation(s)
- Hongting Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Meng Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Jinghua Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Zichen Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Wenxin Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Weichen Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Chen Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Yongzhong Yao
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China.
| | - Kuanyu Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China.
| |
Collapse
|
10
|
Conan P, Léon A, Caroff N, Rollet C, Chaïr L, Martin J, Bihel F, Mignen O, Voisset C, Friocourt G. New insights into the regulation of Cystathionine beta synthase (CBS), an enzyme involved in intellectual deficiency in Down syndrome. Front Neurosci 2023; 16:1110163. [PMID: 36711154 PMCID: PMC9879293 DOI: 10.3389/fnins.2022.1110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Down syndrome (DS), the most frequent chromosomic aberration, results from the presence of an extra copy of chromosome 21. The identification of genes which overexpression contributes to intellectual disability (ID) in DS is important to understand the pathophysiological mechanisms involved and develop new pharmacological therapies. In particular, gene dosage of Dual specificity tyrosine phosphorylation Regulated Kinase 1A (DYRK1A) and of Cystathionine beta synthase (CBS) are crucial for cognitive function. As these two enzymes have lately been the main targets for therapeutic research on ID, we sought to decipher the genetic relationship between them. We also used a combination of genetic and drug screenings using a cellular model overexpressing CYS4, the homolog of CBS in Saccharomyces cerevisiae, to get further insights into the molecular mechanisms involved in the regulation of CBS activity. We showed that overexpression of YAK1, the homolog of DYRK1A in yeast, increased CYS4 activity whereas GSK3β was identified as a genetic suppressor of CBS. In addition, analysis of the signaling pathways targeted by the drugs identified through the yeast-based pharmacological screening, and confirmed using human HepG2 cells, emphasized the importance of Akt/GSK3β and NF-κB pathways into the regulation of CBS activity and expression. Taken together, these data provide further understanding into the regulation of CBS and in particular into the genetic relationship between DYRK1A and CBS through the Akt/GSK3β and NF-κB pathways, which should help develop more effective therapies to reduce cognitive deficits in people with DS.
Collapse
Affiliation(s)
- Pierre Conan
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Alice Léon
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Noéline Caroff
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Claire Rollet
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Loubna Chaïr
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Jennifer Martin
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Frédéric Bihel
- Laboratoire d’Innovation Thérapeutique, UMR 7200, IMS MEDALIS, Faculty of Pharmacy, CNRS, Université de Strasbourg, Illkirch, France
| | - Olivier Mignen
- U1227, Lymphocytes B, Autoimmunité et Immunothérapies, INSERM, Université de Brest, Brest, France
| | - Cécile Voisset
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | | |
Collapse
|
11
|
Qin M, Shao B, Lin L, Zhang ZQ, Sheng ZG, Qin L, Shao J, Zhu BZ. Molecular mechanism of the unusual biphasic effects of the natural compound hinokitiol on iron-induced cellular DNA damage. Free Radic Biol Med 2023; 194:163-171. [PMID: 36476568 DOI: 10.1016/j.freeradbiomed.2022.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Hinokitiol is a natural monoterpene compound found in the heartwood of cupressaceous plants that have anticancer and anti-inflammatory properties. However, few studies have focused on its effect on iron-mediated cellular DNA damage. Here we show that hinokitiol exhibited unusual biphasic effects on iron-induced DNA damage in a molar ratio (hinokitiol/iron) dependent manner in HeLa cells. Under low ratios (<3:1), hinokitiol markedly enhanced DNA damage induced by Fe(II) or Fe(II)-H2O2; However, when the ratios increased over 3:1, the DNA damage was progressively inhibited. We found that the total cytoplasmic and nuclear iron concentration increased as the ratios of hinokitiol/iron increased. However, the cellular level of labile iron pool (LIP) only increased at ratios lower than 3, and the ROS generation is consistent with LIP change. Hinokitiol was found to interact with iron to form lipophilic hinokitiol-iron complexes with different stoichiometry and redox-activity by complementary applications of various analytical methods. Taken together, we propose that the enhancement of iron-induced cellular DNA damage by hinokitiol at low ratios (<3:1) was due to formation of lipophilic and redox-active iron complexes which facilitated cellular iron uptake and •OH production, while the inhibition at ratios higher than 3 was due to formation of redox-inactive iron complexes. These new findings will help us to design more effective drugs for the prevention and treatment of a series of iron-related diseases via regulating the two critical physicochemical factors (lipophilicity and redox activity of iron complexes) by simple natural compounds with iron-chelating properties.
Collapse
Affiliation(s)
- Miao Qin
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China; School of Public Health, Jining Medical University, Jining, Shandong, 272013, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bo Shao
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China; School of Public Health, Jining Medical University, Jining, Shandong, 272013, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Li Lin
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China; School of Public Health, Jining Medical University, Jining, Shandong, 272013, China
| | - Zhao-Qiang Zhang
- School of Public Health, Jining Medical University, Jining, Shandong, 272013, China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Resources and Environment, The University of Chinese Academy of Sciences, Beijing, China
| | - Li Qin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Resources and Environment, The University of Chinese Academy of Sciences, Beijing, China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Resources and Environment, The University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Abo Laban AI, El-Bassossy HM, Hassan NA. Hinokitiol produces vasodilation in aortae from normal and angiotensin II- induced hypertensive rats via endothelial-dependent and independent pathways. Vascul Pharmacol 2022; 146:107092. [PMID: 35907614 DOI: 10.1016/j.vph.2022.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 10/16/2022]
Abstract
Hinokitiol is a natural bioactive compound with numerous pharmacological properties. Here, we aimed to examine hinokitiol's effects on vascular relaxation. Cumulative relaxation responses to hinokitiol were assessed in isolated aortae from normotensive and angiotensin II-induced hypertensive rats in the presence and absence of selective inhibitors. Hinokitiol produced vasodilation of phenylephrine preconstricted aortae using both normotensive and hypertensive rats. In normotensive rats, hinokitiol's vasodilation was reduced by endothelial denudation and nitric oxide synthase (NOS), guanylate cyclase, and cyclooxygenase inhibition. Also, hinokitiol vasodilation was attenuated by β-receptors, adenylate cyclase, Ca2+-activated K+ channels and hyperpolarization inhibition. Moreover, hinokitiol exhibited a blocking activity on Ca2+ mobilization through voltage dependent Ca2+ channels (VDCC). However, its effect was not changed by muscarinic receptor and Sarc-K+ ATP channels blocking but was enhanced by blocking voltage-dependent K+ channels. However, in angiotensin II-induced hypertension, hinokitiol vasodilating activity was attenuated by NOS inhibition and it blocked Ca2+ mobilization through VDCC, while its vasodilation was partially attenuated by Sarc-K+ ATP channels blocking. However, the vasodilating effect of hinokitiol was not attenuated by either cyclooxygenase, β-receptor, Ca2+-activated K+ channels, or voltage-dependent potassium channels inhibition, but was enhanced by blocking hyperpolarization. Hinokitiol's vasodilating effect in normotensive and hypertensive vessels is mediated through both endothelium-dependent and endothelium-independent mechanisms.
Collapse
Affiliation(s)
- Amany I Abo Laban
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Hany M El-Bassossy
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Noura A Hassan
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
13
|
Biosurfactants as Anticancer Agents: Glycolipids Affect Skin Cells in a Differential Manner Dependent on Chemical Structure. Pharmaceutics 2022; 14:pharmaceutics14020360. [PMID: 35214090 PMCID: PMC8874633 DOI: 10.3390/pharmaceutics14020360] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
Melanomas account for 80% of skin cancer deaths. Due to the strong relationship between melanomas and U.V. radiation, sunscreens have been recommended for use as a primary preventative measure. However, there is a need for targeted, less invasive treatment strategies. Glycolipids such as sophorolipids and rhamnolipids are microbially derived biosurfactants possessing bioactive properties such as antimicrobial, immunomodulatory and anticancer effects. This study aimed to ascertain the differing effects of glycolipids on skin cells. Highly purified and fully characterized preparations of sophorolipids and rhamnolipids were used to treat spontaneously transformed human keratinocyte (HaCaT) and the human malignant melanocyte (SK-MEL-28) cell lines. Cell viability and morphological analyses revealed that glycolipids have differential effects on the skin cells dependent on their chemical structure. Lactonic sophorolipids and mono-rhamnolipids were shown to have a significantly detrimental effect on melanoma cell viability compared to healthy human keratinocytes. These glycolipids were shown to induce cell death via necrosis. Additionally, sophorolipids were shown to significantly inhibit SK-MEL-28 cell migration. These findings suggest that glycolipids could be used as bioactive agents with selective inhibitory effects. As such, glycolipids could be a substitute for synthetically derived surfactants in sunscreens to provide additional benefit and have the potential as novel anti-skin-cancer therapies.
Collapse
|
14
|
Sharma M, Grewal K, Jandrotia R, Batish DR, Singh HP, Kohli RK. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed Pharmacother 2021; 146:112514. [PMID: 34963087 DOI: 10.1016/j.biopha.2021.112514] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer retains a central place in fatality rates among the wide variety of diseases known world over, and the conventional synthetic medicaments, albeit used until now, produce numerous side effects. As a result, newer, better, and safer alternatives such as natural plant products, are gravely required. Essential oils (EOs) offer a plethora of bioactivities including antibacterial, antiviral, antioxidant, and anticancer properties, therefore, the use of EOs in combination with synthetic drugs or aromatherapy continues to be popular in many settings. In view of the paramount importance of EOs and their potential bioactivities, this review summarizes the current knowledge on the interconnection between EOs and cancer treatment. In particular, the current review presents an updated summary of the chemical composition of EOs, their current applications in cancer treatments based on clinical studies, and the mechanism of action against the cancer cell lines. Similarly, an overview of using EOs in aromatherapy and enhancing immunity during cancer treatment is provided. Further, this review focuses on the recent technological advancements such as the loading of EOs using protein microspheres, ligands, or nanoemulsions/nanoencapsulation, which offer multiple benefits in cancer treatment via site-specific and target-oriented delivery of drugs. The continuing clinical studies of EOs implicate that their pharmacological applications are a rewarding research area.
Collapse
Affiliation(s)
- Mansi Sharma
- Department of Environment Studies, Panjab University, Chandigarh 160 014, India
| | - Kamaljit Grewal
- Department of Botany, Panjab University, Chandigarh 160 014, India
| | - Rupali Jandrotia
- Department of Botany, Panjab University, Chandigarh 160 014, India
| | | | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh 160 014, India.
| | | |
Collapse
|
15
|
Mo X, Chen K, Chen Z, Chu B, Liu D, Liang Y, Xiong J, Yang Y, Cai J, Liang F. Antitumor Activities for Two Pt(II) Complexes of Tropolone and 8-Hydroxyquinoline Derivative. Inorg Chem 2021; 60:16128-16139. [PMID: 34647723 DOI: 10.1021/acs.inorgchem.1c01763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The reactions of cis-Pt(DMSO)2Cl2 and tropolone (HL) with 8-hydroxyquinoline (HQ) or 2-methyl-8-hydroxyquinoline (HMQ) gave [Pt(Q)(L)] (1) and [Pt(MQ)(L)] (2), which present mononuclear structures with their Pt(II) ions four-coordinated in square planar geometries. Their in vitro biological properties were evaluated by MTT assay, which showed a remarkable cytotoxic activity on the cancer cell lines. 1 shows higher cytotoxic activities on tumor cells such as T24, HeLa, A549, and NCI-H460 than complex 2 and cisplatin, with IC50 values <16 μM. Among them, an IC50 value of 3.6 ± 0.63 μM was found for complex 1 against T24 cells. It presented a tuning cytotoxic activity by substitution groups on 8-hydroxyquinoline skeleton. In our case, the substitution groups of -H are much superior to -CH3 against tumor cells. It revealed that both complexes can induce cell apoptosis by decreasing the potential of a mitochondrial membrane, enhancing reactive oxygen species and increasing Ca2+ levels of T24 cells. The T24 cell cycle can be arrested at G2 and G1 phases by complexes 1 and 2, respectively, with an upregulation for P21 and P27 expression levels and a down-regulation for cyclin A, CDK1, Cdc25A, and cyclin B expression levels. Furthermore, complex 1 exhibits satisfactory in vivo antitumor activity as revealed by the tumor inhibitory rate and the tumor weight change as well as by the cute toxicity assay and renal pathological examinations, which is close to cisplatin and much better than complex 2. All of these suggest that 1 might be a potential candidate for developing into a safe and effective anticancer agent.
Collapse
Affiliation(s)
- Xiyu Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - Kaiyong Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Bo Chu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Yuning Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Jianwen Xiong
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - Yubing Yang
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - JinYuan Cai
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P.R. China
| |
Collapse
|
16
|
Abstract
Hinokitiol is a natural bioactive compound found in several aromatic and medicinal plants. It is a terpenoid synthetized and secreted by different species as secondary metabolites. This volatile compound was tested and explored for its different biological properties. In this review, we report the pharmacological properties of hinokitiol by focusing mainly on its anticancer mechanisms. Indeed, it can block cell transformation at different levels by its action on the cell cycle, apoptosis, autophagy via inhibiting gene expression and dysregulating cellular signaling pathways. Moreover, hinokitiol also exhibits other pharmacological properties, including antidiabetic, anti-inflammatory, and antimicrobial effects. It showed multiple and several effects through its inhibition, interaction and/or activation of the main cellular targets inducing these pathologies.
Collapse
|
17
|
Hinokitiol-induced decreases of tyrosinase and microphthalmia-associated transcription factor are mediated by the endoplasmic reticulum-associated degradation pathway in human melanoma cells. Biochimie 2021; 192:13-21. [PMID: 34536557 DOI: 10.1016/j.biochi.2021.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023]
Abstract
Tyrosinase (TYR) is a key enzyme for melanin production. We previously showed that hinokitiol, a naturally occurring seven-membered ring terpenoid, potently inhibits human TYR activity. Interestingly, hinokitiol was recently reported to decrease expression of TYR and microphthalmia-associated transcription factor (MITF), which is a main transcription factor of the TYR gene, in murine melanoma cells. However, the mechanisms by which hinokitiol decreases the intracellular levels of TYR and MITF have not been fully elucidated. Here, we investigated the underlying mechanisms of the decreases using cultured human melanoma cells. As a result, hinokitiol treatment decreased TYR protein level in a time- and dose-dependent manner in G361 human melanoma cells, while MITF protein level was decreased only at higher concentrations after 3 days treatment. Notably, the mRNA levels of TYR and MITF were slightly increased by hinokitiol treatment. Therefore, we focused on the degradation of TYR and MITF in endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Importantly, co-treatment of ERAD inhibitor with hinokitiol restored the protein levels of TYR and MITF to approximately 30% and 20% of total those in untreated control cells, respectively. Hinokitiol affected the ER homeostasis as well as degradation of TYR and MITF in two human melanoma cell lines, G361 and HT-144, but the changes of ER-stress markers under the hinokitiol treatment were different in the two human melanoma cell lines. Taken together, these observations indicate that hinokitiol may induce ER stress and trigger the degradation of unfolded newly synthesizing TYR and MITF via the ERAD pathway.
Collapse
|
18
|
Silva BIM, Nascimento EA, Silva CJ, Silva TG, Aguiar JS. Anticancer activity of monoterpenes: a systematic review. Mol Biol Rep 2021; 48:5775-5785. [PMID: 34304392 DOI: 10.1007/s11033-021-06578-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/15/2021] [Indexed: 01/06/2023]
Abstract
Secondary metabolites have been recognized for centuries as medicinal agents, in particular monoterpenes which have been the target of research in the discovery of antineoplastic drugs, as they have potential antitumor effect and low toxicity and are used as additives in foods and cosmetics. Another advantage of monoterpenes is structural diversity, which gives greater plasticity when interacting with cells. The purpose of this review was to summarize and critically discuss the anticancer potential of monoterpenes and their respective mechanisms of action. A systematic review of articles in the MEDLINE/PubMed, Web of Science, Scopus and Science Direct electronic databases was independently conducted by three reviewers using the combination of the following keywords: monoterpenes AND anticancer AND in vitro. Restriction in selecting articles followed pre-established inclusion and exclusion criteria by the reviewers, and also a time limitation with works published between 2015 and 2019 being selected. In total, 39 works were deemed eligible for inclusion in the final review. Monoterpenes have cytotoxic activity in a wide variety of tumor cell lines, and mainly appear to exert this effect by inducing apoptosis caused by oxidative stress. In addition, improved use of monoterpenes when used in drug delivery systems and the synergistic effect with conventional chemotherapeutic drugs are reported. These findings validate this class of compounds as a promising source of chemotherapeutic drugs yet to be explored.
Collapse
Affiliation(s)
- Bruno I M Silva
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Erika A Nascimento
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Cleber J Silva
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Teresinha G Silva
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Jaciana S Aguiar
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
19
|
Park JS, Ko K, Kim SH, Lee JK, Park JS, Park K, Kim MR, Kang K, Oh DC, Kim SY, Yumnam S, Kwon HC, Shin J. Tropolone-Bearing Sesquiterpenes from Juniperus chinensis: Structures, Photochemistry and Bioactivity. JOURNAL OF NATURAL PRODUCTS 2021; 84:2020-2027. [PMID: 34236881 DOI: 10.1021/acs.jnatprod.1c00321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The tropolone-bearing sesquiterpenes juniperone A (1) and norjuniperone A (2) were isolated from the folk medicinal plant Juniperus chinensis, and their structures were determined by a combination of spectroscopic and crystallographic methods. Photojuniperones A1 (3) and A2 (4), bearing bicyclo[3,2,0]heptadienones derived from tropolone, were photochemically produced and structurally identified by spectroscopic methods. Predicted by the machine learning-based assay, 1 significantly inhibited the action of tyrosinase. The new compounds also inhibited lipid accumulation and enhanced the extracellular glycerol excretion.
Collapse
Affiliation(s)
- Jae Sung Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Keebeom Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seong-Hwan Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 25451, Republic of Korea
| | - Jae Kyun Lee
- Neuro-Medicine, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jin-Soo Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 25451, Republic of Korea
| | - Keunwan Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 25451, Republic of Korea
| | - Mi Ri Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 25451, Republic of Korea
| | - Kyungsu Kang
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 25451, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Silvia Yumnam
- Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Hak Cheol Kwon
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 25451, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
20
|
Wang CC, Chen BK, Chen PH, Chen LC. Hinokitiol induces cell death and inhibits epidermal growth factor-induced cell migration and signaling pathways in human cervical adenocarcinoma. Taiwan J Obstet Gynecol 2021; 59:698-705. [PMID: 32917321 DOI: 10.1016/j.tjog.2020.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE The aim of this study was to examine the antitumor activity of hinokitiol for its clinical application in the treatment of human cervical carcinoma. MATERIALS AND METHODS Cervical carcinoma HeLa cells were treated by different concentrations of hinokitiol. Flow cytometry was used to analyze cell cycle. Senescence-associated β-galactosidase (SA-β-gal) assay was used to identify senescent cells. The effects of hinokitiol on EGF-induced cell migration were determined by wound healing and transwell migration assays. Western blot was used to detect proteins involved in cell cycle progression, apoptosis, autophagy, and EGF-induced signaling pathways. RESULTS Hinokitiol suppressed cell viability in a dose-dependent manner. Flow cytometric analysis indicated that hinokitiol treatment resulted in cell cycle arrest at G1 phase, with reduced number of cells in the G2/M phase. Western blot analysis further demonstrated that hinokitiol treatment increased the levels of p53 and p21, and concomitantly reduced the expression of cell cycle regulatory proteins, including cyclin D and cyclin E. SA-β-gal assay showed that hinokitiol treatment significantly induced β-galactosidase activity. In addition, treatment with hinokitiol increased the accumulation of the autophagy regulators, beclin 1 and microtubule-associated protein 1 light chain 3 (LC3-II), in a dose-dependent manner; however, it did not induce caspase-3 activation and poly ADP ribose polymerase (PARP) cleavage. In addition, epidermal growth factor-induced cell migration and c-Jun N-terminal kinase (JNK) and focal adhesion kinase (FAK) phosphorylation were significantly inhibited by hinokitiol. CONCLUSION Our findings revealed that hinokitiol might serve as a potential therapeutic agent for cervical carcinoma therapy.
Collapse
Affiliation(s)
- Chih-Chun Wang
- Department of Otolaryngology, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan, ROC
| | - Ben-Kuen Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Peng-Hsu Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Lei-Chin Chen
- Department of Nutrition, I-Shou University, Kaohsiung, Taiwan, ROC.
| |
Collapse
|
21
|
Haque F, Khan MSA, AlQurashi N. ROS-Mediated Necrosis by Glycolipid Biosurfactants on Lung, Breast, and Skin Melanoma Cells. Front Oncol 2021; 11:622470. [PMID: 33796459 PMCID: PMC8009627 DOI: 10.3389/fonc.2021.622470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the major leading causes of death worldwide. Designing the new anticancer drugs is remained a challenging task due to ensure complexicity of cancer etiology and continuosly emerging drug resistance. Glycolipid biosurfactants are known to possess various biological activities including antimicrobial, anticancer and antiviral properties. In the present study, we sought to decipher the mechanism of action of the glycolipids (lactonic-sophorolipd, acidic-sophorolipid, glucolipid, and bolalipid) against cancer cells using lung cancer cell line (A549), breast cancer cell line (MDA-MB 231), and mouse skin melanoma cell line (B16F10). Scratch assay and fluorescence microscopy revealed that glycolipids inhibit tumorous cell migration possibly by inhibiting actin filaments. Fluorescence activated cell sorter (FACS) analysis exhibited that lactonic sophorolipid and glucolipid both induced the reactive oxygen species, altered the mitochondrial membrane potential (ΔΨ) and finally led to the cell death by necrosis. Furthermore, combinatorial effect of lactonic-sophorolipd and glucolipid demonstrated synergistic interaction on A549 cell line whereas additive effect on MDA-MB 231 and B16F10 cell lines. Our study has highlighted that lactonic-sophorolipd and glucolipid could be useful for developing new anticancer drugs either alone or in combination.
Collapse
Affiliation(s)
- Farazul Haque
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Naif AlQurashi
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
22
|
Lu S, Song Y, Luo R, Li S, Li G, Wang K, Liao Z, Wang B, Ke W, Xiang Q, Chen C, Wu X, Zhang Y, Ling L, Yang C. Ferroportin-Dependent Iron Homeostasis Protects against Oxidative Stress-Induced Nucleus Pulposus Cell Ferroptosis and Ameliorates Intervertebral Disc Degeneration In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6670497. [PMID: 33628376 PMCID: PMC7889334 DOI: 10.1155/2021/6670497] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 01/06/2023]
Abstract
Ferroptosis is a specialized form of regulated cell death that is charactered by iron-dependent lethal lipid peroxidation, a process associated with multiple diseases. However, its role in the pathogenesis of intervertebral disc degeneration (IVDD) is rarely investigated. This study is aimed at investigating the role of ferroptosis in oxidative stress- (OS-) induced nucleus pulposus cell (NPC) decline and the pathogenesis of IVDD and determine the underlying regulatory mechanisms. We used tert-butyl hydroperoxide (TBHP) to simulate OS conditions around human NPCs. Flow cytometry and transmission electron microscopy were used to identify ferroptosis, while iron assay kit, Perl's staining, and western blotting were performed to assay the intracellular iron levels. A ferroportin- (FPN-) lentivirus and FPN-siRNA were constructed and used to explore the relationship between FPN, intracellular iron homeostasis, and ferroptosis. Furthermore, hinokitiol, a bioactive compound known to specifically resist OS and restore FPN function, was evaluated for its therapeutic role in IVDD both in vitro and in vivo. The results indicated that intercellular iron overload plays an essential role in TBHP-induced ferroptosis of human NPCs. Mechanistically, FPN dysregulation is responsible for intercellular iron overload under OS. The increase in nuclear translocation of metal-regulatory transcription factor 1 (MTF1) restored the function of FPN, abolished the intercellular iron overload, and protected cells against ferroptosis. Additionally, hinokitiol enhanced the nuclear translocation of MTF1 by suppressing the JNK pathway and ameliorated the progression of IVDD in vivo. Taken together, our results demonstrate that ferroptosis and FPN dysfunction are involved in the NPC depletion and the pathogenesis of IVDD under OS. To the best of our knowledge, this is the first study to demonstrate the protective role of FPN in ferroptosis of NPCs, suggesting its potential used as a novel therapeutic target against IVDD.
Collapse
Affiliation(s)
- Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Xiang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Ling
- Department of Health Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
23
|
Gusakov EA, Topchu IA, Mazitova AM, Dorogan IV, Bulatov ER, Serebriiskii IG, Abramova ZI, Tupaeva IO, Demidov OP, Toan DN, Lam TD, Bang DN, Boumber YA, Sayapin YA, Minkin VI. Design, synthesis and biological evaluation of 2-quinolyl-1,3-tropolone derivatives as new anti-cancer agents. RSC Adv 2021; 11:4555-4571. [PMID: 33996031 PMCID: PMC8121267 DOI: 10.1039/d0ra10610k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Tropolones are promising organic compounds that can have important biologic effects. We developed a series of new 2-quinolyl-1,3-tropolones derivatives that were prepared by the acid-catalyzed reaction of 4,7-dichloro-2-methylquinolines with 1,2-benzoquinones. 2-Quinolyl-1,3-tropolones have been synthesized and tested for their anti-proliferative activity against several human cancer cell lines. Two compounds (3d and mixture B of 3i-k) showed excellent activity against six cancer cell lines of different tissue of origin. The promising compounds 3d and mixture B of 3i-k also demonstrated induction of apoptotic cell death of ovarian cancer (OVCAR-3, OVCAR-8) and colon cancer (HCT 116) cell lines and affected ERK signaling. In summary, 2-quinolyl-1,3-tropolones are promising compounds for development of effective anticancer agents.
Collapse
Affiliation(s)
- Evgeniy A. Gusakov
- Institute of Physical and Organic Chemistry, Southern Federal UniversityRostov-on-Don344090Russia
| | - Iuliia A. Topchu
- Kazan Federal UniversityKazan420008Russia
- Robert H Lurie Comprehensive Cancer Center, Division of Hematology/Oncology at the Department of Medicine, Feinberg School of Medicine, Northwestern University303 E. Superior StreetChicagoIL60611USA
| | - Aleksandra M. Mazitova
- Kazan Federal UniversityKazan420008Russia
- Cedars-Sinai Medical Center, Department of MedicineLos AngelesCA90048USA
| | - Igor V. Dorogan
- Institute of Physical and Organic Chemistry, Southern Federal UniversityRostov-on-Don344090Russia
| | | | - Ilya G. Serebriiskii
- Kazan Federal UniversityKazan420008Russia
- Fox Chase Cancer CenterPhiladelphiaPA19111USA
| | | | - Inna O. Tupaeva
- Institute of Physical and Organic Chemistry, Southern Federal UniversityRostov-on-Don344090Russia
| | | | - Duong Ngoc Toan
- Thai Nguyen University of Education20 Luong Ngoc QuyenThai Nguyen 24000Vietnam
| | - Tran Dai Lam
- Institute for Tropical Technology, Vietnam Academy of Science and TechnologyHanoi10000Vietnam
| | - Duong Nghia Bang
- Thai Nguyen University of SciencesTan Thinh WardThai Nguyen 24000Vietnam
| | - Yanis A. Boumber
- Kazan Federal UniversityKazan420008Russia
- Robert H Lurie Comprehensive Cancer Center, Division of Hematology/Oncology at the Department of Medicine, Feinberg School of Medicine, Northwestern University303 E. Superior StreetChicagoIL60611USA
| | - Yurii A. Sayapin
- Federal Research Centre the Southern Scientific Centre of the Russian Academy of SciencesChekhov Ave., 41Rostov-on-Don344006Russia
| | - Vladimir I. Minkin
- Institute of Physical and Organic Chemistry, Southern Federal UniversityRostov-on-Don344090Russia
| |
Collapse
|
24
|
Chen J, Ko J, Kim JT, Cho JS, Qiu S, Kim GD, Auh JH, Lee HJ. β-Thujaplicin inhibits basal-like mammary tumor growth by regulating glycogen synthase kinase-3β/β-catenin signaling. Food Funct 2020; 10:2691-2700. [PMID: 31026007 DOI: 10.1039/c9fo00009g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
β-Thujaplicin, a natural monoterpenoid, has been demonstrated to exert health beneficial activities in chronic diseases. However, it has not been studied in regulating estrogen receptor (ER) negative breast cancer. Here, we investigated the effect of β-thujaplicin on inhibiting ER-negative basal-like breast cancer and the underlying mechanism of action using an in vitro and in vivo xenograft animal model. β-Thujaplicin induced G0/G1 phase cell cycle arrest and regulated cell cycle mediators, cyclin D1, cyclin E, and cyclin-dependent kinase 4 (CDK 4), leading to the inhibition of the proliferation of ER-negative basal-like MCF10DCIS.com human breast cancer cells. It also modulated the phosphorylation of protein kinase B (AKT) and glycogen synthase kinase (GSK-3β) and the protein level of β-catenin. In an MCF10DCIS.com xenograft animal model, β-thujaplicin significantly inhibited tumor growth, reduced tumor weight, and regulated the expression of cell cycle proteins, phosphorylation of AKT and GSK-3β, and protein level of β-catenin in the tumor tissues. These results demonstrate that β-thujaplicin can suppress basal-like mammary tumor growth by regulating GSK-3β/β-catenin signaling, suggesting that β-thujaplicin may be a potent chemopreventive agent against the basal-like subtype of breast cancer.
Collapse
Affiliation(s)
- Jing Chen
- Department of Food Science and Technology, Chung-Ang University, Anseong, 17546, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wu YJ, Hsu WJ, Wu LH, Liou HP, Pangilinan CR, Tyan YC, Lee CH. Hinokitiol reduces tumor metastasis by inhibiting heparanase via extracellular signal-regulated kinase and protein kinase B pathway. Int J Med Sci 2020; 17:403-413. [PMID: 32132875 PMCID: PMC7053356 DOI: 10.7150/ijms.41177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Heparanase cleaves the extracellular matrix by degrading heparan sulfate that ultimately leads to cell invasion and metastasis; a condition that causes high mortality among cancer patients. Many of the anticancer drugs available today are natural products of plant origin, such as hinokitiol. In the previous report, it was revealed that hinokitiol plays an essential role in anti-inflammatory and anti-oxidation processes and promote apoptosis or autophagy resulting to the inhibition of tumor growth and differentiation. Therefore, this study explored the effects of hinokitiol on the cancer-promoting pathway in mouse melanoma (B16F10) and breast (4T1) cancer cells, with emphasis on heparanase expression. We detected whether hinokitiol can elicit anti-metastatic effects on cancer cells via wound healing and Transwell assays. Besides, mice experiment was conducted to observe the impact of hinokitiol in vivo. Our results show that hinokitiol can inhibit the expression of heparanase by reducing the phosphorylation of protein kinase B (Akt) and extracellular regulated protein kinase (ERK). Furthermore, in vitro cell migration assay showed that heparanase downregulation by hinokitiol led to a decrease in metastatic activity which is consistent with the findings in the in vivo experiment.
Collapse
Affiliation(s)
- Yueh-Jung Wu
- Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Wei-Jie Hsu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Li-Hsien Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Huei-Pu Liou
- Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | | | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Wei KC, Chen RF, Chen YF, Lin CH. Hinokitiol suppresses growth of B16 melanoma by activating ERK/MKP3/proteosome pathway to downregulate survivin expression. Toxicol Appl Pharmacol 2019; 366:35-45. [PMID: 30684529 DOI: 10.1016/j.taap.2019.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 01/17/2023]
Abstract
Metastasis is the major cause of treatment failure in patients with cancer. Hinokitiol, a metal chelator derived from natural plants, has anti-inflammatory and antioxidant activities as well as anticancer effects. We investigated the potential anticancer effects of hinokitiol in metastatic melanoma cell line B16-F10. Exposure of the melanoma B16-F10 cells to hinokitiol significantly inhibited colony formation and cell viability in a time and concentration-dependent manner. The hinokitiol-treated cells exhibited apoptotic features in morphological assay. Results from Western blot and immunoprecipitation showed that hinokitiol treatment decreased survivin protein levels and increased suvivin ubiquitination. Pretreatment with proteosome inhibitors effectively prevented hinokitiol-induced decrease in survivin expression, implying that ubiquitin/proteosome pathway involved in hinokitiol-reduced survivin expression. Hinokitiol rapidly induced ERK phosphorylation followed by a sustained dephosphorylation, which accompanied with an increase in expression of tumor suppressor MKP-3 (mitogen-activated protein kinase phosphatase-3). Inhibition of hinokitiol-induced ERK activation by MEK inhibitor U0126 completely blocked expression of MKP-3. More importantly, inhibition of MKP-3 activity by NSC 95397 significantly inhibited hinokitiol-induced ERK dephosphorylation, ubiquitination and downregulation of survivin. These results suggested that hinokitiol inhibited growth of B16-F10 melanoma through downregulation of survivin by activating ERK/MKP-3/proteosome pathway. Hinokitiol-inhibition of survivin may be a novel and potential approach for melanoma therapy. Hinokitiol can be useful for developing therapeutic agent for melanoma.
Collapse
Affiliation(s)
- Kai-Che Wei
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaoshiung 802, Taiwan; Faculty of Yuhing Junior College of Health Care and Management, Kaohsiung 802, Taiwan
| | - Rui-Fang Chen
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Yu-Fu Chen
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chia-Ho Lin
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
27
|
Tropolone-induced effects on the unfolded protein response pathway and apoptosis in multiple myeloma cells are dependent on iron. Leuk Res 2018; 77:17-27. [PMID: 30612055 DOI: 10.1016/j.leukres.2018.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/07/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022]
Abstract
Tropolones are naturally occurring seven-membered non-benzenoid aromatic compounds that are of interest due to their cytotoxic properties. MO-OH-Nap is a novel α-substituted tropolone that induces caspase cleavage and upregulates markers associated with the unfolded protein response (UPR) in multiple myeloma (MM) cells. Given previous reports that tropolones may function as iron chelators, we investigated the effects of MO-OH-Nap, as well as the known iron chelator deferoxamine (DFO), in MM cells in the presence or absence of supplemental iron. The ability of MO-OH-Nap to induce apoptosis and upregulate markers of the UPR could be completely prevented by co-incubation with either ferric chloride or ammonium ferrous sulfate. Iron also completely prevented the decrease in BrdU incorporation induced by either DFO or MO-OH-Nap. Ferrozine assays demonstrated that MO-OH-Nap directly chelates iron. Furthermore, MO-OH-Nap upregulates cell surface expression and mRNA levels of transferrin receptor. In vivo studies demonstrate increased Prussian blue staining in hepatosplenic macrophages in MO-OH-Nap-treated mice. These studies demonstrate that MO-OH-Nap-induced cytotoxic effects in MM cells are dependent on the tropolone's ability to alter cellular iron availability and establish new connections between iron homeostasis and the UPR in MM.
Collapse
|
28
|
Li JY, Liu CP, Shiao WC, Jayakumar T, Li YS, Chang NC, Huang SY, Hsieh CY. Inhibitory effect of PDGF-BB and serum-stimulated responses in vascular smooth muscle cell proliferation by hinokitiol via up-regulation of p21 and p53. Arch Med Sci 2018; 14:579-587. [PMID: 29765446 PMCID: PMC5949921 DOI: 10.5114/aoms.2018.75085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/30/2015] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Vascular smooth muscle cell (VSMC) proliferation plays a major role in the progression of vascular diseases. In the present study, we established the efficacy and the mechanisms of action of hinokitiol, a tropolone derivative found in Chamaecyparis taiwanensis, Cupressaceae, in relation to platelet-derived growth factor-BB (PDGF-BB) and serum-dependent VSMC proliferation. MATERIAL AND METHODS Primary cultured rat VSMCs were pre-treated with hinokitiol and then stimulated by PDGF-BB (10 ng/ml) or serum (10% fetal bovine serum). Cell proliferation and cytotoxicity were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and lactose dehydrogenase assay, respectively. The degree of DNA synthesis was evaluated by BrdU-incorporation measurements and observed using confocal microscopy. Immunoblotting was utilized to determine the protein level of p-extracellular signal-regulated kinase (ERK) 1/2, p-Akt, p-phosphoinositide 3-kinase (PI3K), p-Janus kinase 2 (JAK2), p-p53, and p21Cip1. The promoter activity of p21 and p53 activity were measured by dual luciferase reporter assay. RESULTS Treatment with hinokitiol (1-10 μM) inhibited PDGF-BB and serum-induced VSMC proliferation and DNA synthesis in a concentration-dependent manner. Cytotoxicity was not observed in hinokitiol-treated VSMCs at the studied concentrations. Pre-incubation of VSMCs with hinokitiol did not alter PDGF-BB-induced phosphorylation of ERK1/2, Akt, PI3K or JAK2. Interestingly, hinokitiol induced promoter activity of p21 and p21 protein expression in VSMCs. Furthermore, hinokitiol augmented p53 protein phosphorylation and subsequently led to enhanced p53 activity. CONCLUSIONS These data suggest that the anti-proliferative effects of hinokitiol in VSMCs may be mediated by activation of p21 and p53 signaling pathways, and it may contribute to the prevention of vascular diseases associated with VSMC proliferation.
Collapse
Affiliation(s)
- Jiun-Yi Li
- Department of Cardiovascular Surgery, Mackay Memorial Hospital, and Mackay Medical College, Taipei, Taiwan
- Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Ping Liu
- Department of Cardiology, Yuan’s General Hospital, Kaohsiung, Taiwan
| | - Wei-Cheng Shiao
- Department of Internal Medicine, Yuan’s General Hospital, Kaohsiung, Taiwan
| | - Thanasekaran Jayakumar
- Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Shin Li
- Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nen-Chung Chang
- Department of Cardiology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ying Hsieh
- Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
29
|
Jayakumar T, Liu CH, Wu GY, Lee TY, Manubolu M, Hsieh CY, Yang CH, Sheu JR. Hinokitiol Inhibits Migration of A549 Lung Cancer Cells via Suppression of MMPs and Induction of Antioxidant Enzymes and Apoptosis. Int J Mol Sci 2018; 19:ijms19040939. [PMID: 29565268 PMCID: PMC5979393 DOI: 10.3390/ijms19040939] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 02/04/2023] Open
Abstract
Hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana, has been reported to have anticancer effects against various cancer cell lines. However, the detailed molecular mechanisms and the inhibiting roles of hinokitiol on adenocarcinoma A549 cells remain to be fully elucidated. Thus, the current study was designed to evaluate the effect of hinokitiol on the migration of human lung adenocarcinoma A549 cells in vitro. The data demonstrates that hinokitiol does not effectively inhibit the viability of A549 cells at up to a 10 µM concentration. When treated with non-toxic doses (1–5 µM) of hinokitiol, the cell migration is markedly suppressed at 5 µM. Hinokitiol significantly reduced p53 expression, followed by attenuation of Bax in A549 cells. A dose-dependent inhibition of activated caspase-9 and -3 was observed in the presence of hinokitiol. An observed increase in protein expression of matrix metalloproteinases (MMPs) -2/-9 in A549 cells was significantly inhibited by hinokitiol. Remarkably, when A549 cells were subjected to hinokitiol (1–5 µM), there was an increase in the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in cells. In addition, the incubation of A549 cells with hinokitiol significantly activated the cytochrome c expression, which may be triggered by activation of caspase-9 followed by caspase-3. These observations indicate that hinokitiol inhibited the migration of lung cancer A549 cells through several mechanisms, including the activation of caspases-9 and -3, induction of p53/Bax and antioxidant CAT and SOD, and reduction of MMP-2 and -9 activities. It also induces cytochrome c expression. These findings demonstrate a new therapeutic potential for hinokitiol in lung cancer chemoprevention.
Collapse
Affiliation(s)
- Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chao-Hong Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Dermatology, Yuan's General Hospital, Kaohsiung 249, Taiwan.
| | - Guan-Yi Wu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Tzu-Yin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Manjunath Manubolu
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43212, USA.
| | - Cheng-Ying Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
30
|
Tkachev VV, Sayapin YA, Tupaeva IO, Gusakov EA, Shilov GV, Aldoshin SM, Minkin VI. Structure of 2-(benzoxazole-2-Yl)- 5,7-di(tert-butyl)-4-nitro-1,3-tropolone. J STRUCT CHEM+ 2018. [DOI: 10.1134/s0022476618010316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Chen X, Zhang X, Chen J, Yang Q, Yang L, Xu D, Zhang P, Wang X, Liu J. Hinokitiol copper complex inhibits proteasomal deubiquitination and induces paraptosis-like cell death in human cancer cells. Eur J Pharmacol 2017; 815:147-155. [PMID: 28887042 DOI: 10.1016/j.ejphar.2017.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 12/29/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a central role in the regulation of proteins that control cell growth and apoptosis and has therefore become an important target for anticancer therapy. Several constitutive subunits of the 19S proteasome display deubiquitinase (DUB) activity, suggesting that ubiquitin modification of proteins is dynamically regulated. Our study and others have shown that metal complexes, such as copper complexes, can induce cancer cell apoptosis through inhibiting 19S proteasome-associated DUBs and/or 20S proteasome activity. In this study, we found that (1) Hinokitiol copper complex (HK-Cu) induces striking accumulation of ubiquitinated proteins in A549 and K562 cells (2) HK-Cu potently inhibits the activity of the 19S proteasomal DUBs much more effectively than it does to the chymotrypsin-like activity of the 20S proteasome (3) HK-Cu effectively induces caspase-independent and paraptosis-like cell death in A549 and K562 cells, and (4) HK-Cu-induced cell death depends on ATF4-assosiated ER stress but is apparently not related to ROS generation. Altogether, these data indicate that HK-Cu can inhibit the activity of the 19S proteasomal DUBs and induce paraptosis-like cell death, representing a new drug candidate for cancer treatment.
Collapse
Affiliation(s)
- Xin Chen
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaolan Zhang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinghong Chen
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China; Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qianqian Yang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Yang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dacai Xu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peiquan Zhang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuejun Wang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China; Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | - Jinbao Liu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
32
|
Hinokitiol suppresses cancer stemness and oncogenicity in glioma stem cells by Nrf2 regulation. Cancer Chemother Pharmacol 2017; 80:411-419. [PMID: 28685346 DOI: 10.1007/s00280-017-3381-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/23/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Glioma is one of the lethal malignancies with poor prognosis. In addition, glioma stem cells (GSCs) have been considered as the crucial player that attributed to the tumorigenesis and drug resistance. In the current study, we investigated the therapeutic effect of hinokitiol, a natural bioactive compound of aromatic tropolone, on the characteristics of GSCs and the possible mechanism. METHODS U87MG and T98G glioma cells were used to isolate GSCs. CD133 positivity and ALDH1 activity of GSCs following hinokitiol treatment were assessed by flow cytometry analysis. Secondary sphere formation, migration, invasion, and colony-forming assays were performed to examine the self-renewal capacity and oncogenicity in GCS after hinokitiol administration. The expression of Nrf2 was evaluated by RT-PCR and western blot analyses. RESULTS We demonstrated that hinokitiol effectively inhibited the CD133 positivity and ALDH1 activity along with the reduced self-renewal, migration, invasion, and colony formation properties of GSCs. In addition, hinokitiol repressed the gene and protein expression of Nrf2, which has been shown to be critical for those GSCs features. Furthermore, we showed that administration of exogenous Nrf2 counteracted the inhibitory effect of hinokitiol on self-renewal and invasiveness of GSCs. CONCLUSION These evidences suggest that treatment of hinokitiol significantly attenuates the hallmarks of GSCs due to downregulation of Nrf2 expression. Hence, hinokitiol may serve as a promising agent for the therapy of glioma.
Collapse
|
33
|
Sadhu SS, Wang S, Dachineni R, Averineni RK, Seefeldt T, Xie J, Tummala H, Bhat GJ, Guan X. In Vitro and In Vivo Antimetastatic Effect of Glutathione Disulfide Liposomes. CANCER GROWTH AND METASTASIS 2017; 10:1179064417695255. [PMID: 28469471 PMCID: PMC5345945 DOI: 10.1177/1179064417695255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/30/2017] [Indexed: 01/08/2023]
Abstract
Cancer metastasis is the major cause of cancer mortality. Despite extensive research efforts, effective treatment for cancer metastasis is still lacking. Cancer metastasis involves 4 essential steps: cell detachment, migration, invasion, and adhesion. Detachment is the first and required step for metastasis. Glutathione disulfide (GSSG) is derived from the oxidation of glutathione (GSH), which is present in biological systems in millimolar concentration. Although GSSG is commercially available, the impact of GSSG on cell functions/dysfunctions has not been fully explored due to the fact that GSSG is not cell membrane permeable and a lack of method to specifically increase GSSG in cells. We have developed GSSG liposomes that effectively deliver GSSG to cells. Unexpectedly, cells treated with GSSG liposomes were resistant to detachment by trypsinization. This observation led to the investigation of the antimetastatic effect of GSSG liposomes. Our data demonstrate that GSSG liposomes at 1 mg/mL completely blocked cell detachment and migration, and significantly inhibited cancer cell invasion. Aqueous GSSG showed no such effect, confirming that the effects on cell detachment, migration, and invasion were caused by the intracellular delivery of GSSG. An in vivo experiment with a murine melanoma experimental metastasis model showed that GSSG liposomes prevented melanoma lung metastasis. The unique antimetastatic mechanism through the effects on detachment and migration, and effective in vitro and in vivo metastasis inhibition, warrants further investigation of the GSSG liposomes as a potential treatment for cancer metastasis.
Collapse
Affiliation(s)
- Satya S Sadhu
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | - Shenggang Wang
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | - Rakesh Dachineni
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | | | - Teresa Seefeldt
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | - Jiashu Xie
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, USA
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | - G Jayarama Bhat
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | - Xiangming Guan
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
34
|
Borodkin GS, Kolodina AA, Dorogan IV, Gusakov EA, Borodkina IG, Chepurnoi PB, Sayapin YA. Synthesis and structural studies of 5,7(4,6)-di(tert-butyl)-2-(6,8-dimethyl-4-chloroquinolin-2-yl)-1,3-tropolones by quantum-chemical methods and two-dimensional correlation NMR spectroscopy. DOKLADY CHEMISTRY 2017. [DOI: 10.1134/s0012500817010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Synthesis and structure of 5,7-diisopropyl-2-(quinolin-2-yl)-1,3-tropolone derivatives. Russ Chem Bull 2016. [DOI: 10.1007/s11172-016-1607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Fotopoulou T, Ćirić A, Kritsi E, Calhelha RC, Ferreira ICFR, Soković M, Zoumpoulakis P, Koufaki M. Antimicrobial/Antibiofilm Activity and Cytotoxic Studies of β-Thujaplicin Derivatives. Arch Pharm (Weinheim) 2016; 349:698-709. [PMID: 27400808 DOI: 10.1002/ardp.201600095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/10/2016] [Accepted: 06/22/2016] [Indexed: 01/06/2023]
Abstract
Natural β-thujaplicin displays a remarkable array of biological activities for the prevention or treatment of various disorders while its tropolone scaffold inspired the synthesis of new analogs. The main goal of the current study was to evaluate the influence of 4-substituted piperazine moieties at position 7 of the β-thujaplicin scaffold, on the antimicrobial activity. In order to determine the biological activity of the β-thujaplicin derivatives, a microdilution method was used against a wide variety of bacteria and fungi. Pseudomonas aeruginosa PAO 1 was used for testing antiquorum and antibiofilm effects. Four human tumor cell lines (MCF-7, NCI-H460, HeLa, and HepG2) and a porcine liver derived cell line (PLP2) were used for testing antitumor and cytotoxic activity. The compounds present better antibacterial and antifungal activity in comparison with approved antimicrobials used as control agents. β-Thujaplicin showed strong antibacterial and antifungal activities against all tested species. Further studies of their antibacterial activity revealed that all compounds presented good antibiofilm and antiquorum effects. Fungi were more susceptible than bacteria to the tested compounds, with the exception of MK150, which possessed the best antibacterial effect. None of the tested compounds, at the GI50 values obtained for the tumor cell lines, have shown toxicity for non-tumor liver cells (PLP2). The prediction of physicochemical properties of the compounds was performed to further explain the structure-activity relationship. Finally, in order to explore a possible mechanism of action of the synthesized compounds, molecular docking studies were performed on CYP51 (14-a lanosterol demethylase), an important component of the fungal cell membrane.
Collapse
Affiliation(s)
- Theano Fotopoulou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Ana Ćirić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Eftichia Kritsi
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Ricardo C Calhelha
- Mountain Research Centre (CIMO, ESA), Polytechnic Institute of Bragança, Bragança, Portugal
| | - Isabel C F R Ferreira
- Mountain Research Centre (CIMO, ESA), Polytechnic Institute of Bragança, Bragança, Portugal
| | - Marina Soković
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
| | - Panagiotis Zoumpoulakis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Koufaki
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
37
|
Tu DG, Yu Y, Lee CH, Kuo YL, Lu YC, Tu CW, Chang WW. Hinokitiol inhibits vasculogenic mimicry activity of breast cancer stem/progenitor cells through proteasome-mediated degradation of epidermal growth factor receptor. Oncol Lett 2016; 11:2934-2940. [PMID: 27073579 DOI: 10.3892/ol.2016.4300] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/11/2016] [Indexed: 01/16/2023] Open
Abstract
Hinokitiol, alternatively known as β-thujaplicin, is a tropolone-associated natural compound with antimicrobial, anti-inflammatory and antitumor activity. Breast cancer stem/progenitor cells (BCSCs) are a subpopulation of breast cancer cells associated with tumor initiation, chemoresistance and metastatic behavior, and may be enriched by mammosphere cultivation. Previous studies have demonstrated that BCSCs exhibit vasculogenic mimicry (VM) activity via the epidermal growth factor receptor (EGFR) signaling pathway. The present study investigated the anti-VM activity of hinokitiol in BCSCs. At a concentration below the half maximal inhibitory concentration, hinokitiol inhibited VM formation of mammosphere cells derived from two human breast cancer cell lines. Hinokitiol was additionally indicated to downregulate EGFR protein expression in mammosphere-forming BCSCs without affecting the expression of messenger RNA. The protein stability of EGFR in BCSCs was also decreased by hinokitiol. The EGFR protein expression and VM formation capability of hinokitiol-treated BCSCs were restored by co-treatment with MG132, a proteasome inhibitor. In conclusion, the present study indicated that hinokitiol may inhibit the VM activity of BCSCs through stimulating proteasome-mediated EGFR degradation. Hinokitiol may act as an anti-VM agent, and may be useful for the development of novel breast cancer therapeutic agents.
Collapse
Affiliation(s)
- Dom-Gene Tu
- Department of Nuclear Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan, R.O.C.; Department of Food Science and Technology, Chia Nan University of Pharmacy & Science, Tainan 717, Taiwan, R.O.C.; Graduate Institute of Medical Sciences, College of Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C
| | - Yun Yu
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Che-Hsin Lee
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C.; Department of Microbiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Yu-Liang Kuo
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C.; School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Yin-Che Lu
- Division of Hematology-Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Chi-Wen Tu
- Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Wen-Wei Chang
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C.; Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C
| |
Collapse
|
38
|
Huang CH, Jayakumar T, Chang CC, Fong TH, Lu SH, Thomas PA, Choy CS, Sheu JR. Hinokitiol Exerts Anticancer Activity through Downregulation of MMPs 9/2 and Enhancement of Catalase and SOD Enzymes: In Vivo Augmentation of Lung Histoarchitecture. Molecules 2015; 20:17720-34. [PMID: 26404213 PMCID: PMC6332280 DOI: 10.3390/molecules201017720] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 11/29/2022] Open
Abstract
Melanoma is extremely resistant to chemotherapy and the death rate is increasing hastily worldwide. Extracellular matrix promotes the migration and invasion of tumor cells through the production of matrix metalloproteinase (MMP)-2 and -9. Evidence has shown that natural dietary antioxidants are capable of inhibiting cancer cell growth. Our recent studies showed that hinokitiol, a natural bioactive compound, inhibited vascular smooth muscle cell proliferation and platelets aggregation. The present study is to investigate the anticancer efficacy of hinokitiol against B16-F10 melanoma cells via modulating tumor invasion factors MMPs, antioxidant enzymes in vitro. An in vivo mice model of histological investigation was performed to study the patterns of elastic and collagen fibers. Hinokitiol inhibited the expression and activity of MMPs-2 and -9 in B16-F10 melanoma cells, as measured by western blotting and gelatin zymography, respectively. An observed increase in protein expression of MMPs 2/9 in melanoma cells was significantly inhibited by hinokitiol. Notably, hinokitiol (1–5 μM) increased the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in melanoma cells. Also, hinokitiol (2–10 µM) concentration dependently reduced in vitro Fenton reaction induced hydroxyl radical (OH·) formation. An in vivo study showed that hinokitiol treatment increased elastic fibers (EF), collagens dispersion, and improved alveolar alterations in the lungs of B16/F10 injected mice. Overall, our findings propose that hinokitiol may be a potent anticancer candidate through down regulation of MMPs 9/2, reduction of OH· production and enhancement of antioxidant enzymes SOD and CAT.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110, Taiwan.
- Division of Urology, Department of Surgery, Taipei City Hospital, Zhongxiao Branch, Taipei 115, Taiwan.
| | - Thanasekaran Jayakumar
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chao-Chien Chang
- Department of Cardiology, Cathay General Hospital, Taipei 106, Taiwan.
| | - Tsorng-Harn Fong
- Department of Anatomy, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei 110, Taiwan.
| | - Shing-Hwa Lu
- Division of Urology, Department of Surgery, Taipei City Hospital, Zhongxiao Branch, Taipei 115, Taiwan.
| | - Philip Aloysius Thomas
- Department of Microbiology, Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli 620001, Tamil Nadu, India.
| | - Cheuk-Sing Choy
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Emergency, Min-Sheng General Hospital, Taoyuan 330, Taiwan.
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
39
|
Antiproliferative Activity of Hinokitiol, a Tropolone Derivative, Is Mediated via the Inductions of p-JNK and p-PLCγ1 Signaling in PDGF-BB-Stimulated Vascular Smooth Muscle Cells. Molecules 2015; 20:8198-212. [PMID: 25961161 PMCID: PMC6272725 DOI: 10.3390/molecules20058198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/22/2015] [Accepted: 04/28/2015] [Indexed: 12/15/2022] Open
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMCs) is important in the pathogenesis of vascular disorders such as atherosclerosis and restenosis. Hinokitiol, a tropolone derivative found in Chamacyparis taiwanensis, has been found to exhibit anticancer activity in a variety of cancers through inhibition of cell proliferation. In the present study, the possible anti-proliferative effect of hinokitiol was investigated on VSMCs. Our results showed that hinokitiol significantly attenuated the PDGF-BB-stimulated proliferation of VSMCs without cytotoxicity. Hinokitiol suppressed the expression of proliferating cell nuclear antigen (PCNA), a maker for cell cycle arrest, and caused G0/G1 phase arrest in cell cycle progression. To investigate the mechanism underlying the anti-proliferative effect of hinokitiol, we examined the effects of hinokitiol on phosphorylations of Akt, ERK1/2, p38 and JNK1/2. Phospholipase C (PLC)-γ1 phosphorylation, its phosphorylated substrates and p27kip1 expression was also analyzed. Pre-treatment of VSMCs with hinikitiol was found to significantly inhibit the PDGF-BB-induced phosphorylations of JNK1/2 and PLC-γ1, however no effects on Akt, ERK1/2, and p38. The up-regulation of p27kip1 was also observed in hinokitiol-treated VSMCs. Taken together, our results suggest that hinokitiol inhibits PDGF-BB-induced proliferation of VSMCs by inducing cell cycle arrest, suppressing JNK1/2 phosphorylation and PLC-γ1, and stimulating p27kip1 expression. These findings suggest that hinokitiol may be beneficial for the treatment of vascular-related disorders and diseases.
Collapse
|