1
|
Pitsikas N. Evaluation of the potential efficacy of the nitric oxide donor molsidomine for the treatment of schizophrenia. Med Gas Res 2025; 15:228-233. [PMID: 39511754 PMCID: PMC11918460 DOI: 10.4103/mgr.medgasres-d-24-00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Schizophrenia is a chronic devastating psychiatric disease characterized by a high recurrence rate. Pharmacological management of this disorder appears disappointing since it is associated with a lack of efficacy for negative symptoms and cognitive deficits, typical features of schizophrenia, and the presence of severe undesired side effects. Thus, novel molecules with high efficacy and low toxicity for the treatment of schizophrenia are urgently needed. The involvement of the gaseous molecule nitric oxide in the pathogenesis of schizophrenia is well documented since low concentrations of nitric oxide are associated with this psychiatric disease. Therefore, chemicals able to normalize nitric oxide levels, such as nitric oxide donors, might be useful for the management of this type of schizophrenia. Molsidomine is a nitric oxide donor and is under investigation as a novel antischizophrenia agent. The aim of this review is to critically evaluate the potential efficacy of this molecule for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
2
|
Zhang X, Chen Z, Xiong Y, Zhou Q, Zhu LQ, Liu D. The emerging role of nitric oxide in the synaptic dysfunction of vascular dementia. Neural Regen Res 2025; 20:402-415. [PMID: 38819044 PMCID: PMC11317957 DOI: 10.4103/nrr.nrr-d-23-01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024] Open
Abstract
With an increase in global aging, the number of people affected by cerebrovascular diseases is also increasing, and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic rate. However, few therapeutic options exist that can markedly improve the cognitive impairment and prognosis of vascular dementia patients. Similarly in Alzheimer's disease and other neurological disorders, synaptic dysfunction is recognized as the main reason for cognitive decline. Nitric oxide is one of the ubiquitous gaseous cellular messengers involved in multiple physiological and pathological processes of the central nervous system. Recently, nitric oxide has been implicated in regulating synaptic plasticity and plays an important role in the pathogenesis of vascular dementia. This review introduces in detail the emerging role of nitric oxide in physiological and pathological states of vascular dementia and summarizes the diverse effects of nitric oxide on different aspects of synaptic dysfunction, neuroinflammation, oxidative stress, and blood-brain barrier dysfunction that underlie the progress of vascular dementia. Additionally, we propose that targeting the nitric oxide-sGC-cGMP pathway using certain specific approaches may provide a novel therapeutic strategy for vascular dementia.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Center for Cognitive Science and Transdisciplinary Studies, Jiujiang University, Jiangxi Province, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Rehabilitation, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Qin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Zinellu A, Tommasi S, Carru C, Sotgia S, Mangoni AA. A systematic review and meta-analysis of nitric oxide-associated arginine metabolites in schizophrenia. Transl Psychiatry 2024; 14:439. [PMID: 39414767 PMCID: PMC11484908 DOI: 10.1038/s41398-024-03157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
There is increasing interest in the pathophysiological role of arginine metabolism in schizophrenia, particularly in relation to the modulation of the endogenous messenger nitric oxide (NO). The assessment of specific arginine metabolites that, unlike NO, are stable can provide useful insights into NO regulatory enzymes such as isoform 1 of dimethylarginine dimethylaminohydrolase (DDAH1) and arginase. We investigated the role of arginine metabolomics in schizophrenia by conducting a systematic review and meta-analysis of the circulating concentrations of arginine metabolites associated with DDAH1, arginase, and NO synthesis [arginine, citrulline, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), dimethylamine, and ornithine] in this patient group. We searched PubMed, Scopus, and Web of Science from inception to the 31st of May 2023 for studies investigating arginine metabolites in patients with schizophrenia and healthy controls. The JBI Critical Appraisal Checklist for analytical studies and GRADE were used to assess the risk of bias and the certainty of evidence, respectively (PROSPERO registration number: CRD42023433000). Twenty-one studies were identified for analysis. There were no significant between-group differences in arginine, citrulline, and SDMA. By contrast, patients with schizophrenia had significantly higher ADMA (DDAH1 substrate, standard mean difference, SMD = 1.23, 95% CI 0.86-1.61, p < 0.001; moderate certainty of evidence), dimethylamine (DDAH1 product, SMD = 0.47, 95% CI 0.24-0.70, p < 0.001; very low certainty of evidence), and ornithine concentrations (arginase product, SMD = 0.32, 95% CI 0.16-0.49, p < 0.001; low certainty of evidence). In subgroup analysis, the pooled SMD for ornithine was significantly different in studies of untreated, but not treated, patients. Our study suggests that DDAH1 and arginase are dysregulated in schizophrenia. Further studies are warranted to investigate the expression/activity of these enzymes in the brain of patients with schizophrenia and the effects of targeted treatments.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sara Tommasi
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Quality Control Unit, University Hospital of Sassari (AOU), Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia.
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
4
|
Sikiric P, Boban Blagaic A, Strbe S, Beketic Oreskovic L, Oreskovic I, Sikiric S, Staresinic M, Sever M, Kokot A, Jurjevic I, Matek D, Coric L, Krezic I, Tvrdeic A, Luetic K, Batelja Vuletic L, Pavic P, Mestrovic T, Sjekavica I, Skrtic A, Seiwerth S. The Stable Gastric Pentadecapeptide BPC 157 Pleiotropic Beneficial Activity and Its Possible Relations with Neurotransmitter Activity. Pharmaceuticals (Basel) 2024; 17:461. [PMID: 38675421 PMCID: PMC11053547 DOI: 10.3390/ph17040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
We highlight the particular aspects of the stable gastric pentadecapeptide BPC 157 pleiotropic beneficial activity (not destroyed in human gastric juice, native and stable in human gastric juice, as a cytoprotection mediator holds a response specifically related to preventing or recovering damage as such) and its possible relations with neurotransmitter activity. We attempt to resolve the shortage of the pleiotropic beneficial effects of BPC 157, given the general standard neurotransmitter criteria, in classic terms. We substitute the lack of direct conclusive evidence (i.e., production within the neuron or present in it as a precursor molecule, released eliciting a response on the receptor on the target cells on neurons and being removed from the site of action once its signaling role is complete). This can be a network of interconnected evidence, previously envisaged in the implementation of the cytoprotection effects, consistent beneficial particular evidence that BPC 157 therapy counteracts dopamine, serotonin, glutamate, GABA, adrenalin/noradrenalin, acetylcholine, and NO-system disturbances. This specifically includes counteraction of those disturbances related to their receptors, both blockade and over-activity, destruction, depletion, tolerance, sensitization, and channel disturbances counteraction. Likewise, BPC 157 activates particular receptors (i.e., VGEF and growth hormone). Furthermore, close BPC 157/NO-system relations with the gasotransmitters crossing the cell membrane and acting directly on molecules inside the cell may envisage particular interactions with receptors on the plasma membrane of their target cells. Finally, there is nerve-muscle relation in various muscle disturbance counteractions, and nerve-nerve relation in various encephalopathies counteraction, which is also exemplified specifically by the BPC 157 therapy application.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lidija Beketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antonio Kokot
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Danijel Matek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Kresimir Luetic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lovorka Batelja Vuletic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Pavic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Mestrovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivica Sjekavica
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Katsanou L, Fragkiadaki E, Kampouris S, Konstanta A, Vontzou A, Pitsikas N. The Nitric Oxide (NO) Donor Molsidomine Counteract Social Withdrawal and Cognition Deficits Induced by Blockade of the NMDA Receptor in the Rat. Int J Mol Sci 2023; 24:ijms24076866. [PMID: 37047839 PMCID: PMC10095209 DOI: 10.3390/ijms24076866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
The deficiency of the gaseous molecule nitric oxide (NO) seems to be critically involved in the pathogenesis of schizophrenia. Thus, molecules that can normalize NO levels, as are NO donors, might be of utility for the medication of this psychiatric disease. The aim of the present study was to detect the ability of the NO donor molsidomine to reduce schizophrenia-like impairments produced by the blockade of the N-methyl-D-aspartate (NMDA) receptor in rats. Molsidomine's ability to attenuate social withdrawal and spatial recognition memory deficits induced by the NMDA receptor antagonist ketamine were assessed using the social interaction and the object location test, respectively. Further, the efficacy of the combination of sub-effective doses of molsidomine with sub-effective doses of the atypical antipsychotic clozapine in alleviating non-spatial recognition memory deficits was evaluated utilizing the object recognition task. Molsidomine (2 and 4 mg/kg) attenuated social withdrawal and spatial recognition memory deficits induced by ketamine. Co-administration of inactive doses of molsidomine (1 mg/kg) and clozapine (0.1 mg/kg) counteracted delay-dependent and ketamine-induced non-spatial recognition memory deficits. The current findings suggest that molsidomine is sensitive to glutamate hypofunction since it attenuated behavioral impairments in animal models mimicking the negative symptoms and cognitive deficits of schizophrenia. Additionally, the present results support the potential of molsidomine as an adjunctive drug for the therapy of schizophrenia.
Collapse
Affiliation(s)
- Lamprini Katsanou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00 Larissa, Greece
| | - Evangelia Fragkiadaki
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00 Larissa, Greece
| | - Sotirios Kampouris
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00 Larissa, Greece
| | - Anastasia Konstanta
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00 Larissa, Greece
| | - Aikaterini Vontzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00 Larissa, Greece
| | - Nikolaos Pitsikas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00 Larissa, Greece
| |
Collapse
|
6
|
A Comparative Study of the Impact of NO-Related Agents on MK-801- or Scopolamine-Induced Cognitive Impairments in the Morris Water Maze. Brain Sci 2023; 13:brainsci13030410. [PMID: 36979220 PMCID: PMC10046674 DOI: 10.3390/brainsci13030410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Learning and memory deficits accompany numerous brain dysfunctions, including schizophrenia and Alzheimer’s disease (AD), and many studies point to the role of nitric oxide (NO) in these processes. The present investigations constitute the follow-up of our previous research, in which we investigated the activity of NO releasers and a selective inhibitor of neuronal NO synthase (nNOS) to prevent short-term memory deficits in novel object recognition and T-maze. Here, the ability of the compounds to prevent the induction of long-term memory deficits by MK-801 or scopolamine administration was investigated. The Morris Water Maze test, a reliable and valid test of spatial learning and memory, was used, in which escape latency in the acquisition phase and nine different parameters in the retention phase were measured. A fast NO releaser (spermine NONOate), a slow NO releaser (DETA NONOate), and a nNOS inhibitor, N(ω)-propyl-L-arginine (NPLA), were used. The compounds were administered i.p. at a dose range of 0.05–0.5 mg/kg. All compounds prevented learning deficits in the acquisition phase and reversed reference memory deficits in the retention phase of the scopolamine-treated mice. Spermine NONOate was the least effective. In contrast, the drugs poorly antagonised MK-801-induced deficits, and only the administration of DETA NONOate induced some improvements in the retention trial.
Collapse
|
7
|
The Effect of Clozapine and Novel Glutamate Modulator JNJ-46356479 on Nitrosative Stress in a Postnatal Murine Ketamine Model of Schizophrenia. Int J Mol Sci 2023; 24:ijms24021022. [PMID: 36674542 PMCID: PMC9866372 DOI: 10.3390/ijms24021022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia (SZ) is a heterogeneous mental disorder, affecting ~1% of the worldwide population. One of the main pathophysiological theories of SZ is the imbalance of excitatory glutamatergic pyramidal neurons and inhibitory GABAergic interneurons, involving N-methyl-D-aspartate receptors (NMDAr). This may lead to local glutamate storms coupled with excessive dendritic pruning and subsequent cellular stress, including nitrosative stress, during a critical period of neurodevelopment, such as adolescence. Nitrosative stress is mediated by nitric oxide (NO), which is released by NO synthases (NOS) and has emerged as a key signaling molecule implicated in SZ. Regarding glutamatergic models of SZ, the administration of NMDAr antagonists has been found to increase NOS levels in the prefrontal cortex (PFC) and ventral hippocampus (HPC). We hypothesized that suboptimal NOS function in adolescence could be a target for early treatments, including clozapine (CLZ) and the novel metabotropic glutamate receptor modulator JNJ-46356479 (JNJ). We analyzed the protein levels of NOS isoforms in adult PFC and HPC of a postnatal ketamine induced murine model of SZ receiving CLZ or JNJ during adolescence by western blot. Endothelial NOS and neuronal NOS increased under ketamine administration in PFC and decreased in CLZ or JNJ treatments. The same trends were found in the HPC in neuronal NOS. In contrast, inducible NOS was increased under JNJ treatment with respect to ketamine induction in the HPC, and the same trends were found in the PFC. Taken together, our findings suggest a misbalance of the NOS system following NMDAr antagonist administration, which was then modulated under early CLZ and JNJ treatments.
Collapse
|
8
|
Steinert JR, Amal H. The contribution of an imbalanced redox signalling to neurological and neurodegenerative conditions. Free Radic Biol Med 2023; 194:71-83. [PMID: 36435368 DOI: 10.1016/j.freeradbiomed.2022.11.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Nitric oxide and other redox active molecules such as oxygen free radicals provide essential signalling in diverse neuronal functions, but their excess production and insufficient scavenging induces cytotoxic redox stress which is associated with numerous neurodegenerative and neurological conditions. A further component of redox signalling is mediated by a homeostatic regulation of divalent metal ions, the imbalance of which contributes to neuronal dysfunction. Additional antioxidant molecules such as glutathione and enzymes such as super oxide dismutase are involved in maintaining a physiological redox status within neurons. When cellular processes are perturbed and generation of free radicals overwhelms the antioxidants capacity of the neurons, a resulting redox damage leads to neuronal dysfunction and cell death. Cellular sources for production of redox-active molecules may include NADPH oxidases, mitochondria, cytochrome P450 and nitric oxide (NO)-generating enzymes, such as endothelial, neuronal and inducible NO synthases. Several neurodegenerative and developmental neurological conditions are associated with an imbalanced redox state as a result of neuroinflammatory processes leading to nitrosative and oxidative stress. Ongoing research aims at understanding the causes and consequences of such imbalanced redox homeostasis and its role in neuronal dysfunction.
Collapse
Affiliation(s)
- Joern R Steinert
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham, NG7 2NR, UK.
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
9
|
Zemba Cilic A, Zemba M, Cilic M, Strbe S, Ilic S, Vukojevic J, Zoricic Z, Filipcic I, Kokot A, Smoday IM, Rukavina I, Boban Blagaic A, Tvrdeic A, Duplancic B, Stambolija V, Marcinko D, Skrtic A, Seiwerth S, Sikiric P. BPC 157, L-NAME, L-Arginine, NO-Relation, in the Suited Rat Ketamine Models Resembling "Negative-Like" Symptoms of Schizophrenia. Biomedicines 2022; 10:1462. [PMID: 35884767 PMCID: PMC9313087 DOI: 10.3390/biomedicines10071462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 12/30/2022] Open
Abstract
We attempted throughout the NO-system to achieve the particular counteraction of the ketamine-induced resembling "negative-like" schizophrenia symptoms in rats using pentadecapeptide BPC 157, and NO-agents, NG-nitro-L-arginine methylester (L-NAME), and/or L-arginine, triple application. This might be the find out the NO-system organized therapy (i.e., simultaneously implied NO-system blockade (L-NAME) vs. NO-system over-stimulation (L-arginine) vs. NO-system immobilization (L-NAME+L-arginine)). The ketamine regimen (intraperitoneally/kg) included: 3 mg (cognitive dysfunction, novel object recognition test), 30 mg (anxiogenic effect (open field test) and anhedonia (sucrose test)), and 8 mg/3 days (social withdrawal). Medication (mg/kg intraperitoneally) was L-NAME (5), L-arginine (100), and BPC 157 (0.01), alone and/or together, given immediately before ketamine (L-NAME, L-arginine, and combination) or given immediately after (BPC 157 and combinations). BPC 157 counteracted ketamine-cognition dysfunction, social withdrawal, and anhedonia, and exerted additional anxiolytic effect. L-NAME (antagonization, social withdrawal) and L-arginine (antagonization, cognitive dysfunction, anhedonia) both included worsening cognitive dysfunction, anhedonia, and anxiogenic effect (L-NAME), social withdrawal, and anxiogenic effect (L-arginine). Thus, ketamine-induced resembling "negative-like" schizophrenia symptoms were "L-NAME non-responsive, L-arginine responsive" (cognition dysfunction), "L-NAME responsive, L-arginine non-responsive" (social withdrawal), "L-NAME responsive, L-arginine responsive, opposite effect" (anhedonia) and "L-NAME responsive, L-arginine responsive, parallel effect" (both anxiogening). In cognition dysfunction, BPC 157 overwhelmed NO-agents effects. The mRNA expression studies in brain tissue evidenced considerable overlapping of gene overexpression in healthy rats treated with ketamine or BPC 157. With the BPC 157 therapy applied immediately after ketamine, the effect on Nos1, Nos2, Plcg1, Prkcg, and Ptgs2 (increased or decreased expression), appeared as a timely specific BPC 157 effect on ketamine-specific targets.
Collapse
Affiliation(s)
- Andrea Zemba Cilic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Mladen Zemba
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Matija Cilic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Sanja Strbe
- Department of Psychiatry, University of Zagreb School of Medicine, University Clinical Centre Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.F.); (D.M.)
| | - Spomenko Ilic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Jaksa Vukojevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Zoran Zoricic
- University Department of Psychiatry, University Hospital Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Igor Filipcic
- Department of Psychiatry, University of Zagreb School of Medicine, University Clinical Centre Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.F.); (D.M.)
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Iva Rukavina
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | | | - Vasilije Stambolija
- Department of Anesthesiology, Resuscitation and Intensive Care, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Darko Marcinko
- Department of Psychiatry, University of Zagreb School of Medicine, University Clinical Centre Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.F.); (D.M.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| |
Collapse
|
10
|
Cognitive Deficit in Schizophrenia: From Etiology to Novel Treatments. Int J Mol Sci 2021; 22:ijms22189905. [PMID: 34576069 PMCID: PMC8468549 DOI: 10.3390/ijms22189905] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023] Open
Abstract
Schizophrenia is a major mental illness characterized by positive and negative symptoms, and by cognitive deficit. Although cognitive impairment is disabling for patients, it has been largely neglected in the treatment of schizophrenia. There are several reasons for this lack of treatments for cognitive deficit, but the complexity of its etiology-in which neuroanatomic, biochemical and genetic factors concur-has contributed to the lack of effective treatments. In the last few years, there have been several attempts to develop novel drugs for the treatment of cognitive impairment in schizophrenia. Despite these efforts, little progress has been made. The latest findings point to the importance of developing personalized treatments for schizophrenia which enhance neuroplasticity, and of combining pharmacological treatments with non-pharmacological measures.
Collapse
|
11
|
Mononitrate Isosorbide as an Adjunctive Therapy in Schizophrenia: A Randomized Controlled Crossover Trial. J Clin Psychopharmacol 2021; 41:260-266. [PMID: 33857028 DOI: 10.1097/jcp.0000000000001388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Schizophrenia is a complex disabling mental disorder, and many patients present poor response to available treatments. Accumulating evidence about the role of the glutamate/nitric oxide pathway in mediating the positive and negative symptoms of schizophrenia suggests potential benefits of drugs that modulate this system. The aim of this study was to test the efficacy of isosorbide mononitrate (ISMN) as an adjunctive therapy for symptomatic outpatients with schizophrenia. METHODS This was a 2-month randomized, double-blind, placebo-controlled trial with 24 schizophrenia patients. Participants were treated with ISMN 50 mg for 1 month and placebo for another month in a crossover design. The Positive and Negative Syndrome Scale (PANSS), Clinical Global Impression Scale, Global Assessment of Functioning, and MATRICS Cognitive Consensual Battery were used for symptom assessment and arterial spin labeling was used to assess brain activation patterns. RESULTS We found significant differences in the total, general, and positive subscales of the PANSS, Global Assessment of Functioning scores, and Clinical Global Impression scores during treatment with ISMN relative to placebo. No treatment effects were found comparing scores in the MATRICS Cognitive Consensual Battery and the negative subscale of the PANSS between the active and placebo conditions. A post hoc analysis of neuroimaging data showed reduced activity in the thalamus in subgroup of patients with severe psychopathology. CONCLUSIONS Schizophrenia patients with persistent symptoms showed significant improvement after 4 weeks of treatment with ISMN 50 mg/d compared with placebo. Isosorbide mononitrate added beneficial effects to antipsychotic treatment in terms of positive symptoms and functioning.
Collapse
|
12
|
New insights on nitric oxide: Focus on animal models of schizophrenia. Behav Brain Res 2021; 409:113304. [PMID: 33865887 DOI: 10.1016/j.bbr.2021.113304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a devastating complex disorder characterised by a constellation of behavioral deficits with the underlying mechanisms not fully known. Nitric oxide (NO) has emerged as a key signaling molecule implicated in schizophrenia. Three nitric oxide sinthases (NOS), endothelial, neuronal, and inducible, release NO within the cell. Animal models of schizophrenia are grouped in four groups, neurovedelopmental, glutamatergic, dopaminergic and genetic. In this review, we aim to evaluate changes in NO levels in animal models of schizophrenia and the resulting long-lasting behavioral and neural consequences. In particular, NO levels are substantially modified, region-specific, in various neurodevelopmental models, e.g. bilateral excitotoxic lesion of the ventral hippocampus (nVHL), maternal immune activation and direct NO manipulations early in development, among others. In regards to glutamatergic models of schizophrenia, phencyclidine (PCP) administration increases NO levels in the prefrontal cortex (PFC) and ventral hippocampus. As far as genetic models are concerned, neuronal NOS knock-out mice display schizophrenia-related behaviors. Administration of NO donors can reverse schizophrenia-related behavioral deficits. While most modifications in NO are derived from neuronal NOS, recent evidence indicates that PCP treatment increases NO from the inducible NOS isoform. From a pharmacological perspective, treatment with various antipsychotics including clozapine, haloperidol and risperidone normalize NO levels in the PFC as well as improve behavioral deficits in nVHL rats. NO induced from the neuronal and inducible NOS is relevant to schizophrenia and warrants further research.
Collapse
|
13
|
Oh SJ, Fan X. Current understanding on the role of nitric oxide and therapeutic potential of NO supplementation in schizophrenia. Schizophr Res 2020; 222:23-30. [PMID: 32475621 DOI: 10.1016/j.schres.2020.05.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Affiliation(s)
- SeungJu Jackie Oh
- University of Massachusetts Medical School, Worcester, MA, 01655, United States of America
| | - Xiaoduo Fan
- UMass Memorial Health Care, University of Massachusetts Medical School, United States of America.
| |
Collapse
|
14
|
Merritt K, Catalan A, Cowley S, Demjaha A, Taylor M, McGuire P, Cooper R, Morrison P. Glyceryl trinitrate in first-episode psychosis unmedicated with antipsychotics: A randomised controlled pilot study. J Psychopharmacol 2020; 34:839-847. [PMID: 32436761 PMCID: PMC7376621 DOI: 10.1177/0269881120922967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND There is a pressing need for new classes of treatment for psychosis. A key therapeutic target for novel compounds is the NMDA receptor, which may be modulated by nitric oxide donors such as sodium nitroprusside (SNP). Recent studies of SNP in patients with psychosis have mixed results, and the drug has to be administered intravenously. Glyceryl trinitrate (GTN) is a well-established cardiovascular medicine that is also a nitric oxide donor, and can be given orally. AIMS We explored the safety and potential effects of GTN in unmedicated patients with a first episode of psychosis. METHODS This was a single-centre, randomised, double-blind, placebo-controlled trial from December 2016 to April 2019 (ClinicalTrials.gov identifier: NCT02906553). Patients received 3 × sprays of GTN or placebo for three consecutive days, and were re-assessed on Days 1, 2, 3 and 7. The primary outcome was cognition (Jumping to Conclusions task), secondary outcomes were symptoms (Positive and Negative Syndrome Scale (PANSS)), verbal memory (Hopkins Verbal Learning task), and mood (Bond-Lader Visual Analogue Scales). RESULTS Nineteen patients were randomised, and 13 participants were included in the analyses. Compared with placebo, GTN was well tolerated, but was not associated with significant effects on cognition, symptoms, or mood. Bayesian statistics indicate that our results were 2× more likely under the null hypothesis than the alternative hypothesis, providing anecdotal evidence that GTN does not improve psychotic symptoms. CONCLUSIONS We found no indication of an effect of GTN on symptoms of psychosis or cognition.
Collapse
Affiliation(s)
- Kate Merritt
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, London, UK,Division of Psychiatry, University College London, London, UK,Kate Merritt, Department of Psychosis Studies, Institute of Psychiatry, Psychology &
Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK.
| | - Ana Catalan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, London, UK,Osakidetza Basque Health Service, Department Psychiatry, Basurto University Hospital, Bilbao, Spain,Department of Neuroscience, University of the Basque Country, Leioa, Spain
| | - Samuel Cowley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Arsime Demjaha
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Matthew Taylor
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, London, UK,University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Ruth Cooper
- Newham Centre for Mental Health, Unit for Social and Community Psychiatry, Queen Mary University of London, UK,East London NHS Foundation Trust, Newham Centre for Mental Health, London, UK
| | - Paul Morrison
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| |
Collapse
|
15
|
Tripathi MK, Kartawy M, Amal H. The role of nitric oxide in brain disorders: Autism spectrum disorder and other psychiatric, neurological, and neurodegenerative disorders. Redox Biol 2020; 34:101567. [PMID: 32464501 PMCID: PMC7256645 DOI: 10.1016/j.redox.2020.101567] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) is a multifunctional signalling molecule and a neurotransmitter that plays an important role in physiological and pathophysiological processes. In physiological conditions, NO regulates cell survival, differentiation and proliferation of neurons. It also regulates synaptic activity, plasticity and vesicle trafficking. NO affects cellular signalling through protein S-nitrosylation, the NO-mediated posttranslational modification of cysteine thiols (SNO). SNO can affect protein activity, protein-protein interaction and protein localization. Numerous studies have shown that excessive NO and SNO can lead to nitrosative stress in the nervous system, contributing to neuropathology. In this review, we summarize the role of NO and SNO in the progression of neurodevelopmental, psychiatric and neurodegenerative disorders, with special attention to autism spectrum disorder (ASD). We provide mechanistic insights into the contribution of NO in diverse brain disorders. Finally, we suggest that pharmacological agents that can inhibit or augment the production of NO as well as new approaches to modulate the formation of SNO-proteins can serve as a promising approach for the treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Manish Kumar Tripathi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maryam Kartawy
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
16
|
Tao Q, Miao Y, Li H, Yuan X, Huang X, Wang Y, Andreassen OA, Fan X, Yang Y, Song X. Insulin Resistance and Oxidative Stress: In Relation to Cognitive Function and Psychopathology in Drug-Naïve, First-Episode Drug-Free Schizophrenia. Front Psychiatry 2020; 11:537280. [PMID: 33329081 PMCID: PMC7732418 DOI: 10.3389/fpsyt.2020.537280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Objective: The present study aimed to examine whether insulin resistance and oxidative stress are associated with cognitive impairment in first-episode drug-free schizophrenia (SZ) patients. Methods: Ninety first-episode SZ patients and 70 healthy controls were enrolled. Fasting insulin (FINS) and markers of oxidative stress [oxidized glutathione (GSSG), superoxide dismutase (SOD), nitric oxide (NO) and uric acid (UA) levels] were measured in serum before pharmacological treatment was initiated. Psychiatric symptoms and cognitive function were assessed with the Positive and Negative Syndrome Scale (PANSS) and MATRICS Consensus Cognitive Battery (MCCB), respectively. In addition, the homeostatic model assessment of insulin resistance (HOMA-IR) was also studied. Results: HOMA-IR and serum levels of GSSG and NO were significantly higher in SZ patients than in healthy controls (P < 0.001), while the serum levels of SOD were significantly lower than in healthy controls (P < 0.001). HOMA-IR, GSSG and NO levels were significantly correlated to the total cognitive function scores of the patient group (r = -0.345,-0.369,-0.444, respectively, P < 0.05). But these factors were not co-related to the cognitive functions in the healthy control group. And, levels of SOD, UA were not associated with the total cognitive function scores in both the patient and the healthy control groups. NO was positively correlated with general pathological and the total score in the PANSS, and was negatively correlated with six cognitive domains (r = -0.316 to -0.553, P < 0.05). Conclusions: The levels of insulin resistance and oxidative stress are elevated, and correlated with the severity of cognitive impairment in drug-naïve, first-episode SZ patients. Treatment approaches targeting on reducing insulin resistance and oxidative stress may improve cognitive function in SZ patients.
Collapse
Affiliation(s)
- Qi Tao
- Department of Psychiatry, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences/Zhengzhou University, Zhengzhou, China
| | - Yu Miao
- Department of Psychiatry, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Huihui Li
- Department of Psychiatry, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Xufeng Huang
- Illawarra Health and Medical Research Institute and University of Wollongong, Wollongong, NSW, Australia
| | - Yunpeng Wang
- Department of Psychiatry, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Department of Psychiatry, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Xiaoduo Fan
- Psychotic Disorders Program, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Tellez-Merlo G, Morales-Medina JC, Camacho-Ábrego I, Juárez-Díaz I, Aguilar-Alonso P, de la Cruz F, Iannitti T, Flores G. Prenatal immune challenge induces behavioral deficits, neuronal remodeling, and increases brain nitric oxide and zinc levels in the male rat offspring. Neuroscience 2019; 406:594-605. [DOI: 10.1016/j.neuroscience.2019.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/11/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
|
18
|
Rovný R, Marko M, Katina S, Murínová J, Roháriková V, Cimrová B, Repiská G, Minárik G, Riečanský I. Association between genetic variability of neuronal nitric oxide synthase and sensorimotor gating in humans. Nitric Oxide 2018; 80:32-36. [PMID: 30096361 DOI: 10.1016/j.niox.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/15/2018] [Accepted: 08/06/2018] [Indexed: 11/17/2022]
Abstract
Research increasingly suggests that nitric oxide (NO) plays a role in the pathogenesis of schizophrenia. One important line of evidence comes from genetic studies, which have repeatedly detected an association between the neuronal isoform of nitric oxide synthase (nNOS or NOS1) and schizophrenia. However, the pathogenetic pathways linking nNOS, NO, and the disorder remain poorly understood. A deficit in sensorimotor gating is considered to importantly contribute to core schizophrenia symptoms such as psychotic disorganization and thought disturbance. We selected three candidate nNOS polymorphisms (Ex1f-VNTR, rs6490121 and rs41279104), associated with schizophrenia and cognition in previous studies, and tested their association with the efficiency of sensorimotor gating in healthy human adults. We found that risk variants of Ex1f-VNTR and rs6490121 (but not rs41279104) were associated with a weaker prepulse inhibition (PPI) of the acoustic startle reflex, a standard measure of sensorimotor gating. Furthermore, the effect of presence of risk variants in Ex1f-VNTR and rs6490121 was additive: PPI linearly decreased with increasing number of risk alleles, being highest in participants with no risk allele, while lowest in individuals who carry three risk alleles. Our findings indicate that NO is involved in the regulation of sensorimotor gating, and highlight one possible pathogenetic mechanism for NO playing a role in the development of schizophrenia psychosis.
Collapse
Affiliation(s)
- Rastislav Rovný
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Marko
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Stanislav Katina
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jana Murínová
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Roháriková
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Cimrová
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Gabriela Repiská
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Gabriel Minárik
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Igor Riečanský
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Social, Cognitive and Affective Neuroscience Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Liu F, Zhang B, Xie L, Ruan Y, Xu X, Zeng Y, Messina L, Zhao J, Fan X. Changes in plasma levels of nitric oxide metabolites and negative symptoms after 16-week minocycline treatment in patients with schizophrenia. Schizophr Res 2018. [PMID: 29526457 DOI: 10.1016/j.schres.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study examined the effect of adjunctive minocycline on psychopathology and possibly relevant biomarkers in patients with schizophrenia. METHOD In a 16-week randomized, double-blind, placebo-controlled study, subjects received either minocycline (200mg per day) or placebo. Psychopathology was assessed using the Scale for the Assessment of Negative Symptoms (SANS) and the Positive and Negative Syndrome Scale (PANSS) at baseline and week 16. Plasma levels of tumor necrosis factor α (TNFα), interleukin-1 β (IL-1β) and nitric oxide metabolites were assessed at both time points. RESULTS Fifty-five patients completed the study (27 in the minocycline group, 28 in the placebo group). The minocycline group had significant decreases in the SANS total sore, the PANSS total score and the PANSS negative symptoms score at week 16 compared to the placebo group. In addition, the minocycline group had a significant decrease in plasma levels of nitric oxide metabolites, but no significant difference in changes in plasma levels of IL-1β or TNF-α, compared to the placebo group at week 16. Further, the more decrease in plasma levels of nitric oxide metabolites was associated with less improvement in negative symptoms. CONCLUSION The beneficial effect of adjunctive minocycline treatment on negative symptoms might be through mechanisms other than the nitric oxide pathway. The implications for future studies were discussed.
Collapse
Affiliation(s)
- Fang Liu
- First Affiliated Hospital of Kunming Medical University, Kunming, China; Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, China
| | - Bingkui Zhang
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liqin Xie
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ye Ruan
- Mental Health Center of Yunnan Province, Kunming, China
| | - XiuFeng Xu
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yong Zeng
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Louis Messina
- Division of vascular surgery, University of Massachusetts Medical School/UMass Memorial Health Care, Worcester, MA, United States
| | - Jingping Zhao
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, China.
| | - Xiaoduo Fan
- Psychotic Disorders Program, University of Massachusetts Medical School/UMass Memorial Health Care, Worcester, MA, United States.
| |
Collapse
|
20
|
The role of striatum and prefrontal cortex in the prevention of amphetamine-induced schizophrenia-like effects mediated by nitric oxide compounds. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:353-362. [PMID: 29555252 DOI: 10.1016/j.pnpbp.2018.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 01/07/2023]
Abstract
Pharmacological manipulation of nitric oxide (NO) has been suggested as a promising treatment for schizophrenia symptoms. A single infusion of sodium nitroprusside, a NO donor with short half-life, was found to improve schizophrenia symptoms. However, an increasing number of preclinical studies have demonstrated the potential beneficial effects of both NO donors and inhibitors. We investigated the potential synergistic effect of sub-effective doses of the NO donor sodium nitroprusside or the NO inhibitor 7-Nitroindazole (7NI) combined with clozapine, a standard atypical antipsychotic, on counteracting amphetamine or MK-801-induced psychosis-like behaviors. The impact of sodium nitroprusside and 7NI on cAMP regulation in the prefrontal cortex and striatum was also evaluated. Confirming previous results, we found that both NO donors and inhibitors prevented amphetamine-induced effects (prepulse inhibition [PPI] disruption and hyperlocomotion). In addition, we observed a synergistic effect of sodium nitroprusside and clozapine on antagonizing the disruptive effects of amphetamine, but not MK-801, in the PPI test. The sub-effective dose of 7NI tested did not prevent amphetamine or MK-induced PPI effects when combined with clozapine. Interestingly, cAMP levels were significantly decreased in the prefrontal cortex after treatment with sodium nitroprusside. In the striatum, both sodium nitroprusside and 7NI blocked the amphetamine-induced increase of cAMP. Our data corroborate previous findings on the dopaminergic mechanisms involved in the action of sodium nitroprusside. It is likely that the differential effects of sodium nitroprusside are related to its ability to modify cAMP levels in the prefrontal cortex.
Collapse
|
21
|
Diana MC, Peres FF, Justi V, Bressan RA, Lacerda ALT, Crippa JA, Hallak JEC, Abilio VC. Sodium nitroprusside is effective in preventing and/or reversing the development of schizophrenia-related behaviors in an animal model: The SHR strain. CNS Neurosci Ther 2018; 24:624-632. [PMID: 29656549 DOI: 10.1111/cns.12852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/20/2018] [Accepted: 03/10/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS The treatment of schizophrenia with antipsychotics is still unsatisfactory. Therefore, the search for new treatments and prevention is crucial, and animal models are fundamental tools for this objective. Preclinical and clinical data evidence the antipsychotic profile of sodium nitroprusside (SNP), a nitric oxide (NO) donor. We aimed to investigate SNP in treating and/or preventing the schizophrenia-related behaviors presented by the spontaneously hypertensive rats (SHR) strain. METHODS Wistar rats (WR) and SHRs were submitted to two schemes of treatment: (i) a single injection of SNP or vehicle in adulthood; (ii) a long-term early treatment from 30 to 60 postnatal day with SNP or vehicle. The following behaviors were evaluated 24 hours after the acute treatment or 30 days after the long-term treatment: locomotion, social interaction, and contextual fear conditioning. RESULTS Spontaneously hypertensive rats presented hyperlocomotion, decreased social interaction, and impaired contextual fear conditioning. Single injection of SNP decreased social interaction in both strains and induced a deficit in contextual fear conditioning in WR. Oppositely, early treatment with SNP prevented the behavioral abnormalities in adult SHRs without promoting any effects in WR. CONCLUSION Our preclinical data point to SNP as a preventive and safe strategy with a broad range of effectiveness to the positive, negative, and cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Mariana C Diana
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Fernanda F Peres
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Veronica Justi
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Rodrigo A Bressan
- LiNC-Laboratório Interdisciplinar de Neurociências Clínicas, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Acioly L T Lacerda
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.,LiNC-Laboratório Interdisciplinar de Neurociências Clínicas, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - José Alexandre Crippa
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.,Department of Neurosciences and Behaviour, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jaime E C Hallak
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.,Department of Neurosciences and Behaviour, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vanesssa Costhek Abilio
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| |
Collapse
|
22
|
Yu ZM, Zhao Y, Zhan JQ, Luo T, Xiong JW, Yu B, Wei B, Yang YJ. Treatment Responses of Cognitive Function and Plasma Asymmetric Dimethylarginine to Atypical Antipsychotic in Patients With Schizophrenia. Front Psychiatry 2018; 9:733. [PMID: 30687138 PMCID: PMC6335386 DOI: 10.3389/fpsyt.2018.00733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/13/2018] [Indexed: 01/25/2023] Open
Abstract
Cognitive deficits represent a core feature of schizophrenia. Previous studies have demonstrated that plasma asymmetric dimethylarginine (ADMA) was increased in patients with schizophrenia and correlated with cognitive impairments. Atypical antipsychotics can produce cognitive benefits in schizophrenia patients. In this study, we conducted a prospective observation trial to explore whether plasma ADMA may serve as an indicator for evaluating cognitive improvements induced by atypical antipsychotics in patients with schizophrenia. A total of 41 schizophrenia patients with acute exacerbation were enrolled and 29 patients completed this study. These recruited patients were drug-naive or had no exposure to antipsychotics for at least 3 months. Thirty healthy individuals were recruited as a control group. Positive and Negative Syndrome Scale (PANSS) and a neuropsychological battery were used to evaluate schizophrenic symptoms and cognitive function, respectively. Plasma ADMA was measured by high-performance liquid chromatography (HPLC). We found that schizophrenia patients with acute exacerbation had significantly poorer cognitive performances and higher plasma ADMA levels than control individuals (p < 0.05). After 2 months of atypical antipsychotic treatment, patients showed significant improvements in processing speed, working memory, attention, and executive function (all p < 0.01). Plasma ADMA levels in patients after treatment were significantly decreased compared to baseline (2.42 ± 0.84 vs. 1.55 ± 0.34 μmol/L; t = 6.491, p < 0.001). Correlation analysis reveals that there is a significant correlation of the decrease in ADMA with improvements in working memory (r = -0.413, p = 0.026) and attention (r = -0.417, p = 0.025). Collectively, our results suggest that atypical antipsychotics improve cognitive function in schizophrenia patients with acute exacerbation, in parallel with decreased plasma ADMA levels. Plasma ADMA levels may be an indicator of cognitive recovery in schizophrenia.
Collapse
Affiliation(s)
- Zhi-Min Yu
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Ying Zhao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Qiong Zhan
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Tao Luo
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Jian-Wen Xiong
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Bin Yu
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Bo Wei
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Yuan-Jian Yang
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China.,Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Aziz HA, Moustafa GAI, Abbas SH, Derayea SM, Abuo-Rahma GEDAA. New norfloxacin/nitric oxide donor hybrids: Synthesis and nitric oxide release measurement using a modified Griess colorimetric method. ACTA ACUST UNITED AC 2017. [DOI: 10.5155/eurjchem.8.2.119-124.1549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Serafim RAM, Pernichelle FG, Ferreira EI. The latest advances in the discovery of nitric oxide hybrid drug compounds. Expert Opin Drug Discov 2017; 12:941-953. [PMID: 28664751 DOI: 10.1080/17460441.2017.1344400] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION There is a great interest in Nitric oxide (NO) within medicinal chemistry since it's involved in human signaling pathways. Prodrugs or hybrid compounds containing NO-donor scaffolds linked to an active compound are valuable, due to their potential for modulating many pathological conditions due to NO's biological properties when released in addition to the native drug. Compounds that selectively inhibit nitric oxide synthase isoforms (NOS) can also increase therapeutic capacity, particularly in the treatment of chronic diseases. However, search for bioactive compounds to efficiently and selectively modulate NO is still a challenge in drug discovery. Areas covered: In this review, the authors highlight the recent advances in the strategies used to discover NO-hybrid derivatives, especially those related to anti-inflammatory, cardiovascular, anticancer and anti-microorganism activities. They also focus on: nitric oxide synthase inhibitors, NO delivery materials and other related activities. Expert opinion: The process of molecular hybridization can be used to obtain NO-releasing compounds that also interact with different targets. The main problem with this approach is to control NO multiple actions in the right biological system. However, the use of NO-releasing groups with many different scaffolds leads to new molecular structures for bioactive compounds, suggesting synergies.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- a LAPEN: Laboratory of Design and Synthesis of Chemotherapeutic Potentially Active against Neglected Diseases, Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo - FCF/USP , São Paulo , Brazil
| | - Filipe G Pernichelle
- a LAPEN: Laboratory of Design and Synthesis of Chemotherapeutic Potentially Active against Neglected Diseases, Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo - FCF/USP , São Paulo , Brazil
| | - Elizabeth I Ferreira
- a LAPEN: Laboratory of Design and Synthesis of Chemotherapeutic Potentially Active against Neglected Diseases, Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo - FCF/USP , São Paulo , Brazil
| |
Collapse
|
25
|
Mitochondrial dysfunction associated with nitric oxide pathways in glutamate neurotoxicity. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2017; 29:92-97. [DOI: 10.1016/j.arteri.2016.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 12/26/2022]
|