1
|
Yang H, Sun J, Sun A, Wei Y, Xie W, Xie P, Zhang L, Zhao L, Huang Y. Podocyte programmed cell death in diabetic kidney disease: Molecular mechanisms and therapeutic prospects. Biomed Pharmacother 2024; 177:117140. [PMID: 39018872 DOI: 10.1016/j.biopha.2024.117140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is the primary cause of chronic kidney and end-stage renal disease. Glomerular podocyte loss and death are pathological hallmarks of DKD, and programmed cell death (PCD) in podocytes is crucial in DKD progression. PCD involves apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. During DKD, PCD in podocytes is severely impacted and primarily characterized by accelerated podocyte apoptosis and suppressed autophagy. These changes lead to a gradual decrease in podocyte numbers, impairing the glomerular filtration barrier function and accelerating DKD progression. However, research on the interactions between the different types of PCD in podocytes is lacking. This review focuses on the novel roles and mechanisms of PCD in the podocytes of patients with DKD. Additionally, we summarize clinical drugs capable of regulating podocyte PCD, present challenges and prospects faced in developing drugs related to podocyte PCD and suggest that future research should further explore the detailed mechanisms of podocyte PCD and interactions among different types of PCD.
Collapse
Affiliation(s)
- Haoyu Yang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jun Sun
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Aru Sun
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Wei
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Pengfei Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Lili Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yishan Huang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
2
|
Jung WK, Park SB, Yu HY, Kim J. Improvement effect of gemigliptin on salivary gland dysfunction in exogenous methylglyoxal-injected rats. Heliyon 2024; 10:e29362. [PMID: 38628768 PMCID: PMC11019235 DOI: 10.1016/j.heliyon.2024.e29362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
The symptom of hyposalivation associated with hypofunction of the salivary glands is a common feature of diabetes. Inadequate saliva production can cause tissue damage in the mouth, making it susceptible to infections and leading to oral health diseases. Previous studies have highlighted the harmful effects of methylglyoxal (MGO) and MGO-derived advanced glycation end products (AGEs) in diabetes. In this study, we investigated the protective effects of gemigliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, against MGO-induced salivary gland dysfunction. MGO treatment of immortalized human salivary gland acinar cells induced apoptosis via reactive oxygen species (ROS)-mediated pathways, but this effect was mitigated by gemigliptin. In vivo experiments involved the simultaneous administration of MGO (17.25 mg/kg) with aminoguanidine (100 mg/kg) and gemigliptin (10 and 100 mg/kg) daily to rats for two weeks. Gemigliptin increased the saliva volume and amylase levels in MGO-injected rats. Gemigliptin reduced the DPP-4 activity in both the salivary glands and serum of MGO-injected rats. Furthermore, gemigliptin exerted anti-glycation effects by reducing the accumulation of AGEs in the saliva, salivary glands, and serum and suppressing the expression of the receptor for AGEs. These actions protected the salivary gland cells from ROS-mediated apoptosis. Overall, gemigliptin protected the salivary gland cells from ROS-mediated cell death, reduced the accumulation of amylase and mucins in the salivary glands, and enhanced the salivary function by upregulating aquaporin 5 expression, and it exerted protective effects against MGO-induced salivary gland dysfunction by enhancing the anti-glycation, antioxidant, and salivary secretion activities. Our findings suggest gemigliptin as a potential therapeutic for patients with salivary gland dysfunction caused by the complications of diabetes.
Collapse
Affiliation(s)
- Woo Kwon Jung
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Su-Bin Park
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Hwa Young Yu
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Junghyun Kim
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju, 54896, South Korea
| |
Collapse
|
3
|
Al Tuhaifi T, Zhong J, Yang HC, Fogo AB. Effects of Dipeptidyl Peptidase-4 Inhibitor and Angiotensin-Converting Enzyme Inhibitor on Experimental Diabetic Kidney Disease. J Transl Med 2024; 104:100305. [PMID: 38109999 PMCID: PMC10922867 DOI: 10.1016/j.labinv.2023.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease in the United States and worldwide. Proteinuria is a major marker of the severity of injury. Dipeptidyl peptidase-4 inhibitor (DPP-4I) increases incretin-related insulin production and is, therefore, used to treat diabetes. We investigated whether DPP4I could have direct effect on kidney independent of its hypoglycemic activity. We, therefore, tested the effects of DPP4I with or without angiotensin-converting enzyme inhibitor (ACEI) on the progression of diabetic nephropathy and albuminuria in a murine model of DKD. eNOS-/-db/db mice were randomized to the following groups at age 10 weeks and treated until sacrifice: baseline (sacrificed at week 10), untreated control, ACEI, DPP4I, and combination of DPP4I and ACEI (Combo, sacrificed at week 18). Systemic parameters and urine albumin-creatinine ratio were assessed at baseline, weeks 14, and 18. Kidney morphology, glomerular filtration rate (GFR), WT-1, a marker for differentiated podocytes, podoplanin, a marker of foot process integrity, glomerular collagen IV, and alpha-smooth muscle actin were assessed at the end of the study. All mice had hyperglycemia and proteinuria at study entry at week 10. Untreated control mice had increased albuminuria, progression of glomerular injury, and reduced GFR at week 18 compared with baseline. DPP4I alone reduced blood glucose and kidney DPP-4 activity but failed to protect against kidney injury compared with untreated control. ACEI alone and combination groups showed significantly reduced albuminuria and glomerular injury, and maintained GFR and WT-1+ cells. Only the combination group had significantly less glomerular collagen IV deposition and more podoplanin preservation than the untreated control. DPP-4I alone does not decrease the progression of kidney injury in the eNOS-/-db/db mouse model, suggesting that targeting only hyperglycemia is not an optimal treatment strategy for DKD. Combined DPP-4I with ACEI added more benefit to reducing the glomerular matrix.
Collapse
Affiliation(s)
- Tareq Al Tuhaifi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Nephrology Clinical Trials Center, Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jianyong Zhong
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hai-Chun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
4
|
Gu MJ, Lee HW, Yoo G, Kim D, Kim Y, Choi IW, Cha YS, Ha SK. Hippophae rhamnoides L. leaf extracts alleviate diabetic nephropathy via attenuation of advanced glycation end product-induced oxidative stress in db/db mice. Food Funct 2023; 14:8396-8408. [PMID: 37614189 DOI: 10.1039/d3fo01364b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Diabetes mellitus leads to chronic complications, such as nephropathy. Diabetic complications are closely related to advanced glycation end products (AGEs). Excessive formation and accumulation of AGEs in diabetic renal diseases lead to excessive oxidative stress, resulting in chronic renal failure. The leaves of Hippophae rhamnoides L. (sea buckthorn leaves; SBL) show biological benefits, including antioxidant effects. This study aimed to evaluate the effect of SBL on kidney damage in db/db mice. The SBL extract was orally administered at 100 and 200 mg kg-1 for 12 weeks to db/db mice. Histological changes and the urine albumin/creatinine ratio were relieved, and the accumulation of AGEs in kidney glomeruli decreased following SBL treatment. Moreover, the SBL extract reduced the expression of AGEs, the receptor for AGEs, and NADPH oxidase 4, but upregulated glyoxalase 1 in the diabetic renal tissue. Urinary excretion levels and expression of 8-hydroxy-2'-deoxyguanosine as a biomarker of oxidative stress decreased after SBL treatment in the renal tissue. Furthermore, SBL attenuated oxidative stress in diabetic kidneys by reducing AGE accumulation, thereby ameliorating renal damage. Therefore, from these results, we infer that the SBL extract can act as a potential therapeutic agent for diabetic renal complications caused by AGEs.
Collapse
Affiliation(s)
- Min Ji Gu
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Science and Human Nutrition (Human Ecology), Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hee-Weon Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Guijae Yoo
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Donghwan Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Yoonsook Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - In-Wook Choi
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition (Human Ecology), Jeonbuk National University, Jeonju 54896, Republic of Korea
- K-Food Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sang Keun Ha
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| |
Collapse
|
5
|
Rusinov VL, Sapozhnikova IM, Spasov AA, Chupakhin ON. Fused azoloazines with antidiabetic activity. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
6
|
|
7
|
Wang X, Xiang J, Huang G, Kang L, Yang G, Wu H, Jiang K, Liang Z, Yang S. Inhibition of Podocytes DPP4 Activity Is a Potential Mechanism of Lobeliae Chinensis Herba in Treating Diabetic Kidney Disease. Front Pharmacol 2021; 12:779652. [PMID: 34950037 PMCID: PMC8688925 DOI: 10.3389/fphar.2021.779652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/17/2021] [Indexed: 01/23/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and has become a serious public health problem worldwide. Dipeptidyl peptidase-4 (DPP4) inhibitors, an emerging drug for the treatment of diabetes, have been found to have renoprotective effects in addition to glucose-lowering effects and therefore have the potential to be a treatment modality for DKD. Lobeliae Chinensis Herba (LCH), a traditional Chinese herb widely used in the treatment of diabetes, has recently been found to have a hypoglycaemic mechanism related to the inhibition of DPP4. Firstly, analysis of single-cell sequencing data from mouse kidneys in the National Center for Biotechnology Information (NCBI) database revealed that DPP4 was specifically upregulated in DKD podocytes and was associated with podocyte proliferation. Subsequently, the network pharmacology approach was applied to the screening of compounds. Twelve LCH active ingredients targeting DPP4 were extracted from the Traditional Chinese Medicine System Pharmacology (TCMSP) database. In addition, these 12 compounds and DPP4 were molecularly docked to predict the probability of them affecting DPP4 activity. In vitro, Quercetin, Methyl rosmarinate, Kaempferol, Diosmetin and Acacetin were demonstrated to retard podocyte proliferation by inhibiting DPP4 activity and were the top five compounds predicted by molecular docking to be the most likely to affect DPP4 activity. The half maximal inhibitory concentration (IC50) of the five compounds for DPP4 activity were as follows. Acacetin Log IC50 = −8.349, 95%CI (−9.266, −7.265), Diosmtrin Log IC50 = −8.419, 95%CI (−8.889, −7.950), Log IC50 = −8.349, 95%CI (−9.266, −7.265), Methyl rosmarinate Log IC50 = −8.415, 95%CI (−8.751, −8.085), Kaempferol Log IC50 = −8.297, 95%CI (−9.001, −7.615), Quercetin Log IC50 = −8.864, 95%CI (−9.107, −8.615). Finally, Quercetin, Methyl rosmarinate, Kaempferol, Diosmetin and Acacetin qualified for pharmacokinetic and drug similarity screening and have the potential to be the most promising oral agents for the treatment of DKD.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Jiaqing Xiang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Guixiao Huang
- The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lin Kang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Guangyan Yang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Han Wu
- Department of Endocrinology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Kewei Jiang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Zhen Liang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Shu Yang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
8
|
Salami M, Salami R, Mafi A, Aarabi MH, Vakili O, Asemi Z. Therapeutic potential of resveratrol in diabetic nephropathy according to molecular signaling. Curr Mol Pharmacol 2021; 15:716-735. [PMID: 34923951 DOI: 10.2174/1874467215666211217122523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) as a severe complication of diabetes mellitus (DM), is a crucial menace for human health and survival and remarkably elevates the healthcare systems' costs. Therefore, it is worth noting to identify novel preventive and therapeutic strategies to alleviate the disease conditions. Resveratrol, as a well-defined anti-diabetic/ antioxidant agent has capabilities to counteract diabetic complications. It has been predicted that resveratrol will be a fantastic natural polyphenol for diabetes therapy in the next few years. OBJECTIVE Accordingly, the current review aims to depict the role of resveratrol in the regulation of different signaling pathways that are involved in the reactive oxygen species (ROS) production, inflammatory processes, autophagy, and mitochondrial dysfunction, as critical contributors to DN pathophysiology. RESULTS The pathogenesis of DN can be multifactorial; hyperglycemia is one of the prominent risk factors of DN development that is closely related to oxidative stress. Resveratrol, as a well-defined polyphenol, has various biological and medicinal properties, including anti-diabetic, anti-inflammatory, and anti-oxidative effects. CONCLUSION Resveratrol prevents kidney damages that are caused by oxidative stress, enhances antioxidant capacity, and attenuates the inflammatory and fibrotic responses. For this reason, resveratrol is considered an interesting target in DN research due to its therapeutic possibilities during diabetic disorders and renal protection.
Collapse
Affiliation(s)
- Marziyeh Salami
- Department of biochemistry, Faculty of medicine, Semnan University of medical sciences, Semnan, Iran
| | - Raziyeh Salami
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad-Hossein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Oh H, Nguyen HD, Yoon IM, Ahn BR, Kim MS. Antidiabetic effect of gemigliptin: a systematic review and meta-analysis of randomized controlled trials with Bayesian inference through a quality management system. Sci Rep 2021; 11:20938. [PMID: 34686738 PMCID: PMC8536696 DOI: 10.1038/s41598-021-00418-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
Gemigliptin is one of the latest dipeptidyl peptidase-4 inhibitors developed by LG Life Sciences. Since the early 2000s, several randomized controlled trials (RCTs) of gemigliptin have been conducted. However, no study has directly compared its antidiabetic effects through a systematic review and meta-analysis. Therefore, in this study, we performed a systematic review and meta-analysis on RCTs. In particular, a subsequent meta-analysis was performed using Bayesian inference, and an updated quality management system model was integrated throughout our study. The mean differences and 95% confidence intervals for glycated hemoglobin (HbA1c), fasting plasma glucose (FPG), homeostatic model assessment beta cell function (HOMA-β), and low-density lipoprotein (LDL) were evaluated for the efficacy outcomes of gemigliptin as compared to those of placebo and other oral antidiabetic drugs (OADs). In conclusion, we found that gemigliptin was superior to placebo and comparable to other OADs in terms of the effect on HbA1c, FPG, HOMA-β, and LDL. Further, gemigliptin was more effective than other OADs in HbA1c and HOMA-β in Bayesian inference analysis and statistically significant to other OADs in HbA1c and HOMA-β in sensitivity analysis excluding metformin. However, to confirm the results, more studies need to be analysed and the minimum clinically important difference must be applied.
Collapse
Affiliation(s)
- Hojin Oh
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, Jeollanam-do, 57922, Republic of Korea
| | - Hai Duc Nguyen
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, Jeollanam-do, 57922, Republic of Korea
| | - In Mo Yoon
- Unimedi Plastic Surgery Clinic, Suite 302, 3rd Floor, 833 Nonhyeon-ro, Sinsa-dong, Gangnam-gu, Seoul, 06032, Republic of Korea
| | - Byung-Ryong Ahn
- Korea Statistical Consulting, Suite 735, 7th Floor, 81 Sambong-ro, Jongno-gu, Seoul, 03150, Republic of Korea
| | - Min-Sun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, Jeollanam-do, 57922, Republic of Korea.
| |
Collapse
|
10
|
Kang WS, Jung WK, Park SB, Kim HR, Kim J. Gemigliptin suppresses salivary dysfunction in streptozotocin-induced diabetic rats. Biomed Pharmacother 2021; 137:111297. [PMID: 33493968 DOI: 10.1016/j.biopha.2021.111297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
Patients with diabetes commonly experience hyposalivation, which induces discomfort in eating, swallowing, dryness, smell, and speaking, as well as increases the incidence of periodontal disease. Dipeptidyl peptidase-4 (DPP4) inhibitors are frequently used as antidiabetic drugs that lower glucose levels by utilizing similar mechanisms; however, additional protective functions of each gliptin have been discovered. In this study, the protective roles of gemigliptin, a DPP4 inhibitor, against salivary dysfunction under diabetic conditions were investigated. Streptozotocin-induced diabetic rats received gemigliptin 10 mg/kg or 100 mg/kg via oral gavage for 3 weeks. The weights of salivary gland tissues, saliva secretion, and antioxidant capacity in salivary glands were reduced after diabetes induction, but were significantly preserved following gemigliptin treatment. In salivary gland analysis, expression of apoptotic proteins, as well as amylase and aquaporin-5 (AQP5) protein expression, were increased following gemigliptin treatment. Furthermore, the number of TUNEL-positive cells decreased after gemigliptin treatment. Therefore, gemigliptin has protective roles against salivary dysfunction observed in diabetes, mediated via antioxidant, anti-apoptotic, and salivary secretion mechanisms. These results may help in selecting a suitable drug for patients with diabetes experiencing salivary dysfunction.
Collapse
Affiliation(s)
- Wan Seok Kang
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju, 61239, Republic of Korea
| | - Woo Kwon Jung
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Su-Bin Park
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyung Rae Kim
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Junghyun Kim
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
11
|
Trakarnvanich T, Satirapoj B, Suraamornkul S, Chirananthavat T, Sanpatchayapong A, Claimon T. Effect of Dipeptidyl Peptidase-4 (DPP-4) Inhibition on Biomarkers of Kidney Injury and Vascular Calcification in Diabetic Kidney Disease: A Randomized Controlled Trial. J Diabetes Res 2021; 2021:7382620. [PMID: 34697593 PMCID: PMC8541867 DOI: 10.1155/2021/7382620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/15/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Dipeptidyl peptidase-4 (DPP-4) inhibitors improve glycemic control and have pleiotropic effects on kidney injury, albuminuria, and vascular inflammation, especially in animal models. We evaluated the effects of a potent DPP4 inhibitor (gemigliptin) on these processes among patients with diabetic kidney disease (DKD). METHODS This study employed a multicenter, prospective, randomized, placebo-controlled design. A total of 201 participants were enrolled and randomly assigned to one of two groups, one received treatment with 50 mg gemigliptin daily along with standard care for diabetes mellitus for 6 months. The changes in the coronary calcium score (CAC score), cardio-ankle vascular index (CAVI), estimated glomerular filtration rate (eGFR), vascular calcification level, and tubular renal injury marker expression were evaluated at baseline and 6 months. RESULTS In total, 182 patients completed the study. Significant reductions in hemoglobin A1C levels were observed in both groups. The changes in the CAC score, CAVI, eGFR, and level of proteinuria over the 6 months of the study did not significantly differ between the gemigliptin and control groups. However, biomarkers of vascular calcification, including serum bone alkaline phosphatase and kidney injury, including urine neutrophil gelatinase-associated lipocalin (NGAL)/Cr and urine liver fatty acid-binding protein (L-FABP)/Cr, were improved significantly in the gemigliptin treatment group compared with the control group. No serious adverse events were observed during the study. CONCLUSION Our study showed that gemigliptin significantly improved the expression of renal tubular injury biomarkers and vascular calcification levels among patients with DKD; however, gemigliptin did not affect renal function or coronary calcification compared with those observed in the control. A larger study with a longer follow-up is essential to verify these beneficial effects. Clinical Trials. This trial is registered with ClinicalTrials.Gov Identifier NCT04705506.
Collapse
Affiliation(s)
| | - Bancha Satirapoj
- Division of Nephrology, Department of Medicine, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| | - Swangjit Suraamornkul
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | | | - Anoma Sanpatchayapong
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Torpong Claimon
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| |
Collapse
|
12
|
Kubo A, Hidaka T, Nakayama M, Sasaki Y, Takagi M, Suzuki H, Suzuki Y. Protective effects of DPP-4 inhibitor on podocyte injury in glomerular diseases. BMC Nephrol 2020; 21:402. [PMID: 32948146 PMCID: PMC7501714 DOI: 10.1186/s12882-020-02060-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/08/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Dipeptidyl peptidase-4 (DPP-4) is a serine protease that inhibits the degradation of glucagon-like peptide 1. DPP-4 inhibitors are used worldwide to treat type 2 diabetes mellitus and were recently shown to have pleiotropic effects such as anti-oxidant, anti-inflammatory, and anti-fibrotic actions. DPP-4 inhibitors improve albuminuria and renal injury including glomerular damage independent of its hypoglycemic effect. Although DPP-4 is mainly expressed in the kidney, the physiological function of DPP-4 remains unclear. METHODS The localization of renal DPP-4 activity was determined in human renal biopsy specimens with glycyl-1-prolyl-4-methoxy-2-naphthylamide and the effects of a DPP-4 inhibitor were examined in human cultured podocyte. RESULTS DPP-4 activity under normal conditions was observed in some Bowman's capsular epithelial cells and proximal tubules, but not in the glomerulus. DPP-4 activity was observed in crescent formation in anti-neutrophil myeloperoxidase cytoplasmic antigen antibody nephritis, nodular lesions in diabetic nephropathy, and some podocytes in focal segmental glomerulosclerosis. Notably, the DPP-4 inhibitor saxagliptin suppressed DPP-4 activity in podocytes and the proximal tubules. To assess the effect of DPP-4 inhibitor on podocytes, human cultured podocytes were injured by Adriamycin, which increased DPP-4 activity; this activity was dose-dependently suppressed by saxagliptin. Treatment with saxagliptin maintained the structure of synaptopodin and RhoA. Saxagliptin also improved the detachment of podocytes. CONCLUSIONS DPP-4 activity induces degradation of synaptopodin and reduction of RhoA, resulting in destruction of the podocyte cytoskeleton. Saxagliptin may have pleiotropic effects to prevent podocyte injury.
Collapse
Affiliation(s)
- Ayano Kubo
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Teruo Hidaka
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Maiko Nakayama
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yu Sasaki
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Miyuki Takagi
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Nephrology and Hypertension, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-City, Chiba, 279-0021, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
13
|
Nicotera R, Casarella A, Longhitano E, Bolignano D, Andreucci M, De Sarro G, Cernaro V, Russo E, Coppolino G. Antiproteinuric effect of DPP-IV inhibitors in diabetic and non-diabetic kidney diseases. Pharmacol Res 2020; 159:105019. [PMID: 32553713 DOI: 10.1016/j.phrs.2020.105019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
Diabetes Mellitus (DM) is a chronic and severe metabolic disease, characterized by chronic hyperglycemia due to insulin resistance and/or reduced insulin secretion. Concerning the non-insulin glucose-lowering therapy for diabetes, Dipeptidyl-peptidase-4 (DPP-4) inhibitors, members of the incretin family, represent new agents, capable of a glycemic control improvement with an advantageous safety profile, given the absence of weight gain, the low incidence of hypoglycemia and the good renal tolerance in patients suffering from chronic renal failure. In addition to demonstrating efficacy in glycemic control through inhibition of GLP-1 degradation, DPP-4 inhibitors (DPP-4is) seem to demonstrate pleiotropic effects, which also make them interesting in both diabetic and non-diabetic nephropathies, especially for their capacity of reducing proteinuria. Several studies about diabetic nephropathy on patients' cohorts and murine models have demonstrated a solid direct relationship between DPP-4 activity and urinary albumin excretion (UAE), thus confirming the capacity of DPP-4is to reduce proteinuria; the mechanism responsible for that effect was studied to assess if it was the result of a direct action on renal impairment or a secondary consequence of the better glycemic control related to these agents. As a result of these more in-depth studies, DPP-4is have demonstrated an improvement of renal inflammation markers and consequent proteinuria reduction, regardless of glucose concentrations. Considering the nephroprotective effects of DPP-4is might be glycemic independent, several studies were conducted to prove the validity of the same effects in non-diabetic nephropathies. Among these studies, DPP-4is demonstrated an improvement of various renal inflammatory markers on several models of non-diabetes dependent renal impairment, confirming their capacity to reduce proteinuria, independently from the action on glucose metabolism. The objective of this review is to present and discuss the so far demonstrated antiproteinuric effect of DPP-4is and their effects on diabetic and non-diabetic nephropathies.
Collapse
Affiliation(s)
- Ramona Nicotera
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | | | - Elisa Longhitano
- Renal Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Davide Bolignano
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Michele Andreucci
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | | | - Valeria Cernaro
- Renal Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Emilio Russo
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Giuseppe Coppolino
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy.
| |
Collapse
|
14
|
Jung HS, Seo MS, An JR, Kang M, Heo R, Li H, Jung WK, Choi IW, Cho EH, Park H, Bae YM, Park WS. The vasodilatory effect of gemigliptin via activation of voltage-dependent K + channels and SERCA pumps in aortic smooth muscle. Eur J Pharmacol 2020; 882:173243. [PMID: 32535099 DOI: 10.1016/j.ejphar.2020.173243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/20/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
This study investigated the vasodilatory effects and acting mechanism of gemigliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor. Tests were conducted in aortic rings pre-contracted with phenylephrine. Gemigliptin induced dose-dependent vasodilation of the aortic smooth muscle. Several pre-treatment groups were used to investigate the mechanism of action. While pre-treatment with paxilline, a large-conductance Ca2+-activated K+ channel inhibitor, glibenclamide, an ATP-sensitive K+ channel inhibitor, and Ba2+, an inwardly rectifying K+ channel inhibitor, had no impact on the vasodilatory effect of gemigliptin, pre-treatment with 4-aminopyridine, a voltage-dependent K+ (Kv) channel inhibitor, effectively attenuated the vasodilatory action of gemigliptin. In addition, pre-treatment with sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin and cyclopiazonic acid significantly reduced the vasodilatory effect of gemigliptin. cAMP/PKA-related or cGMP/PKG-related signaling pathway inhibitors, including adenylyl cyclase inhibitor SQ 22536, PKA inhibitor KT 5720, guanylyl cyclase inhibitor ODQ, and PKG inhibitor KT 5823 did not alter the vasodilatory effect of gemigliptin. Similarly, elimination of the endothelium and pre-treatment with a nitric oxide (NO) synthase inhibitor (L-NAME) or small- and intermediate-conductance Ca2+-activated K+ channels (apamin and TRAM-34, respectively) did not change the gemigliptin effect. These findings suggested that gemigliptin induces vasodilation through the activation of Kv channels and SERCA pumps independent of cAMP/PKA-related or cGMP/PKG-related signaling pathways and the endothelium. Therefore, caution is required when prescribing gemigliptin to the patients with hypotension and diabetes.
Collapse
Affiliation(s)
- Hee Seok Jung
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment for Senile Diseases, Yangzhou University, Yangzhou, 225001, China
| | - Won-Kyo Jung
- Department of Biomedical Engineering, And Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan, 48516, South Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Young Min Bae
- Department of Physiology, Konkuk University School of Medicine, Chungju, 27478, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
15
|
Akhter MS, Uppal P. Toxicity of Metformin and Hypoglycemic Therapies. Adv Chronic Kidney Dis 2020; 27:18-30. [PMID: 32146997 DOI: 10.1053/j.ackd.2019.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Metformin along with other antidiabetic medications provide benefit to patients in the treatment of type 2 diabetes mellitus, but caution is advised in certain scenarios to avoid toxicity in kidney disease. Renal dosing, monitoring of kidney function, and evaluating the risk of developing serious side effects are warranted with some agents. The available literature with regard to incidence of adverse events and toxicity of hypoglycemic therapies is reviewed.
Collapse
|
16
|
Mkhwanazi BN, van Heerden FR, Mavondo GA, Mabandla MV, Musabayane CT. Triterpene derivative improves the renal function of streptozotocin-induced diabetic rats: a follow-up study on maslinic acid. Ren Fail 2019; 41:547-554. [PMID: 31234683 PMCID: PMC6598493 DOI: 10.1080/0886022x.2019.1623818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Introduction: Reports indicate that oral administration of plant-derived maslinic acid (MA) exhibits hypoglycemic and renoprotective effects in streptozotocin (STZ)-induced diabetic rats. Challenges with triterpenes such as MA include low bioavailabilty which affects treatment efficacy in experimental animals. The goal of this study was to synthesize the MA derivative phenylhydrazine (PH-MA) in an effort to improve the efficacy of MA. Methods: Separate groups of non-diabetic and STZ-induced diabetic rats (n = 6) were anesthetized and the jugular vein cannulated for the infusion of 0.077 M NaCl at 9 mL/h. The bladder was catheterized for collection the urine samples every 30 min. After 30.5 h equilibration period, consecutive 30 min urine collections were made over the subsequent 4 h of 1 h control, 1.5 h treatment, and 1.5 h recovery periods. PH-MA (22 µg/h) and MA (90 µg/h) were added during the treatment periods for analysis of proximal tubular Na+ handling, plasma aldosterone and arginine vasopressin in male Sprague-Dawley rats. Results: Intravenous infusion of PH-MA (22 µg/h) and MA (90 µg/h) significantly (p ˂ .05) increased Na+ output, fractional excretion of Na+ (FENa) and lithium (FELi). Interestingly, like MA, PH-MA significantly (p ˂ .05) increased glomerular filtration rate (GFR) over the treatment period and decreased plasma aldosterone levels. Our findings indicate that PH-MA inhibited sodium reabsorption in the proximal and distal tubule as shown by increased FENa and low plasma aldosterone levels, respectively. Conclusions: PH-MA is, therefore, a promising multitarget antidiabetic agent that may ameliorate kidney function of diabetic patients at a dose four times lower than the parent compound (MA).
Collapse
Affiliation(s)
- Blessing Nkazimulo Mkhwanazi
- a School of Agricultural, Earth & Environmental Sciences , University of KwaZulu-Natal , Scottsville , South Africa
| | | | - Greanious Alfred Mavondo
- c Faculty of Medicine , National University of Science and Technology (NUST) , Bulawayao , Zimbabwe
| | - Musa Vuyisile Mabandla
- d School of Laboratory Medicine and Medical Sciences , University of KwaZulu-Natal , Durban , South Africa
| | | |
Collapse
|
17
|
Jung E, Park SB, Jung WK, Kim HR, Kim J. Antiglycation Activity of Aucubin In Vitro and in Exogenous Methylglyoxal Injected Rats. Molecules 2019; 24:molecules24203653. [PMID: 31658696 PMCID: PMC6832881 DOI: 10.3390/molecules24203653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022] Open
Abstract
Advanced glycation end products (AGEs) is a causative factor of various chronic diseases, including chronic kidney disease and atherosclerosis. AGE inhibitors, such as aminoguanidine and pyridoxamine, have the therapeutic activities for reversing the increase in AGEs burden. This study evaluated the inhibitory effects of aucubin on the formation of methylglyoxal (MGO)-modified AGEs in vitro. We also determined the potential activity of aucubin in reducing the AGEs burden in the kidney, blood vessel, heart, and retina of exogenously MGO-injected rats. Aucubin inhibited the formation of MGO-modified AGE-bovine serum albumin (IC50 = 0.57 ± 0.04 mmol/L) and its cross-links to collagen (IC50 = 0.55 ± 0.02 mmol/L) in a dose-dependent manner. In addition, aucubin directly trapped MGO (IC50 = 0.22 ± 0.01 mmol/L) in vitro. In exogenous MGO-injected rats, aucubin suppressed the formation of circulating AGEs and its accumulation in various tissues. These activities of aucubin on the MGO-derived AGEs in vitro and in vivo showed its pharmacological potential for inhibiting AGEs-related various chronic diseases.
Collapse
Affiliation(s)
- Eunsoo Jung
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Su-Bin Park
- Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju 54896, Korea.
| | - Woo Kwon Jung
- Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju 54896, Korea.
| | - Hyung Rae Kim
- Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju 54896, Korea.
| | - Junghyun Kim
- Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju 54896, Korea.
| |
Collapse
|
18
|
Qiu DD, Liu J, Shi JS, An Y, Ge YC, Zhou ML, Jiang S. Renoprotection Provided by Dipeptidyl Peptidase-4 Inhibitors in Combination with Angiotensin Receptor Blockers in Patients with Type 2 Diabetic Nephropathy. Chin Med J (Engl) 2019; 131:2658-2665. [PMID: 30425192 PMCID: PMC6247590 DOI: 10.4103/0366-6999.245277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Treatment with the dipeptidyl peptidase-4 inhibitors (DPP4i) and angiotensin receptor blockers (ARBs) in patients with type 2 diabetic nephropathy (DN) has not been well characterized. This study aimed to assess the renoprotection of this combined treatment in DN patients. Methods: A total of 159 type 2 DN patients from 2013 to 2015 were enrolled retrospectively from a prospective DN cohort at the National Clinical Research Center of Kidney Diseases, Jinling Hospital (China). Fifty-seven patients received DPP4i and ARB treatment, and 102 patients were treated with ARBs alone. All patients were followed up for at least 12 months. Statistical analyses were performed using Stata version 12.0. Results: There were no significant differences at baseline for age, sex, body mass index, duration of diabetes, fasting blood glucose (FBG), hemoglobin A1c (HbA1c), and estimated glomerular filtration rate (eGFR) between the two groups. Antihypertensive and antidiabetic medication use was similar in each group except calcium channel antagonists (P = 0.032). No significant changes in FBG and HbA1c were observed in the two groups after treatment. The eGFR decreased slower in the DPP4i + ARB group than in the ARB group at 12 months (Δ12 months: −2.48 ± 13.86 vs. −6.81 ± 12.52 ml·min–1·1.73m–2, P = 0.044). In addition, proteinuria was decreased further in the DPP4i + ARB group than in the ARB group after 24 months of treatment (Δ24 months: −0.18 [−1.00, 0.17] vs. 0.32 [−0.35, 0.88], P = 0.031). There were 36 patients with an eGFR decrease of more than 30% over 24 months. After adjusting for FBG, HbA1c, and other risk factors, DPP4i + ARB treatment was still associated with a reduced incidence of an eGFR decrease of 20% or 30%. Conclusions: The combined treatment of DPP4i and ARBs is superior to ARBs alone, as evidenced by the greater proteinuria reduction and lower eGFR decline. In addition, the renoprotection of DPP4i combined with ARBs was independent of glycemic control.
Collapse
Affiliation(s)
- Dan-Dan Qiu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Jing Liu
- Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Jing-Song Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Yu An
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Yong-Chun Ge
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Min-Lin Zhou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| |
Collapse
|
19
|
Jung E, Kang WS, Jo K, Kim J. Ethyl Pyruvate Prevents Renal Damage Induced by Methylglyoxal-Derived Advanced Glycation End Products. J Diabetes Res 2019; 2019:4058280. [PMID: 31737683 PMCID: PMC6815569 DOI: 10.1155/2019/4058280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/08/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
The renal accumulation of advanced glycation end products (AGEs) is a causative factor of various renal diseases, including chronic kidney disease and diabetic nephropathy. AGE inhibitors, such as aminoguanidine and pyridoxamine, have the therapeutic activities for reversing the increase in renal AGE burden. This study evaluated the inhibitory effects of ethyl pyruvate (EP) on methylglyoxal- (MGO-) modified AGE cross-links with proteins in vitro. We also determined the potential activity of EP in reducing the renal AGE burden in exogenously MGO-injected rats. EP inhibited MGO-modified AGE-bovine serum albumin (BSA) cross-links to collagen (IC50 = 0.19 ± 0.03 mM) in a dose-dependent manner, and its activity was stronger than aminoguanidine (IC50 = 35.97 ± 0.85 mM). In addition, EP directly trapped MGO (IC50 = 4.41 ± 0.08 mM) in vitro. In exogenous MGO-injected rats, EP suppressed AGE burden and MGO-induced oxidative injury in renal tissues. These activities of EP on the MGO-mediated AGEs cross-links with protein in vitro and in vivo showed its pharmacological potential for inhibiting AGE-induced renal diseases.
Collapse
Affiliation(s)
- Eunsoo Jung
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Wan Seok Kang
- College Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Kyuhyung Jo
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Junghyun Kim
- College Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
20
|
Liu L, Yang L, Chang B, Zhang J, Guo Y, Yang X. The protective effects of rapamycin on cell autophagy in the renal tissues of rats with diabetic nephropathy via mTOR-S6K1-LC3II signaling pathway. Ren Fail 2018; 40:492-497. [PMID: 30200803 PMCID: PMC6136383 DOI: 10.1080/0886022x.2018.1489287] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Previous studies have shown that podocyte autophagy is an important trigger for proteinuria and glomerulosclerosis. The mammalian rapamycin target protein (mTOR) occupies a pivotal position in the autophagy pathway. In this study, we planned to clarify the mechanism of mTOR regulation of podocyte autophagy and the effect of rapamycin (RAPA). METHODS All rats were randomly divided into normal control group (n = 8), DN group (n = 8), and RAPA group (n = 8). Blood and urine samples were collected at the 4th, 8th, and 12th weeks of the experiment. The serum creatinine (Scr), urine volume levels, and the 24 h urine protein (UP) levels were examined. The nephrin, podocin, mTOR, ribosomal S6 kinase 1 (S6K1), and autophagy marker light chain 3 (LC3II) expression levels were evaluated by immunohistochemistry, quantitative PCR, and immunoblotting. RESULTS The urine volume, 24 h UP, and Scr of the DN and RAPA groups increased significantly compared with the NC group (p < .05). Nephrin and podocin expression was decreased in the kidney tissues of the DN and RAPA groups compared with the NC group (p < .05). The expression levels of mTOR and S6K1 increased and LC3II expression decreased in the renal tissues of the DN and RAPA groups compared with the NC group (p < .05). After RAPA treatment, all the above indexes were improved compared with the DN group (p < .05), but were significantly abnormal compared with the NC group (p < .05). CONCLUSION The proteinuria and kidney function had improved after RAPA treatment. These results confirmed that RAPA specifically binds to mTOR kinase, and inhibits mTOR activity, thereby regulating the pathological autophagic process.
Collapse
Affiliation(s)
- Lei Liu
- a Department of Nephrology , Shandong University Qilu Hospital , Jinan , P.R. China
| | - Lijuan Yang
- b Department of Physiology , Bengbu Medical College , Bengbu , P.R. China
| | - Baochao Chang
- c Department of Nephrology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , P.R. China
| | - Jiqiang Zhang
- c Department of Nephrology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , P.R. China
| | - Yaling Guo
- c Department of Nephrology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , P.R. China
| | - Xiangdong Yang
- a Department of Nephrology , Shandong University Qilu Hospital , Jinan , P.R. China
| |
Collapse
|
21
|
FPS-ZM1 and valsartan combination protects better against glomerular filtration barrier damage in streptozotocin-induced diabetic rats. J Physiol Biochem 2018; 74:467-478. [PMID: 29948786 DOI: 10.1007/s13105-018-0640-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
Despite the effectiveness of renin-angiotensin blockade in retarding diabetic nephropathy progression, a considerable number of patients still develop end-stage renal disease. The present investigation aims to evaluate the protective potential of FPS-ZM1, a selective inhibitor of receptor for advanced glycation end products (RAGE), alone and in combination with valsartan, an angiotensin receptor blocker, against glomerular injury parameters in streptozotocin-induced diabetic rats. FPS-ZM1 at 1 mg/kg (i.p.), valsartan at 100 mg/kg (p.o.), and their combination were administered for 4 weeks, starting 2 months after diabetes induction in rats. Tests for kidney function, glomerular filtration barrier, and podocyte slit diaphragm integrities were performed. Combined FPS-ZM1/valsartan attenuated diabetes-induced elevations in renal levels of RAGE and phosphorylated NF-κB p65 subunit. It ameliorated glomerular injury due to diabetes by increasing glomerular nephrin and synaptopodin expressions, mitigating renal integrin-linked kinase (ILK) levels, and lowering urinary albumin, collagen type IV, and podocin excretions. FPS-ZM1 also improved renal function as demonstrated by decreasing levels of serum cystatin C. Additionally, the combination also alleviated indices of renal inflammation as revealed by decreased renal monocyte chemoattractant protein 1 (MCP-1) and chemokine (C-X-C motif) ligand 12 (CXCL12) expressions, F4/80-positive macrophages, glomerular TUNEL-positive cells, and urinary alpha-1-acid glycoprotein (AGP) levels. These findings underline the benefits of FPS-ZM1 added to valsartan in alleviating renal glomerular injury evoked by diabetes in streptozotocin rats and suggest FPS-ZM1 as a new potential adjunct to the conventional renin-angiotensin blockade.
Collapse
|
22
|
Tomovic K, Lazarevic J, Kocic G, Deljanin-Ilic M, Anderluh M, Smelcerovic A. Mechanisms and pathways of anti-inflammatory activity of DPP-4 inhibitors in cardiovascular and renal protection. Med Res Rev 2018; 39:404-422. [DOI: 10.1002/med.21513] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine; University of Nis; Bulevar Dr Zorana Djindjica 81 18000 Nis Serbia
| | - Jelena Lazarevic
- Department of Chemistry, Faculty of Medicine; University of Nis; Bulevar Dr Zorana Djindjica 81 18000 Nis Serbia
| | - Gordana Kocic
- Institute of Biochemistry, Faculty of Medicine; University of Nis; Bulevar Dr Zorana Djindjica 81 18000 Nis Serbia
| | - Marina Deljanin-Ilic
- Institute for Cardiovascular Rehabilitation, Faculty of Medicine; University of Nis; 18205 Niska Banja Serbia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; University of Ljubljana; Askerceva 7 SI-1000 Ljubljana Slovenia
| | - Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine; University of Nis; Bulevar Dr Zorana Djindjica 81 18000 Nis Serbia
| |
Collapse
|
23
|
Mohetaer M, Li G, Wang Y, Cao L. Protective effects of gemigliptin against type II collagen degradation in human chondrocytes. Biomed Pharmacother 2018; 104:590-594. [PMID: 29803171 DOI: 10.1016/j.biopha.2018.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 12/25/2022] Open
Abstract
Degradation of components of the extracellular matrix such as type II collagen in articular cartilage induced by matrix metalloproteinases (MMPs) has been considered as a major pathological characteristic of osteoarthritis (OA). Gemigliptin is a potent and a highly selective dipeptidyl peptidase-IV (DPP-IV) inhibitor, which has been clinically used as an oral agent for the treatment of type 2 diabetes. However, the effects of gemigliptin on articular cartilage destruction and the pathogenesis of OA remain unknown. In the current study, we addressed for the first time the inhibitory property of gemigliptin against interleukin-1β (IL-1β)-induced degradation of type II collagen in human chondrocytes. Our results demonstrate that gemigliptin treatment inhibited the expression of matrix metalloproteinase 1 (MMP-1), matrix metalloproteinase 3 (MMP-3), and matrix metalloproteinase 13 (MMP-13) at both the gene and protein levels. Mechanistically, our results indicate that gemigliptin inhibited activation of the nuclear factor-κB (NF-κB) signaling pathway by suppressing phosphorylation of IκB kinase (IKK)/nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor α (IκBα) and p38. Our results implicate that gemigliptin treatment might be a potential therapeutic strategy for chondroprotective therapy.
Collapse
Affiliation(s)
- Momin Mohetaer
- Department of Orthopaedics, First Teaching Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Guoqing Li
- Department of Orthopaedics, First Teaching Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Yang Wang
- Department of Orthopaedics, First Teaching Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Li Cao
- Department of Orthopaedics, First Teaching Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China.
| |
Collapse
|
24
|
Han SY, Yoon SA, Han BG, Kim SG, Jo YI, Jeong KH, Oh KH, Park HC, Park SH, Kang SW, Na KR, Kang SW, Kim NH, Jang Y, Kim B, Shin S, Cha DR. Comparative efficacy and safety of gemigliptin versus linagliptin in type 2 diabetes patients with renal impairment: A 40-week extension of the GUARD randomized study. Diabetes Obes Metab 2018; 20:292-300. [PMID: 28719008 DOI: 10.1111/dom.13059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
AIMS The long-term safety and efficacy of gemigliptin was evaluated in the present extension study after a 12-week study during a 40-week follow-up period. METHODS The main study was a randomized, placebo-controlled, double-blinded, phase IIIb study in which 50 mg of gemigliptin (N = 66) or placebo (N = 66) was administered to patients with type 2 diabetes mellitus (T2DM) and moderate or severe renal impairment over a 12-week period. Patients with a glycated haemoglobin (HbA1c) level of 7% to 11% and an estimated glomerular filtration rate (eGFR) of 15 to 59 mL/min/1.73 m2 were enrolled in the main study. After 12 weeks, patients in the gemigliptin group continued to receive gemigliptin (N = 50), whereas patients in the placebo group were transitioned from placebo to linagliptin (N = 52). Each group received the indicated treatment over the subsequent 40-week period. A total of 102 patients consented to participate in the extension study, and 79 patients ultimately completed the study. RESULTS The HbA1c levels of both groups were significantly reduced at week 52 compared with baseline. Specifically, the adjusted mean change ± standard error in HbA1c level in the gemigliptin and placebo/linagliptin groups was 1.00% ± 0.21% and 0.65% ± 0.22% lower at week 52 than at baseline (P < .001 and P = .003), respectively. No significant difference in the change in HbA1c level was found between the 2 groups (P = .148). Trends in fasting plasma glucose, fructosamine and glycated albumin levels in the 2 groups were similar to trends in HbA1c levels. The eGFR of both groups was also significantly lower at week 52 than at baseline, and no significant difference in change in eGFR was found between the 2 groups. In contrast, both drugs had little effect on urinary albumin excretion, although both drugs significantly reduced the urinary type IV collagen level. The overall rates of adverse events were similar between the 2 groups. CONCLUSIONS Gemigliptin and linagliptin did not differ with respect to safety and efficacy in patients with T2DM and renal impairment. The 2 drugs had similar glucose-lowering effects, and the changes in eGFR and albuminuria were also similar. Additionally, the risk of side effects, including hypoglycaemia, was similar between the 2 groups.
Collapse
Affiliation(s)
- Sang Youb Han
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Sun Ae Yoon
- Department of Internal Medicine, Catholic University Uijeongbu St. Mary's Hospital, Uijeongbu, Republic of Korea
| | - Byoung Geun Han
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Sung Gyun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Young-Il Jo
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kyung Hwan Jeong
- Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeong Cheon Park
- Department of Internal Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Sun-Hee Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ki-Ryang Na
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sun Woo Kang
- Department of Nephrology, Busan Paik Hospital Inje University, Busan, Republic of Korea
| | - Nam-Ho Kim
- Department of Internal Medicine, Chonnam National University College of Medicine, Gwangju, Republic of Korea
| | | | | | | | - Dae Ryong Cha
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| |
Collapse
|
25
|
Deacon CF. A review of dipeptidyl peptidase-4 inhibitors. Hot topics from randomized controlled trials. Diabetes Obes Metab 2018; 20 Suppl 1:34-46. [PMID: 29364584 DOI: 10.1111/dom.13135] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
The first clinical study to investigate effects of dipeptidyl peptidase-4 (DPP-4) inhibition was published in 2002, and since then, numerous randomized controlled trials (RCTs) have shown that DPP-4 inhibitors are efficacious, safe and well-tolerated. This review will focus upon RCTs which have investigated DPP-4 inhibitors in patient groups which are often under-represented or excluded from typical phase 3 clinical trials. Large cardiovascular (CV) safety outcome trials in patients with established CV disease have confirmed that DPP-4 inhibitors are not associated with any additional CV risk in these already-at-high-risk individuals, while raising awareness of any uncommon adverse events, such as heart failure hospitalization seen in one of the trials. Studies in patients with kidney disease have shown DPP-4 inhibitors to be efficacious without increasing the risk of hypoglycaemia, irrespective of the degree of renal impairment, while data from the large CV trials as well as smaller RCTs have even pointed towards potential renoprotective effects such individuals. The use of DPP-4 inhibitors with insulin when therapy requires intensification may be beneficial without affecting the incidence or severity of hypoglycaemia, with these effects also being replicated in patients with chronic kidney disease, for whom other agents may not be suitable. Attention is now turning towards exploring the potential utility of DPP-4 inhibitors in other circumstances, including for in-hospital management of hyperglycaemia and in other metabolic disorders. Together, these RCTs raise the possibility that in the future, DPP-4 inhibitors may have a broader use which may extend beyond glycaemic control in the typical type 2 diabetes mellitus (T2DM) patient seen in general practice and may encompass conditions other than T2DM.
Collapse
Affiliation(s)
- Carolyn F Deacon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Protective Effects of Gemigliptin, a Dipeptidyl Peptidase-4 Inhibitor, against Cisplatin-Induced Nephrotoxicity in Mice. Mediators Inflamm 2017; 2017:4139439. [PMID: 29317794 PMCID: PMC5727799 DOI: 10.1155/2017/4139439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/19/2017] [Indexed: 12/24/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are widely used antihyperglycemic agents for the treatment of type 2 diabetes mellitus. Recently, the pleiotropic actions of DPP-4 inhibitors have drawn much attention. In the present study, we aimed to examine whether gemigliptin, a recently developed DPP-4 inhibitor, could protect against cisplatin-induced nephrotoxicity. We showed that pretreatment with gemigliptin attenuated cisplatin-induced renal dysfunction, as shown by analysis of plasma creatinine levels and blood urea nitrogen and histological damage. Elevated plasma levels of active glucagon-like peptide-1 were observed in gemigliptin-pretreated mice after cisplatin treatment, compared to that in cisplatin alone-treated mice. Gemigliptin attenuated cisplatin-induced apoptotic cell death, as assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and Western blot analysis in the kidneys. Gemigliptin also decreased the plasma levels of tumor necrosis factor-α and monocyte chemoattractant protein-1 and attenuated nuclear staining of nuclear factor kappa-B p65 in the kidneys. In addition, gemigliptin increased the protein expression of heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1) in the kidneys of cisplatin-treated mice. Taken together, these results suggest that pretreatment with gemigliptin protects against cisplatin-induced nephrotoxicity in mice, possibly via inhibition of apoptotic cell death and inflammatory responses through induction of HO-1 and NQO1 expression.
Collapse
|
27
|
Abstract
The gastrointestinal tract - the largest endocrine network in human physiology - orchestrates signals from the external environment to maintain neural and hormonal control of homeostasis. Advances in understanding entero-endocrine cell biology in health and disease have important translational relevance. The gut-derived incretin hormone glucagon-like peptide 1 (GLP-1) is secreted upon meal ingestion and controls glucose metabolism by modulating pancreatic islet cell function, food intake and gastrointestinal motility, amongst other effects. The observation that the insulinotropic actions of GLP-1 are reduced in type 2 diabetes mellitus (T2DM) led to the development of incretin-based therapies - GLP-1 receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors - for the treatment of hyperglycaemia in these patients. Considerable interest exists in identifying effects of these drugs beyond glucose-lowering, possibly resulting in improved macrovascular and microvascular outcomes, including in diabetic kidney disease. As GLP-1 has been implicated as a mediator in the putative gut-renal axis (a rapid-acting feed-forward loop that regulates postprandial fluid and electrolyte homeostasis), direct actions on the kidney have been proposed. Here, we review the role of GLP-1 and the actions of associated therapies on glucose metabolism, the gut-renal axis, classical renal risk factors, and renal end points in randomized controlled trials of GLP-1 receptor agonists and DPP-4 inhibitors in patients with T2DM.
Collapse
|
28
|
Hasan AA, Hocher B. Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy. J Mol Endocrinol 2017; 59:R1-R10. [PMID: 28420715 DOI: 10.1530/jme-17-0005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/18/2017] [Indexed: 01/17/2023]
Abstract
Diabetic nephropathy is one of the most frequent, devastating and costly complications of diabetes. The available therapeutic approaches are limited. Dipeptidyl peptidase type 4 (DPP-4) inhibitors represent a new class of glucose-lowering drugs that might also have reno-protective properties. DPP-4 exists in two forms: a plasma membrane-bound form and a soluble form, and can exert many biological actions mainly through its peptidase activity and interaction with extracellular matrix components. The kidneys have the highest DPP-4 expression level in mammalians. DPP-4 expression and urinary activity are up-regulated in diabetic nephropathy, highlighting its role as a potential target to manage diabetic nephropathy. Preclinical animal studies and some clinical data suggest that DPP-4 inhibitors decrease the progression of diabetic nephropathy in a blood pressure- and glucose-independent manner. Many studies reported that these reno-protective effects could be due to increased half-life of DPP-4 substrates such as glucagon-like peptide-1 (GLP-1) and stromal derived factor-1 alpha (SDF-1a). However, the underlying mechanisms are far from being completely understood and clearly need further investigations.
Collapse
Affiliation(s)
- Ahmed A Hasan
- Institute of Nutritional ScienceUniversity of Potsdam, Potsdam, Germany
- Department of BiochemistryFaculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Berthold Hocher
- Institute of Nutritional ScienceUniversity of Potsdam, Potsdam, Germany
- Institut für Laboriatorumsmedizin IFLbBerlin, Germany
- Departments of Embryology and NephrologyBasic Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Leppert U, Gillespie A, Orphal M, Böhme K, Plum C, Nagorsen K, Berkholz J, Kreutz R, Eisenreich A. The impact of α-Lipoic acid on cell viability and expression of nephrin and ZNF580 in normal human podocytes. Eur J Pharmacol 2017; 810:1-8. [PMID: 28606850 DOI: 10.1016/j.ejphar.2017.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 02/04/2023]
Abstract
Human podocytes (hPC) are essential for maintaining normal kidney function and dysfunction or loss of hPC play a pivotal role in the manifestation and progression of chronic kidney diseases including diabetic nephropathy. Previously, α-Lipoic acid (α-LA), a licensed drug for treatment of diabetic neuropathy, was shown to exhibit protective effects on diabetic nephropathy in vivo. However, the effect of α-LA on hPC under non-diabetic conditions is unknown. Therefore, we analyzed the impact of α-LA on cell viability and expression of nephrin and zinc finger protein 580 (ZNF580) in normal hPC in vitro. Protein analyses were done via Western blot techniques. Cell viability was determined using a functional assay. hPC viability was dynamically modulated via α-LA stimulation in a concentration-dependent manner. This was associated with reduced nephrin and ZNF580 expression and increased nephrin phosphorylation in normal hPC. Moreover, α-LA reduced nephrin and ZNF580 protein expression via 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) inhibition. These data demonstrate that low α-LA had no negative influence on hPC viability, whereas, high α-LA concentrations induced cytotoxic effects on normal hPC and reduced nephrin and ZNF580 expression via NF-κB inhibition. These data provide first novel information about potential cytotoxic effects of α-LA on hPC under non-diabetic conditions.
Collapse
Affiliation(s)
- Ulrike Leppert
- Charité-Universitätsmedizin Berlin, CC02, Institut für Physiologie, Berlin, Germany
| | - Allan Gillespie
- Charité-Universitätsmedizin Berlin, CC04, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany
| | - Miriam Orphal
- Charité-Universitätsmedizin Berlin, CC04, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany
| | - Karen Böhme
- Charité-Universitätsmedizin Berlin, CC04, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany
| | - Claudia Plum
- Charité-Universitätsmedizin Berlin, CC04, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany
| | - Kaj Nagorsen
- Charité-Universitätsmedizin Berlin, CC02, Institut für Physiologie, Berlin, Germany
| | - Janine Berkholz
- Charité-Universitätsmedizin Berlin, CC02, Institut für Physiologie, Berlin, Germany
| | - Reinhold Kreutz
- Charité-Universitätsmedizin Berlin, CC04, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany
| | - Andreas Eisenreich
- Charité-Universitätsmedizin Berlin, CC04, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany.
| |
Collapse
|
30
|
Yoon SA, Han BG, Kim SG, Han SY, Jo YI, Jeong KH, Oh KH, Park HC, Park SH, Kang SW, Na KR, Kang SW, Kim NH, Jang YH, Shin SH, Cha DR. Efficacy, safety and albuminuria-reducing effect of gemigliptin in Korean type 2 diabetes patients with moderate to severe renal impairment: A 12-week, double-blind randomized study (the GUARD Study). Diabetes Obes Metab 2017; 19:590-598. [PMID: 28019072 DOI: 10.1111/dom.12863] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/12/2023]
Abstract
AIMS This multicentre, randomized, double-blind study investigated the efficacy and safety of gemigliptin in Korean type 2 diabetes mellitus (T2DM) patients with moderate to severe renal impairment (RI). METHODS The study comprised a 12-week main part and a 40-week extension. We report here the results from the main part. In total, 132 patients were randomized to receive gemigliptin (n = 66) or placebo (n = 66). Changes in glycated haemoglobin (HbA1c; primary endpoint), other glycaemic control parameters (fasting plasma glucose, glycated albumin and fructosamine), lipid profiles, renal function parameters and safety profiles were evaluated. RESULTS Baseline characteristics were comparable between the groups (mean HbA1c, 8.4% [68 mmol/mol]; age, 62.0 years; duration of type 2 diabetes, 16.3 years; estimated glomerular filtration rate, 33.3 mL/min/1.73 m2 ). At Week 12, the adjusted mean change ± standard error in HbA1c with gemigliptin was -0.82% ± 0.14% (-8.9 ± 1.5 mmol/mol), whereas it was 0.38% ± 0.14% (4.2 ± 1.5 mmol/mol) with placebo (significant between-group difference, P < .001). Other glycaemic control parameters showed beneficial changes as well. Body weight change (gemigliptin, -0.3 kg; placebo, -0.2 kg) was not significant. In the gemigliptin group, the mean decrease in urinary albumin creatinine ratio (UACR) was significant, both in patients with microalbuminuria (-41.9 mg/g creatinine, P = .03) and macroalbuminuria (-528.9 mg/g creatinine, P < .001). Drug-related adverse events were similar with gemigliptin and placebo (15% and 12%, respectively). CONCLUSIONS A 12-week treatment with gemigliptin improved glycaemic control and provided UACR reduction in T2DM patients with moderate to severe RI. Gemigliptin was well tolerated, with no additional risk of hypoglycaemia and change in body weight.
Collapse
Affiliation(s)
- Sun A Yoon
- Department of Internal Medicine, Catholic University Uijeongbu St. Mary's Hospital, Uijeongbu, Republic of Korea
| | - Byoung G Han
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Sung G Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Sang Y Han
- Department of Internal Medicine, Inje University, Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Young I Jo
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kyung H Jeong
- Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Kook H Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeong C Park
- Department of Internal Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Sun H Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | - Ki R Na
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sun W Kang
- Department of Internal Medicine, Busan Paik Hospital, Busan, Republic of Korea
| | - Nam H Kim
- Department of Internal Medicine, Chonnam National University College of Medicine, Gwangju, Republic of Korea
| | | | | | - Dae R Cha
- Korea University Ansan-Hospital, Ansan, Republic of Korea
| |
Collapse
|
31
|
Bai C, Liang S, Wang Y, Jiao B. Knocking down TCF8 inhibits high glucose- and angiotensin II-induced epithelial to mesenchymal transition in podocytes. Biosci Trends 2017; 11:77-84. [PMID: 28111379 DOI: 10.5582/bst.2016.01224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a physiological phenomenon in mammalian embryogenesis by which epithelial cells become mesenchymal stem cells. Studies have indicated that an inappropriate EMT plays a key role in a variety of pathogenic processes such as embryonic development and tumor metastasis. Moreover, recent studies have indicated EMT also plays an important role in renal fibrosis. In the current study, glucose and angiotensin II promoted EMT in podocytes as well as changes in the cellular morphology of podocytes. A high concentration of glucose and angiotensin II also promoted podocyte movement and migration. Moreover, a high concentration of glucose and angiotensin II promoted TCF8 expression. Inhibiting TCF8 expression with siRNA reversed EMT in podocytes in the presence of a high concentration of glucose and angiotensin. Inhibiting TCF8 expression also reversed changes in cellular morphology and podocyte movement and migration. Therefore, glucose and angiotensin II may promote EMT in podocytes via TCF8.
Collapse
Affiliation(s)
- Changhuan Bai
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University
| | | | | | | |
Collapse
|
32
|
Ameliorating Effect of Gemigliptin on Renal Injury in Murine Adriamycin-Induced Nephropathy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7275109. [PMID: 28326327 PMCID: PMC5343226 DOI: 10.1155/2017/7275109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 01/30/2017] [Indexed: 12/25/2022]
Abstract
Background. Previous studies have shown the antiapoptotic and anti-inflammatory potential of DPP-IV inhibitor in experimental models of renal injury. We tested whether DPP-IV inhibitor (gemigliptin) ameliorates renal injury by suppressing apoptosis, inflammation, and oxidative stress in mice with adriamycin nephropathy. Methods. Mice were treated with normal saline (control), gemigliptin (GM), adriamycin (ADR), or adriamycin combined with gemigliptin (ADR+GM). Apoptosis, inflammation, and oxidative stress were analyzed via western blotting, real-time PCR, light microscopy, and immunofluorescence. Results. In the ADR+GM group, urine albumin creatinine ratio decreased significantly compared with that in the ADR group on day 15. Glomerulosclerosis index and tubulointerstitial injury index in mice with adriamycin-induced nephropathy decreased after gemigliptin treatment. ADR group showed higher levels of apoptosis, inflammation, and oxidative stress-related molecules compared with the control group. The upregulation of these molecules was significantly reduced by gemigliptin. In the ADR group, the staining intensities of WT-1 and nephrin reduced, but these changes were ameliorated in the ADR+GM group. Conclusion. We demonstrated that gemigliptin ameliorates nephropathy by suppressing apoptosis, inflammation, and oxidative stress in mice administered adriamycin. Our data demonstrate that gemigliptin has renoprotective effects on adriamycin-induced nephropathy.
Collapse
|
33
|
Wolke C, Teumer A, Endlich K, Endlich N, Rettig R, Stracke S, Fiene B, Aymanns S, Felix SB, Hannemann A, Lendeckel U. Serum protease activity in chronic kidney disease patients: The GANI_MED renal cohort. Exp Biol Med (Maywood) 2016; 242:554-563. [PMID: 28038565 DOI: 10.1177/1535370216684040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Serum or plasma proteases have been associated with various diseases including cancer, inflammation, or reno-cardiovascular diseases. We aimed to investigate whether the enzymatic activities of serum proteases are associated with the estimated glomerular filtration rate (eGFR) in patients with different stages of chronic kidney disease (CKD). Our study population comprised 268 participants of the "Greifswald Approach to Individualized Medicine" (GANI_MED) cohort. Enzymatic activity of aminopeptidase A, aminopeptidase B, alanyl (membrane) aminopeptidase, insulin-regulated aminopeptidase, puromycin-sensitive aminopeptidase, leucine aminopeptidase 3, prolyl-endopeptidase (PEP), dipeptidyl peptidase 4 (DPP4), angiotensin I-converting enzyme, and angiotensin I-converting enzyme 2 (ACE2) proteases was measured in serum. Linear regression of the respective protease was performed on kidney function adjusted for age and sex. Kidney function was modeled either by the continuous Modification of Diet in Renal Disease (MDRD)-based eGFR or dichotomized by eGFR < 15 mL/min/1.73 m2 or <45 mL/min/1.73 m2, respectively. Results with a false discovery rate below 0.05 were deemed statistically significant. Among the 10 proteases investigated, only the activities of ACE2 and DPP4 were correlated with eGFR. Patients with lowest eGFR exhibited highest DPP4 and ACE2 activities. DPP4 and PEP were correlated with age, but all other serum protease activities showed no associations with age or sex. Our data indicate that ACE2 and DPP4 enzymatic activity are associated with the eGFR in patients with CKD. This finding distinguishes ACE2 and DPP4 from other serum peptidases analyzed and clearly indicates that further analyses are warranted to identify the precise role of these serum ectopeptidases in the pathogenesis of CKD and to fully elucidate underlying molecular mechanisms. Impact statement • Renal and cardiac diseases are very common and often occur concomitantly, resulting in increased morbidity and mortality. Understanding of molecular mechanisms linking both diseases is limited, available fragmentary data point to a role of the renin-angiotensin system (RAS) and, in particular, Ras-related peptidases. • Here, a comprehensive analysis of serum peptidase activities in patients with different stages of chronic kidney disease (CKD) is presented, with special emphasis given to RAS peptidases • The serum activities of the peptidases angiotensin I-converting enzyme 2 and dipeptidyl peptidase 4 were identified as closely associated with kidney function, specifically with the estimated glomerular filtration rate. The findings are discussed in the context of available data suggesting protective roles for both enzymes in reno-cardiac diseases. • The data add to our understanding of pathomechanisms underlying development and progression of CKD and indicate that both enzymes might represent potential pharmacological targets for the preservation of renal function.
Collapse
Affiliation(s)
- Carmen Wolke
- 1 Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Alexander Teumer
- 2 Dept. SHIP/KEF, Institute of Community Medicine, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Karlhans Endlich
- 3 Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Nicole Endlich
- 3 Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Rainer Rettig
- 4 Institute of Physiology, University Medicine Greifswald, Karlsburg D-17495, Germany
| | - Sylvia Stracke
- 5 Department of Internal Medicine A, Nephrology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Beate Fiene
- 5 Department of Internal Medicine A, Nephrology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Simone Aymanns
- 5 Department of Internal Medicine A, Nephrology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Stephan B Felix
- 6 Department of Internal Medicine B, Cardiology, Angiology, Pneumology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Anke Hannemann
- 7 Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Uwe Lendeckel
- 1 Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| |
Collapse
|
34
|
Paulini J, Higuti E, Bastos RMC, Gomes SA, Rangel ÉB. Mesenchymal Stem Cells as Therapeutic Candidates for Halting the Progression of Diabetic Nephropathy. Stem Cells Int 2016; 2016:9521629. [PMID: 28058051 PMCID: PMC5187468 DOI: 10.1155/2016/9521629] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess pleiotropic properties that include immunomodulation, inhibition of apoptosis, fibrosis and oxidative stress, secretion of trophic factors, and enhancement of angiogenesis. These properties provide a broad spectrum for their potential in a wide range of injuries and diseases, including diabetic nephropathy (DN). MSCs are characterized by adherence to plastic, expression of the surface molecules CD73, CD90, and CD105 in the absence of CD34, CD45, HLA-DR, and CD14 or CD11b and CD79a or CD19 surface molecules, and multidifferentiation capacity in vitro. MSCs can be derived from many tissue sources, consistent with their broad, possibly ubiquitous distribution. This article reviews the existing literature and knowledge of MSC therapy in DN, as well as the most appropriate rodent models to verify the therapeutic potential of MSCs in DN setting. Some preclinical relevant studies are highlighted and new perspectives of combined therapies for decreasing DN progression are discussed. Hence, improved comprehension and interpretation of experimental data will accelerate the progress towards clinical trials that should assess the feasibility and safety of this therapeutic approach in humans. Therefore, MSC-based therapies may bring substantial benefit for patients suffering from DN.
Collapse
Affiliation(s)
- Janaina Paulini
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Eliza Higuti
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Rosana M. C. Bastos
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Samirah A. Gomes
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
- University of São Paulo, 01246 São Paulo, SP, Brazil
| | - Érika B. Rangel
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
- Federal University of São Paulo, 04023 São Paulo, SP, Brazil
| |
Collapse
|
35
|
Kim SH, Yoo JH, Lee WJ, Park CY. Gemigliptin: An Update of Its Clinical Use in the Management of Type 2 Diabetes Mellitus. Diabetes Metab J 2016; 40:339-353. [PMID: 27766241 PMCID: PMC5069390 DOI: 10.4093/dmj.2016.40.5.339] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of oral antidiabetic agent for the treatment of type 2 diabetes mellitus. They increase endogenous levels of incretin hormones, which stimulate glucose-dependent insulin secretion, decrease glucagon secretion, and contribute to reducing postprandial hyperglycemia. Although DPP-4 inhibitors have similar benefits, they can be differentiated in terms of their chemical structure, pharmacology, efficacy and safety profiles, and clinical considerations. Gemigliptin (brand name: Zemiglo), developed by LG Life Sciences, is a potent, selective, competitive, and long acting DPP-4 inhibitor. Various studies have shown that gemigliptin is an optimized DPP-4 inhibitor in terms of efficacy, safety, and patient compliance for treatment of type 2 diabetes mellitus. In this review, we summarize the characteristics of gemigliptin and discuss its potential benefits in clinical practice.
Collapse
Affiliation(s)
- Sung-Ho Kim
- LG Life Sciences Ltd., R&D Park, Daejeon, Korea
| | | | - Woo Je Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Cheol-Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Effect of Linagliptin on Structural Changes in the Kidney in Experimental Type 2 Diabetes Mellitus. Bull Exp Biol Med 2016; 161:501-4. [PMID: 27591880 DOI: 10.1007/s10517-016-3447-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 12/16/2022]
Abstract
Effect of the dipeptidyl peptidase-4 inhibitor linagliptin on structural manifestations of diabetic nephropathy was studied in BKS.Cg-Dock7m+/+Leprdb/J mice (experimental model of type 2 diabetes mellitus). Linagliptin (10 mg/kg per day) or vehicle was administered by gavage over 8 weeks. Mesangial expansion, thickening of the basement membrane in glomerular capillaries and proximal tubules, and retraction of cytopodia were less pronounced in mice receiving linagliptin. The protective effect of linagliptin on the kidney structure was not associated with its hypoglycemic action.
Collapse
|
37
|
Abstract
Genetic studies of hereditary forms of nephrotic syndrome have identified several proteins that are involved in regulating the permselective properties of the glomerular filtration system. Further extensive research has elucidated the complex molecular basis of the glomerular filtration barrier and clearly established the pivotal role of podocytes in the pathophysiology of glomerular diseases. Podocyte architecture is centred on focal adhesions and slit diaphragms - multiprotein signalling hubs that regulate cell morphology and function. A highly interconnected actin cytoskeleton enables podocytes to adapt in order to accommodate environmental changes and maintain an intact glomerular filtration barrier. Actin-based endocytosis has now emerged as a regulator of podocyte integrity, providing an impetus for understanding the precise mechanisms that underlie the steady-state control of focal adhesion and slit diaphragm components. This Review outlines the role of actin dynamics and endocytosis in podocyte biology, and discusses how molecular heterogeneity in glomerular disorders could be exploited to deliver more rational therapeutic interventions, paving the way for targeted medicine in nephrology.
Collapse
|
38
|
Kim SH, Jung E, Yoon MK, Kwon OH, Hwang DM, Kim DW, Kim J, Lee SM, Yim HJ. Pharmacological profiles of gemigliptin (LC15-0444), a novel dipeptidyl peptidase-4 inhibitor, in vitro and in vivo. Eur J Pharmacol 2016; 788:54-64. [PMID: 27298192 DOI: 10.1016/j.ejphar.2016.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 01/24/2023]
Abstract
Gemigliptin, a novel dipeptidyl peptidase (DPP)-4 inhibitor, is approved for use as a monotherapy or in combination therapy to treat hyperglycemia in patients with type 2 diabetes mellitus. In this study, we investigated the pharmacological profiles of gemigliptin in vitro and in vivo and compared them to those of the other DPP-4 inhibitors. Gemigliptin was a reversible and competitive inhibitor with a Ki value of 7.25±0.67nM. Similar potency was shown in plasma from humans, rats, dogs, and monkeys. The kinetics of DPP-4 inhibition by gemigliptin was characterized by a fast association and a slow dissociation rate compared to sitagliptin (fast on and fast off rate) or vildagliptin (slow on and slow off rate). In addition, gemigliptin showed at least >23,000-fold selectivity for DPP-4 over various proteases and peptidases, including DPP-8, DPP-9, and fibroblast activation protein (FAP)-α. In the rat, dog, and monkey, gemigliptin showed more potent DPP-4 inhibitory activity in vivo compared with sitagliptin. In mice and dogs, gemigliptin prevented the degradation of active glucagon-like peptide-1 by DPP-4 inhibition, which improved glucose tolerance by increasing insulin secretion and reducing glucagon secretion during an oral glucose tolerance test. The long-term anti-hyperglycemic effect of gemigliptin was evaluated in diet-induced obese mice and high-fat diet/streptozotocin-induced diabetic mice. Gemigliptin dose-dependently decreased hemoglobin A1c (HbA1c) levels and ameliorated β-cell damage. In conclusion, gemigliptin is a potent, long-acting, and highly selective DPP-4 inhibitor and can be a safe and effective drug for the long-term treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Sung-Ho Kim
- LG Life Sciences Ltd., R&D Park, Daejeon 34122, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Eunsoo Jung
- LG Life Sciences Ltd., R&D Park, Daejeon 34122, Republic of Korea
| | - Min Kyung Yoon
- LG Life Sciences Ltd., R&D Park, Daejeon 34122, Republic of Korea
| | - O Hwan Kwon
- LG Life Sciences Ltd., R&D Park, Daejeon 34122, Republic of Korea
| | - Dal-Mi Hwang
- LG Life Sciences Ltd., R&D Park, Daejeon 34122, Republic of Korea
| | - Dong-Wook Kim
- LG Life Sciences Ltd., R&D Park, Daejeon 34122, Republic of Korea
| | - Junghyun Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hyeon Joo Yim
- LG Life Sciences Ltd., R&D Park, Daejeon 34122, Republic of Korea.
| |
Collapse
|
39
|
DA-1229, a dipeptidyl peptidase IV inhibitor, protects against renal injury by preventing podocyte damage in an animal model of progressive renal injury. J Transl Med 2016; 96:547-60. [PMID: 26878135 DOI: 10.1038/labinvest.2016.34] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/17/2015] [Accepted: 01/17/2016] [Indexed: 11/09/2022] Open
Abstract
Although dipeptidyl peptidase IV (DPPIV) inhibitors are known to have renoprotective effects, the mechanism underlying these effects has remained elusive. Here we investigated the effects of DA-1229, a novel DPPIV inhibitor, in two animal models of renal injury including db/db mice and the adriamycin nephropathy rodent model of chronic renal disease characterized by podocyte injury. For both models, DA-1229 was administered at 300 mg/kg/day. DPPIV activity in the kidney was significantly higher in diabetic mice compared with their nondiabetic controls. Although DA-1229 did not affect glycemic control or insulin resistance, DA-1229 did improve lipid profiles, albuminuria and renal fibrosis. Moreover, DA-1229 treatment resulted in decreased urinary excretion of nephrin, decreased circulating and kidney DPPIV activity, and decreased macrophage infiltration in the kidney. In adriamycin-treated mice, DPPIV activity in the kidney and urinary nephrin loss were both increased, whereas glucagon-like peptide-1 concentrations were unchanged. Moreover, DA-1229 treatment significantly improved proteinuria, renal fibrosis and inflammation associated with decreased urinary nephrin loss, and kidney DPP4 activity. In cultured podocytes, DA-1229 restored the high glucose/angiotensin II-induced increase of DPPIV activity and preserved the nephrin levels in podocytes. These findings suggest that activation of DPPIV in the kidney has a role in the progression of renal disease, and that DA-1229 may exert its renoprotective effects by preventing podocyte injury.
Collapse
|
40
|
Korbut AI, Klimontov VV. Incretin-based therapy: renal effects. DIABETES MELLITUS 2016; 19:53-63. [DOI: 10.14341/dm7727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Glucagon like peptide-1 (GLP-1) analogues and dipeptidyl peptidase-4 (DPP-4) inhibitors are new classes of hypoglycemic agents with numerous pleiotropic effects. The review summarises data about the influence of GLP-1 analogues and DPP-4 inhibitors on structural and functional changes in diabetic kidneys. Growing evidence indicates that the kidney is one of the loci of the effects and degradation of GLP-1. The potency of the effects of GLP-1 in diabetic kidneys can be reduced by decrease in GLP-1 receptor expression or enhancement of GLP-1 degradation. In experimental models of diabetic nephropathy and non-diabetic renal injury, GLP-1 analogues and DPP-4 inhibitors slow the development of kidney fibrosis and prevent the decline of kidney function. The mechanisms of protective effect include hyperglycaemia reduction, enhancement of sodium excretion, suppression of inflammatory and fibrogenic signalling pathways, reduction of oxidative stress and apoptosis in the kidneys. In clinical studies, the urinary albumin excretion reduction rate while using the GLP-1 analogue and DPP-4 inhibitor treatment was demonstrated in patients with type 2 diabetes. Long-term impact of these agents on renal function in diabetes needs further investigations.
Collapse
|
41
|
Ramasamy R, Shekhtman A, Schmidt AM. The multiple faces of RAGE--opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets 2015; 20:431-46. [PMID: 26558318 DOI: 10.1517/14728222.2016.1111873] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION This review focuses on the multi-ligand receptor of the immunoglobulin superfamily--receptor for advanced glycation endproducts (RAGE). The accumulation of the multiple ligands of RAGE in cellular stress milieux links RAGE to the pathobiology of chronic disease and natural aging. AREAS COVERED In this review, we present a discussion on the ligands of RAGE and the implications of these ligand families in disease. We review the recent literature on the role of ligand-RAGE interaction in the consequences of natural aging; the macro- and microvascular complications of diabetes; obesity and insulin resistance; autoimmune disorders and chronic inflammation; and tumors and Alzheimer's disease. We discuss the mechanisms of RAGE signaling through its intracellular binding effector molecule--the formin DIAPH1. Physicochemical evidence of how the RAGE cytoplasmic domain binds to the FH1 (formin homology 1) domain of DIAPH1, and the consequences thereof, are also reviewed. EXPERT OPINION We discuss the modalities of RAGE antagonism currently in preclinical and clinical studies. Finally, we present the rationale behind potentially targeting the RAGE cytoplasmic domain-DIAPH1 interaction as a logical strategy for therapeutic intervention in the pathological settings of chronic diseases and aging wherein RAGE ligands accumulate and signal.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- a Diabetes Research Program, Division of Endocrinology, Department of Medicine , New York University Langone Medical Center , New York , NY 10016 , USA
| | - Alexander Shekhtman
- b Department of Chemistry , University at Albany, State University of New York , Albany , NY 12222 , USA
| | - Ann Marie Schmidt
- a Diabetes Research Program, Division of Endocrinology, Department of Medicine , New York University Langone Medical Center , New York , NY 10016 , USA
| |
Collapse
|