1
|
Li X, Zhao S, Li M, Xing X, Xie J, Wang M, Xu A, Zhao Q, Zhang J. Wogonoside ameliorates oxidative damage in tubular epithelial cells of diabetic nephropathy by modulating the HNF4A-NRF2 axis. Int Immunopharmacol 2025; 152:114481. [PMID: 40086061 DOI: 10.1016/j.intimp.2025.114481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/12/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Diabetic nephropathy (DN), a leading cause of end-stage renal disease, presents significant challenges due to its complex pathophysiology and limited effective treatment options. Increasing evidence suggests that tubular injury is an early event preceding glomerular damage in DN. Wogonoside, a natural flavonoid derived from Scutellaria baicalensis, has not been previously reported for DN treatment. This study aims to investigate the protective effects and underlying mechanisms of wogonoside on renal tubular epithelial cells (TECs) in DN. The results showed that wogonoside mitigates high glucose (HG)-induced oxidative stress in TCMK-1 cells. Additionally, wogonoside protects renal function, reduces renal tubular damage, and modulates the oxidative stress response in HFD/STZ-induced DN mouse model. Importantly, our results indicated that hepatocyte nuclear factor 4 alpha (HNF4A) expression is downregulated in the kidneys of DN mice and HG-induced TCMK-1 cells. Wogonoside can bind to HNF4A, upregulate its expression, and promote nuclear translocation. Bioinformatic analysis suggested that NRF2 might be a downstream signaling of HNF4A. This was confirmed by Co-IP and experiments involving HNF4A overexpression and NRF2 knockdown, which demonstrated that wogonoside regulates the HNF4A-NRF2 axis to alleviate oxidative stress in TECs. Collectively, these findings identify wogonoside as a possible therapeutic agent for DN, highlighting HNF4A as a promising target for intervention.
Collapse
Affiliation(s)
- Xiandeng Li
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Shuyan Zhao
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaodong Xing
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Xie
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Mo Wang
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Jian Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
2
|
An Y, Tu Z, Wang A, Gou W, Yu H, Wang X, Xu F, Li Y, Wang C, Li J, Zhang M, Xiao M, Di Y, Hou W, Cui Y. Qingyi decoction and its active ingredients ameliorate acute pancreatitis by regulating acinar cells and macrophages via NF-κB/NLRP3/Caspase-1 pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156424. [PMID: 40020626 DOI: 10.1016/j.phymed.2025.156424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND AND PURPOSE Macrophage infiltration and activation is a critical step during acute pancreatitis (AP). NLRP3 inflammasomes in macrophages plays a critical role in mediating pancreatic inflammatory responses. Qing-Yi Decoction(QYD)has been used for many years in clinical practice of Nankai Hospital combined with traditional Chinese and western medicine treatment of acute pancreatitis. Although QYD has a well-established clinical efficacy, little is known about its bioactive ingredients, how they interact with different therapeutic targets and the pathways to produce anti-inflammatory effects. Here, we elucidate the therapeutic effects of QYD against acute pancreatitis and reveal its mechanism of action. METHODS The main components of QYD were identified using UHPLC-Q-Orbitrap MS. Network pharmacology was employed to predict potential therapeutic targets and their mechanisms of action. C57BL/6 mice were randomly divided into control group, model group, low, medium and high dose (6, 12, 24 g/kg) QYD groups, with 10 mice in each group. The therapeutic effect of QYD on cerulein-induced acute pancreatitis. (CER-AP) was evaluated by histopathological score, immunohistochemistry, serum amylase and cytokines detection by ELISA. The protein expressions of MyD88/NF-κB/NLRP3 signaling pathway were detected by Western blotting. Along with molecular docking of key bioactive compounds and targets, RAW264.7 cells stimulated with 1μg/ml LPS is used to screen components with more potent effects on target proteins. AR42 J cells were stimulated with 100 nM dexamethasone (dexa) combined with 10 nM cerulein (CN) as s a cell-culture model of acute pancreatitis. Inhibitory effects of the main chemical composition Wogonoside on NLRP3 inflammasomes were analyzed by qRT-PCR and Western blots. RESULTS Using UHPLC-Q-Orbitrap MS, 217 compounds were identified from QYD, including Wogonoside, Catechins, Rhein, etc. A visualization network of QYD-compounds-key targets-pathways-AP show that QYD may modulate PI3K-Akt signaling pathway, NOD-like receptor signaling pathway, MAPK signaling pathway, Ras signaling pathway and Apoptosis signaling pathway by targeting TNF, IL1β, AKT1, TP53 and STAT3 exerting a therapeutic effect on AP. QYD administration effectively mitigated CER-induced cytokine storm, pancreas edema and serum amylase. QYD (12 mg/kg) showed better effect. The protein expression levels of MyD88, NF-κB, NLRP3, Caspase-1 and GSDMD in pancreatic tissue were significantly decreased. Through molecular docking and LPS-RAW264.7 inflammation model, the selected Wogonoside significantly decreased IL-1β mRNA. The expression levels of NLRP3/Caspase-1/GSDMD pathway-related proteins were also decreased on AR42J-AP. CONCLUSION The results of network pharmacology indicate that QYD can inhibit AP through multiple pathways and targets. This finding was validated through in vivo tests, which demonstrated that QYD can reduce AP by inhibiting NLRP3 inflammasomes, additionally, it should be noted that 12mg/kg was a relatively superior dose. One of the main chemical compositions Wogonoside regulated NLRP3 inflammasome activation to protect against AP. This study is the first to verify the intrinsic molecular mechanism of QYD in treating AP by combining network pharmacology and animal experiments. The findings can provide evidence for subsequent clinical research and drug development.
Collapse
Affiliation(s)
- Yu An
- Tianjin Medical University, Tianjin, China
| | - Zhengwei Tu
- Tianjin Nankai Hospital, Tianjin, China; Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Nankai Clinical School of Medicine, Tianjin Medical University, Tianjin, China
| | - Ao Wang
- Tianjin Medical University, Tianjin, China
| | - Wenfeng Gou
- Peking Union Medical College & Institute of Radiological Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Huijuan Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | | | - Feifei Xu
- Peking Union Medical College & Institute of Radiological Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yanli Li
- Peking Union Medical College & Institute of Radiological Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Cong Wang
- Tianjin Medical University, Tianjin, China
| | - Jinan Li
- Tianjin Medical University, Tianjin, China
| | - Mengyue Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | | | - Ying Di
- Tianjin Medical University, Tianjin, China
| | - Wenbin Hou
- Peking Union Medical College & Institute of Radiological Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China.
| | - Yunfeng Cui
- Tianjin Medical University, Tianjin, China; Tianjin Nankai Hospital, Tianjin, China; Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Nankai Clinical School of Medicine, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
3
|
Wang H, Lan Y, Luo L, Xiao Y, Meng X, Zeng Y, Wu J. The Scutellaria-Coptis herb couple and its active small-molecule ingredient wogonoside alleviate cytokine storm by regulating the CD39/NLRP3/GSDMD signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118155. [PMID: 38593962 DOI: 10.1016/j.jep.2024.118155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A drug pair is a fundamental aspect of traditional Chinese medicine prescriptions. Scutellaria baicalensis Georgi and Coptis chinensis Franch, commonly used as an herb couple (SBCC), are representative heat-clearing and dampness-drying drugs. They possess functions such as clearing heat, drying dampness, purging fire, and detoxifying. These herbs are used in both traditional and modern medicine for treating inflammation. AIM OF THE STUDY This study investigated the effects of SBCC on cytokine storm syndrome (CSS) and explored its potential regulatory mechanism. MATERIALS AND METHODS We assessed the impact of SBCC in a sepsis-induced acute lung injury mouse model by administering an intraperitoneal injection of LPS (15 mg/kg). The cytokine levels in the serum and lungs, the wet-to-dry ratio of the lungs, and lung histopathological changes were evaluated. The macrophages in the lung tissue were examined through transmission electron microscopy. Western blot was used to measure the levels of the CD39/NLRP3/GSDMD pathway-related proteins. Immunofluorescence imaging was used to assess the activation of pro-caspase-1 and ASC and their interaction. AMP-Glo™ assay was used to screen for active ingredients in SBCC targeting CD39. One of the ingredients was selected, and its effect on cell viability was assessed. We induced inflammation in macrophages using LPS + ATP and detected the levels of proinflammatory factors. The images of cell membrane large pores were captured using scanning electron microscopy, the interaction between NLRP3 and ASC was detected using immunofluorescence imaging, and the levels of CD39/NLRP3/GSDMD pathway-related proteins were assessed using Western blot. RESULTS SBCC administration effectively mitigated LPS-induced cytokine storm, pulmonary edema and lung injury. Furthermore, it repressed the programmed death of lung tissue macrophages by inhibiting the NLRP3/GSDMD pyroptosis pathway and regulating the CD39 purinergic pathway. Based on the results of the AMP-Glo™ assay, we selected wogonoside for further valuation. Wogonoside alleviated LPS + ATP-induced inflammatory damage by regulating the inhibiting the NLRP3/GSDMD pyroptosis pathway and regulating the CD39 purinergic pathway. However, its effect on NLRP3 is not mediated though CD39. CONCLUSION SBCC and its active small-molecule ingredient, wogonoside, improved CSS by regulating the NLRP3/GSDMD pyroptosis pathway and its upstream CD39 purinergic pathway. It is essential to note that the regulatory effect of wogonoside on NLRP3 is not mediated by CD39.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yuejia Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Liuling Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yang Xiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yong Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
4
|
Liu C, Qi X, Liu X, Sun Y, Mao K, Shen G, Ma Y, Li Q. Anti-inflammatory probiotics HF05 and HF06 synergistically alleviate ulcerative colitis and secondary liver injury. Food Funct 2024; 15:3765-3777. [PMID: 38506656 DOI: 10.1039/d3fo04419j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Given the limited efficacy and adverse effects associated with conventional drugs, probiotics are emerging as a promising therapeutic strategy for mitigating the chronic nature of ulcerative colitis (UC) and its consequential secondary liver injury (SLI). Limosilactobacillus fermentum HF06 and Lactiplatibacillus plantarum HF05 are strains we screened with excellent anti-inflammatory and probiotic properties in vitro. In this study, the intervention of HF06 and HF05 in combination (MIXL) was found to be more effective in alleviating intestinal inflammation and secondary liver injury in UC mice compared to supplementing with the two strains individually. Results demonstrated that MIXL effectively attenuated colon shortening and weight loss, downregulated the expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 mRNA in the intestines, mitigated SLI, and augmented the enzymatic activities of SOD, CAT, and GSH-Px in the liver. MIXL enhances the intestinal barrier in UC mice, regulates the structure and composition of the gut microbiota, promotes the abundance of Lactobacillus, and suppresses the abundance of bacteria associated with inflammation and liver injury, including Clostridium_Sensu_Stricto_1, Escherichia, Shigella, Enterococcus, Corynebacterium, Desulfovibrio, and norank_f__Oscillospiraceae. This study demonstrated the synergistic effect of HF06 and HF05, providing a reliable foundation for the alleviation of UC.
Collapse
Affiliation(s)
| | - Xiaofen Qi
- Harbin Institute of Technology, Harbin, China.
| | - Xiaolin Liu
- Harbin Institute of Technology, Harbin, China.
| | - Yue Sun
- Harbin Institute of Technology, Harbin, China.
| | - Kaidong Mao
- Jiangsu HOWYOU Biotechnology Co., Ltd, Qidong, China
| | - Guiqi Shen
- Jiangsu HOWYOU Biotechnology Co., Ltd, Qidong, China
| | - Ying Ma
- Harbin Institute of Technology, Harbin, China.
| | - Qingming Li
- New Hope Dairy Company Limited, China.
- Sichuan Engineering Laboratory for High-quality Dairy Product Preparation and Quality Control Technology, China
| |
Collapse
|
5
|
Tan Y, Zhang F, Fan X, Lu S, Liu Y, Wu Z, Huang Z, Wu C, Cheng G, Li B, Huang J, Stalin A, Zhou W, Wu J. Exploring the effect of Yinzhihuang granules on alcoholic liver disease based on pharmacodynamics, network pharmacology and molecular docking. Chin Med 2023; 18:52. [PMID: 37165407 PMCID: PMC10173499 DOI: 10.1186/s13020-023-00759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Yinzhihuang granules (YZHG) is a commonly used Chinese patent medicine for the treatment of liver disease. However, the mechanism of YZHG in alcoholic liver disease (ALD) is still unclear. METHODS This study combined liquid chromatography-mass spectrometry technology, pharmacodynamics, network pharmacology and molecular docking methods to evaluate the potential mechanism of YZHG in the treatment of ALD. RESULTS A total of 25 compounds including 4-hydroxyacetophenone, scoparone, geniposide, quercetin, baicalin, baicalein, chlorogenic acid and caffeic acid in YZHG were identified by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The pharmacodynamic investigations indicated that YZHG could improve liver function and the degree of liver tissue lesions, and reduce liver inflammation and oxidative stress in ALD mice. Network pharmacology analysis showed that YZHG treated ALD mainly by regulating inflammation-related signaling pathways such as the PI3K-Akt signaling pathway. The results of the PPI network and molecular docking showed that the targets of SRC, HSP90AA1, STAT3, EGFR and AKT1 could be the key targets of YZHG in the treatment of ALD. CONCLUSION This study explored the potential compounds, potential targets and signaling pathways of YZHG in the treatment of ALD, which is helpful to clarify the efficacy and mechanism of YZHG and provide new insights for the clinical application of YZHG.
Collapse
Affiliation(s)
- Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fanqin Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaotian Fan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Lu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhishan Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihong Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Bing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jiaqi Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
| | - Wei Zhou
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Xiao X, Zhang Q. Asiaticoside conveys an antifibrotic effect by inhibiting activation of hepatic stellate cells via the Jagged-1/Notch-1 pathway. J Nat Med 2023; 77:128-136. [PMID: 36169781 DOI: 10.1007/s11418-022-01653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/15/2022] [Indexed: 01/06/2023]
Abstract
The aim of this study was to investigate the underlying protective mechanisms of asiaticoside (AS) against liver fibrosis (LF) both in vivo and in vitro. A rat model with carbon tetrachloride (CCl4)-induced liver fibrosis is employed to verify the effect and mechanism of AS on the process of liver fibrosis in vivo experiment. Hematoxylin/eosin and sirius red staining was conducted to assess the severity of liver injury and fibrosis. Further, the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), glutamyl transferase (GGT), and total bilirubin (TBil) were measured. In addition, LX2 cells were cultured for vitro experiment to investigate the influence of AS on hepatic stellate cells (HSCs). Overproduction of α-smooth muscle actin and type I collagen is characteristic of LF and HSCs, as determined by immunohistochemical and Western blot analyses. The expression levels of molecules associated with the Notch signaling pathway (i.e., Notch-1, Jagged-1, and Delta-like-4) were assessed by Western blot analysis. The results revealed that AS attenuated LF, as defined by reduced deposition of collagen, expression of α-smooth muscle actin and collagen type 1, and expression of biochemical parameters (alanine aminotransferase, aspartate aminotransferase, and hydroxyproline). Notably, AS suppressed the expression levels of Notch-1, Jagged-1, and Delta-like-4 in activated HSCs and LF. Collectively, these results demonstrate that AS prevented the progression of LF by modulating the Notch signaling pathway, indicating that AS has potential therapeutic effects against LF.
Collapse
Affiliation(s)
- Xianhong Xiao
- Department of Infectious Disease, The People's Hospital of Yuhuan, The Yuhuan Branch of the First Affiliated Hospital With Wenzhou Medical University, 18 Changle Road, Yucheng Street, Yuhuan, 317600, Zhejiang, China.
| | - Qiang Zhang
- Department of Infectious Disease, The People's Hospital of Yuhuan, The Yuhuan Branch of the First Affiliated Hospital With Wenzhou Medical University, 18 Changle Road, Yucheng Street, Yuhuan, 317600, Zhejiang, China
| |
Collapse
|
7
|
Zhang B, Xu D. Wogonoside preserves against ischemia/reperfusion-induced myocardial injury by suppression of apoptosis, inflammation, and fibrosis via modulating Nrf2/HO-1 pathway. Immunopharmacol Immunotoxicol 2022; 44:877-885. [PMID: 35708282 DOI: 10.1080/08923973.2022.2090955] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Myocardial ischemia/reperfusion (I/R) injury occurs after restoring blood supply, which brings about extra damage to heart tissue. Thus, exploring protection measures and underlying mechanisms appear to be particularly important. In this study, we investigated the cardioprotection of wogonoside against I/R injury in mice and further uncovered its mechanism. METHODS Mice model of myocardial I/R injury was established by left anterior descending coronary artery (LAD). Before modeling, mice were administered the wogonoside (10, 20, and 40 mg/kg) for 7 d. To evaluate the effect of wogonoside through nuclear factor E2-associated factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway, sh-Nrf2 was transfected into wogonoside-treated I/R mice. Subsequently, echocardiography detection, HE staining, western blotting, ELISA, TUNEL assay, and MASSON assay were utilized to evaluate the degree of myocardial injury. RESULTS In I/R group, mice had severe myocardial injury, however, pretreatment of wogonoside at doses of 20 and 40 mg/kg ameliorated the cardiac function, as evidenced by improving hemodynamic parameters. Besides, wogonoside could relieved the abnormality of cardiomyocytes structure, inflammatory reaction, apoptosis, and myocardial fibrosis. Importantly, wogonoside activated the Nrf2/HO-1 pathway, as demonstrated by increasing Nrf2 expression in nucleus and its downstream genes including HO-1 and NADPH quinone oxidoreductase-1 (NQO1). However, effects of wogonoside on cardioprotection were abolished by sh-Nrf2. CONCLUSIONS Wogonoside exerted the protective role against I/R-induced myocardial injury by suppression of apoptosis, inflammation, and fibrosis via activating Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Bingshan Zhang
- Department of Geriatrics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Di Xu
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
8
|
Liu Y, Guo ZW, Li J, Li AH, Huo TG. Insight into the regulation of NLRP3 inflammasome activation by mitochondria in liver injury and the protective role of natural products. Biomed Pharmacother 2022; 156:113968. [DOI: 10.1016/j.biopha.2022.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
9
|
Liu G, Wei C, Yuan S, Zhang Z, Li J, Zhang L, Wang G, Fang L. Wogonoside attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis through SOCS1/P53/SLC7A11 pathway. Phytother Res 2022; 36:4230-4243. [PMID: 35817562 DOI: 10.1002/ptr.7558] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
Wogonoside (WG) is a flavonoid chemical component extracted from Scutellaria baicalensis, which exerts therapeutic effects on liver diseases. Ferroptosis, a novel form of programmed cell death, regulates diverse physiological/pathological processes. In this study, we attempted to investigate a novel mechanism by which WG mitigates liver fibrosis by inducing ferroptosis in hepatic stellate cells (HSCs). A CCl4 -induced mouse liver fibrosis model and a rat HSC line were employed for in vivo and in vitro experiments, both treated with WG. Firstly, the levels of the fibrotic markers α-smooth muscle actin (α-SMA) and α1(I)collagen (COL1α1) were effectively decreased by WG in CCl4 -induced mice and HSC-T6 cells. Additionally, mitochondrial condensation and mitochondrial ridge breakage were observed in WG-treated HSC-T6 cells. Furthermore, ferroptotic events including depletion of SLC7A11, GPX4 and GSH, and accumulation of iron, ROS and MDA were discovered in WG-treated HSC-T6 cells. Intriguingly, these ferroptotic events did not appear in hepatocytes or macrophages. WG-elicited HSC ferroptosis and ECM reduction were dramatically abrogated by ferrostatin-1 (Fer-1), a ferroptosis inhibitor. Importantly, our results confirm that SOCS1/P53/SLC7A11 is a signaling pathway which promotes WG attenuation of liver fibrosis. On the contrary, WG mitigated liver fibrosis and inducted HSC-T6 cell ferroptosis were hindered by SOCS1 siRNA and pifithrin-α (PFT-α). These findings demonstrate that SOCS1/P53/SLC7A11-mediated HSC ferroptosis is associated with WG alleviating liver fibrosis, which provides a new clue for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Guofang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Can Wei
- Department of Urology, The Second People's Hospital of Hefei, Hefei, China
| | - Siyu Yuan
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhe Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jiahao Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lijun Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ling Fang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
10
|
Bacillus coagulans TL3 Inhibits LPS-Induced Caecum Damage in Rat by Regulating the TLR4/MyD88/NF-κB and Nrf2 Signal Pathways and Modulating Intestinal Microflora. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5463290. [PMID: 35178157 PMCID: PMC8843965 DOI: 10.1155/2022/5463290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
Background Bacillus coagulans has been widely used in food and feed additives, which can effectively inhibit the growth of harmful bacteria, improve intestinal microecological environment, promote intestinal development, and enhance intestinal function, but its probiotic mechanism is not completely clear. Aim The aim of this study is to discuss the effect and mechanism of Bacillus coagulans TL3 on oxidative stress and inflammatory injury of cecum induced by LPS. Method The Wistar rats were randomly divided into four groups, each containing 7 animals. Two groups were fed with basic diet (the LPS and control, or CON, groups). The remaining groups were fed with basic diet and either a intragastric administration high or low dose of B. coagulans, forming the HBC and LBC groups, respectively. The rats were fed normally for two weeks. On the 15th day, those in the LPS, HBC, and LBC groups were injected intraperitoneally with LPS—the rats in the CON group were injected intraperitoneally with physiological saline. After 4 hours, all the rats were anesthetized and sacrificed by cervical dislocation, allowing samples to be collected and labeled. The inflammatory and antioxidant cytokine changes of the cecum were measured, and the pathological changes of the cecum were observed, determining the cecal antioxidant, inflammation, and changes in tight junction proteins and analysis of intestinal flora. Result The results show that LPS induces oxidative damage in the cecal tissues of rats and the occurrence of inflammation could also be detected in the serum. The Western blot results detected changes in the NF-κB- and Nrf2-related signaling pathways and TJ-related protein levels. Compared with the LPS group, the HBC group showed significantly downregulated levels of expression of Nrf2, NQO1, HO-1, GPX, and GCLC. The expression of TLR4, MYD88, NF-κB, IL-6, TNFα, and IL-1β was also significantly downregulated, while the expression of other proteins (ZO-1, occludin, and claudin-1) increased significantly. Bacillus coagulans TL3 was also found to increase the relative abundance of the beneficial bacterium Akkermansia muciniphila in the intestines. There is also a significant reduction in the number of harmful bacteria Escherichia coli and Shigella (Enterobacteriaceae). Conclusion Bacillus coagulans TL3 regulates the TLR4/MyD88/NF-κB and Nrf2 signaling pathways in the cecal tissue of rats, protects the intestine from inflammation and oxidative damage caused by LPS, and inhibits the reproduction of harmful bacteria and promotes beneficial effects by regulating the intestinal flora bacteria grow, thereby enhancing intestinal immunity.
Collapse
|
11
|
Cheng C, Yu X. Research Progress in Chinese Herbal Medicines for Treatment of Sepsis: Pharmacological Action, Phytochemistry, and Pharmacokinetics. Int J Mol Sci 2021; 22:11078. [PMID: 34681737 PMCID: PMC8540716 DOI: 10.3390/ijms222011078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection; the pathophysiology of sepsis is complex. The incidence of sepsis is steadily increasing, with worldwide mortality ranging between 30% and 50%. Current treatment approaches mainly rely on the timely and appropriate administration of antimicrobials and supportive therapies, but the search for pharmacotherapies modulating the host response has been unsuccessful. Chinese herbal medicines, i.e., Chinese patent medicines, Chinese herbal prescriptions, and single Chinese herbs, play an important role in the treatment of sepsis through multicomponent, multipathway, and multitargeting abilities and have been officially recommended for the management of COVID-19. Chinese herbal medicines have therapeutic actions promising for the treatment of sepsis; basic scientific research on these medicines is increasing. However, the material bases of most Chinese herbal medicines and their underlying mechanisms of action have not yet been fully elucidated. This review summarizes the current studies of Chinese herbal medicines used for the treatment of sepsis in terms of clinical efficacy and safety, pharmacological activity, phytochemistry, bioactive constituents, mechanisms of action, and pharmacokinetics, to provide an important foundation for clarifying the pathogenesis of sepsis and developing novel antisepsis drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China;
| | | |
Collapse
|
12
|
Mohamadi-Zarch SM, Baluchnejadmojarad T, Nourabadi D, Ramazi S, Nazari-Serenjeh M, Roghani M. Esculetin Alleviates Acute Liver Failure following Lipopolysaccharide/D-Galactosamine in Male C57BL/6 Mice. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:373-382. [PMID: 34539012 PMCID: PMC8438341 DOI: 10.30476/ijms.2020.84909.1474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 08/17/2020] [Accepted: 08/31/2020] [Indexed: 12/03/2022]
Abstract
Background: Acute liver failure (ALF) is a fatal clinical situation that rapidly leads to the loss of normal liver function. Esculetin is a natural herbal compound used
for the management of various diseases such as cardiovascular and renal disorders. In this study, we evaluated the protective effects of esculetin in a mouse model of ALF. Methods: This article is a report on an experimental study that was conducted at Iran University of Medical Sciences in 2019. Forty-eight male C57BL/6 mice were randomly
divided into control, LPS/D-Gal, and LPS/D-Gal+Esculetin (40 mg/kg) groups (n=16 per group). ALF was induced with an intraperitoneal injection of lipopolysaccharide
(LPS)/D-galactosamine (D-Gal).The LPS/D-Gal group received a mixture of LPS (50 μg/kg) and D-Gal (400 mg/kg). The LPS/D-Gal+Esculetin group received esculetin by
gavage 24 hours and one hour before receiving LPS/D-Gal. Six hours after LPS/D-Gal injection, the mice were sacrificed. Liver injury markers, including alanine
aminotransferase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP), were measured in the serum. Oxidative stress indices and inflammatory
markers such as interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) were measured in hepatic tissue. The histopathology of liver tissue
was also assessed. The data were analyzed using one-way ANOVA, followed by the post hoc Tukey test. Results: Esculetin lowered oxidative stress and myeloperoxidase activity (P<0.001); reduced the serum levels of ALT (P=0.037), AST (P=0.032), and ALP (P=0.004);
and decreased the hepatic levels of IL-1β (P=0.002), IL-6 (P=0.004), toll-like receptor 4 (P<0.001), TNF-α (P=0.003), and nuclear factor-kappa B (P<0.001)
as compared with LPS/D-Gal. Additionally, esculetin ameliorated hepatic tissue injury following LPS/D-Gal challenge. Conclusion: Esculetin can reduce liver injury through the mitigation of oxidative burden, inflammation, and neutrophil infiltration and also exerts hepatoprotective effects against ALF.
Collapse
Affiliation(s)
| | | | - Davood Nourabadi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Ramazi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Nazari-Serenjeh
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
13
|
Yang X, Wang Y, Shang Z, Zhang Z, Chi H, Zhang Z, Zhang R, Meng Q. Quinoline-based fluorescent probe for the detection and monitoring of hypochlorous acid in a rheumatoid arthritis model. RSC Adv 2021; 11:31656-31662. [PMID: 35496887 PMCID: PMC9041640 DOI: 10.1039/d1ra06224g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 01/30/2023] Open
Abstract
The development of effective bioanalytical methods for the visualization of hypochlorous acid (HOCl) in situ in rheumatoid arthritis (RA) directly contributes to better understanding the roles of HOCl in this disease. In this work, a new quinoline-based fluorescence probe (HQ) has been developed for the detection and visualization of a HOCl-mediated inflammatory response in a RA model. HQ possesses a donor–π–acceptor (D–π–A) structure that was designed by conjugating p-hydroxybenzaldehyde (electron donor) and 1-ethyl-4-methylquinolinium iodide (electron acceptor) through a C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C double bond. In the presence of HOCl, oxidation of phenol to benzoquinone led to the red-shift (93 nm) of the adsorption and intense quenching of the fluorescence emission. The proposed response reaction mechanism was verified by high performance liquid chromatography (HPLC) and high-resolution mass spectroscopy (HRMS) titration analysis. The remarkable color changes of the HQ solution from pale yellow to pink enabled the application of HQ-stained chromatography plates for the “naked-eye” detection of HOCl in real-world water samples. HQ featured high selectivity and sensitivity (6.5 nM), fast response time (<25 s) to HOCl, reliability at different pH (3.0 to 11.5) and low cytotoxicity. HQ's application in biological systems was then demonstrated by the monitoring of HOCl-mediated treatment response to RA. This work thus provided a new tool for the detection and imaging of HOCl in inflammatory disorders. A quinoline-based fluorescent probe (HQ) has been designed and synthesized for the monitoring of HOCl-mediated treatment response of a rheumatoid arthritis (RA) model and “naked-eye” detection of HOCl in real water samples.![]()
Collapse
Affiliation(s)
- Xinyi Yang
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5929627
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5929627
| | - Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5929627
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane 4072 Australia
| | - Haijun Chi
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5928002
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5928002
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane 4072 Australia
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5929627
| |
Collapse
|
14
|
Das B, Sarkar C, Rawat VS, Kalita D, Deka S, Agnihotri A. Promise of the NLRP3 Inflammasome Inhibitors in In Vivo Disease Models. Molecules 2021; 26:4996. [PMID: 34443594 PMCID: PMC8399941 DOI: 10.3390/molecules26164996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Nucleotide-binding oligomerization domain NOD-like receptors (NLRs) are conserved cytosolic pattern recognition receptors (PRRs) that track the intracellular milieu for the existence of infection, disease-causing microbes, as well as metabolic distresses. The NLRP3 inflammasome agglomerates are consequent to sensing a wide spectrum of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Certain members of the NLR family have been documented to lump into multimolecular conglomerates called inflammasomes, which are inherently linked to stimulation of the cysteine protease caspase-1. Following activation, caspase-1 severs the proinflammatory cytokines interleukin (IL)-1β and IL-18 to their biologically active forms, with consequent commencement of caspase-1-associated pyroptosis. This type of cell death by pyroptosis epitomizes a leading pathway of inflammation. Accumulating scientific documentation has recorded overstimulation of NLRP3 (NOD-like receptor protein 3) inflammasome involvement in a wide array of inflammatory conditions. IL-1β is an archetypic inflammatory cytokine implicated in multiple types of inflammatory maladies. Approaches to impede IL-1β's actions are possible, and their therapeutic effects have been clinically demonstrated; nevertheless, such strategies are associated with certain constraints. For instance, treatments that focus on systemically negating IL-1β (i.e., anakinra, rilonacept, and canakinumab) have been reported to result in an escalated peril of infections. Therefore, given the therapeutic promise of an NLRP3 inhibitor, the concerted escalated venture of the scientific sorority in the advancement of small molecules focusing on direct NLRP3 inflammasome inhibition is quite predictable.
Collapse
Affiliation(s)
- Biswadeep Das
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| | - Chayna Sarkar
- Department of Clinical Pharmacology & Therapeutics, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences (NEIGRIHMS), Mawdiangdiang, Shillong 793018, Meghalaya, India;
| | - Vikram Singh Rawat
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| | - Deepjyoti Kalita
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India; (D.K.); (S.D.)
| | - Sangeeta Deka
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India; (D.K.); (S.D.)
| | - Akash Agnihotri
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| |
Collapse
|
15
|
Zou J, Wang SP, Wang YT, Wan JB. Regulation of the NLRP3 inflammasome with natural products against chemical-induced liver injury. Pharmacol Res 2020; 164:105388. [PMID: 33359314 DOI: 10.1016/j.phrs.2020.105388] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
The past decades have witnessed significant progress in understanding the process of sterile inflammation, which is dependent on a cytosolic complex termed the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome. Activation of NLRP3 inflammasome requires two steps, including the activation of Toll-like receptor (TLR) by its ligands, resulting in transcriptional procytokine and inflammasome component activation, and the assembly and activation of NLRP3 inflammasome triggered by various danger signals, leading to caspase-1 activation, which could subsequently cleave procytokines into their active forms. Metabolic disorders, ischemia and reperfusion, viral infection and chemical insults are common pathogenic factors of liver-related diseases that usually cause tissue damage and cell death, providing numerous danger signals for the activation of NLRP3 inflammasome. Currently, natural products have attracted much attention as potential agents for the prevention and treatment of liver diseases due to their multitargets and nontoxic natures. A great number of natural products have been shown to exhibit beneficial effects on liver injury induced by various chemicals through regulating NLRP3 inflammasome pathways. In this review, the roles of the NLRP3 inflammasome in chemical-induced liver injury (CILI) and natural products that exhibit beneficial effects in CILI through the regulation of inflammasomes were systematically summarized.
Collapse
Affiliation(s)
- Jian Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
16
|
Jiang G, Chen D, Li W, Liu C, Liu J, Guo Y. Effects of wogonoside on the inflammatory response and oxidative stress in mice with nonalcoholic fatty liver disease. PHARMACEUTICAL BIOLOGY 2020; 58:1177-1183. [PMID: 33253604 PMCID: PMC7875554 DOI: 10.1080/13880209.2020.1845747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 06/06/2023]
Abstract
CONTEXT Wogonoside has many pharmacological activities, but whether it has a protective effect against non-alcoholic fatty liver disease (NAFLD) has not been reported. OBJECTIVE This study investigates the protective effect of wogonoside against NAFLD in mice and its potential mechanism. MATERIALS AND METHODS C57BL/6 mice were randomly divided into control group, NAFLD group and low-, medium- and high-dose wogonoside groups (5, 10 and 20 mg/kg, respectively) (n= 12). Mice in the control group were fed with the standard diet, and those in NAFLD group and low-, medium- and high-dose wogonoside groups were fed with a high-fat diet. The different doses of wogonoside were administered by gavage once a day for 12 weeks. RESULTS Compared with those in NAFLD group, the liver mass, liver index and the LDL, TG, TC, IL-2, IL-6, TNF-α, MDA and NF-κB p65 levels were decreased, and the SOD and GSH-Px activities, and HDL, IκBα, Nrf2 and HO-1 contents were increased in wogonoside groups. Compared with those in the NAFLD group, wogonoside (5, 10 and 20 mg/kg) reduced AST (132.21 ± 14.62, 115.70 ± 11.32 and 77.94 ± 8.86 vs. 202.35 ± 19.58 U/L) and ALT (104.37 ± 11.92, 97.53 ± 10.12 and 56.74 ± 6.33 vs. 154.66 ± 14.23 U/L) activities in the serum. DISCUSSION AND CONCLUSIONS Wogonoside has a protective effect against NAFLD in mice, which may be related to its anti-inflammation and inhibition of oxidative stress, suggesting that wogonoside may be a potential therapeutic agent for the treatment of NAFLD.
Collapse
Affiliation(s)
- Guangyu Jiang
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Neurosurgery, Shenzhen SAMII Medical Center, Shenzhen, China
| | - Dayin Chen
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Wenpeng Li
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Chengcheng Liu
- Heilongjiang Agricultural Vocational and Technical College, Jiamusi, China
| | - Jiguang Liu
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yingxue Guo
- College of Pharmacy, Jiamusi University, Jiamusi, China
| |
Collapse
|
17
|
Liao H, Ye J, Gao L, Liu Y. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review. Biomed Pharmacother 2020; 133:110917. [PMID: 33217688 DOI: 10.1016/j.biopha.2020.110917] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/11/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Scutellaria baicalensis Georgi., a plant used in traditional Chinese medicine, has multiple biological activities, including anti-inflammatory, antiviral, antitumor, antioxidant, and antibacterial effects, and can be used to treat respiratory tract infections, pneumonia, colitis, hepatitis, and allergic diseases. The main active substances of S. baicalensis, baicalein, baicalin, wogonin, wogonoside, and oroxylin A, can act directly on immune cells such as lymphocytes, macrophages, mast cells, dendritic cells, monocytes, and neutrophils, and inhibit the production of the inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α, and other inflammatory mediators such as nitric oxide, prostaglandins, leukotrienes, and reactive oxygen species. The molecular mechanisms underlying the immunomodulatory and anti-inflammatory effects of the active compounds of S. baicalensis include downregulation of toll-like receptors, activation of the Nrf2 and PPAR signaling pathways, and inhibition of the nuclear thioredoxin system and inflammation-associated pathways such as those of MAPK, Akt, NFκB, and JAK-STAT. Given that in addition to the downregulation of cytokine production, the active constituents of S. baicalensis also have antiviral and antibacterial effects, they may be more promising candidate therapeutics for the prevention of infection-related cytokine storms than are drugs having only antimicrobial or anti-inflammatory activities.
Collapse
Affiliation(s)
- Hengfeng Liao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
18
|
Chen Y, Lu Y, Pei C, Liang J, Ding P, Chen S, Hou SZ. Monotropein alleviates secondary liver injury in chronic colitis by regulating TLR4/NF-κB signaling and NLRP3 inflammasome. Eur J Pharmacol 2020; 883:173358. [PMID: 32710952 DOI: 10.1016/j.ejphar.2020.173358] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 01/25/2023]
Abstract
Recently, it has reported that many inflammatory bowel disease (IBD) patients were contracted secondary liver injury. Monotropein (MON), an iridoid glycoside, is demonstrated to possess protective effects on acute colitis mice due to its anti-inflammatory activities. However, it was remained unknown whether MON could inhibit secondary liver injury caused by IBD. The aim of the present study was to investigate the protective roles and mechanisms of MON on secondary liver injury in chronic colitis mice model. In this study, 2% Dextran sodium sulfate (DSS) was used to induce mice model of chronic colitis. The results showed that MON attenuated DSS-induced hepatic pathological damage, liver parameters, infiltration of macrophages and cytokines levels. Furthermore, we found that MON attenuated liver injury through suppressing the activation of the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway and down-regulating the activity of NLRP3 (NOD-, LRR- and pyrin domain-containing 3) inflammasome. All the data indicated that MON may be an effective therapeutic reagent to attenuate secondary liver injury induced by chronic colitis.
Collapse
Affiliation(s)
- Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yingyu Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China
| | - Chaoying Pei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jian Liang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China
| | - Shuxian Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, Guangdong, PR China.
| | - Shao-Zhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| |
Collapse
|
19
|
Wang L, Guo T, Guo Y, Xu Y. Asiaticoside produces an antidepressant‑like effect in a chronic unpredictable mild stress model of depression in mice, involving reversion of inflammation and the PKA/pCREB/BDNF signaling pathway. Mol Med Rep 2020; 22:2364-2372. [PMID: 32705202 PMCID: PMC7411460 DOI: 10.3892/mmr.2020.11305] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
Asiaticoside is one of the triterpenoid components found in Centella asiatica that has promising neuroprotective properties. The present study aimed to evaluate the antidepressant‑like properties of asiaticoside and to investigate the possible mechanisms underlying its mode of action using a mouse model of chronic unpredictable mild stress (CMS). Behavioral tests, including sucrose preference test, forced swimming test and tail suspension test, were performed to evaluate symptoms of depression. The expression levels of neurotransmitters, 5‑hydroxytryptamine (5‑HT) and norepinephrine (NE), in the hippocampus were measured by high‑performance liquid chromatography. ELISA and western blotting were used to detect protein expression. It was demonstrated that asiaticoside treatment (20 and 40 mg/kg; intragastric) significantly reversed the decrease in sucrose consumption, and reduced the immobility time in tail suspension tests and forced swimming tests in CMS mice. Furthermore, asiaticoside treatment upregulated the expression of 5‑HT and NE in the CMS mouse model. Asiaticoside administration also downregulated the levels of interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α in the hippocampus, and reduced the phosphorylation of nuclear factor (NF)‑κBp65 and the expression of nod‑like receptor protein 3 (NLRP3), thus decreasing the expression of mature caspase‑1. Furthermore, asiaticoside significantly increased the levels of cAMP and protein kinase A (PKA), and enhanced phosphorylation of the cAMP‑related specific marker vasodilator‑stimulated phosphoprotein at serine 157. Therefore, asiaticoside may activate the cAMP/PKA signaling pathway to inhibit NF‑κB‑ and NLRP3‑related inflammation. Moreover, phosphorylation of the cAMP‑responsive element‑binding protein at serine 133 and the expression of brain‑derived neurotrophic factor were increased after asiaticoside administration. Collectively, the present results suggested that asiaticoside may play a vital role as an antidepressant and anti‑inflammatory agent in the CMS mouse model by regulating the cAMP/PKA signaling pathway.
Collapse
Affiliation(s)
- Luoqing Wang
- Department of Cardiovascular Medicine, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| | - Ting Guo
- Department of Neurology, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Yuanfang Guo
- Department of Respiratory Medicine, Ganyu District People's Hospital, Lianyungang, Jiangsu 222100, P.R. China
| | - Yujie Xu
- Department of Anesthesiology and Perioperative Medicine, Jiangsu Province Hospital, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
20
|
Bai Z, Liu W, He D, Wang Y, Yi W, Luo C, Shen J, Hu Z. Protective effects of autophagy and NFE2L2 on reactive oxygen species-induced pyroptosis of human nucleus pulposus cells. Aging (Albany NY) 2020; 12:7534-7548. [PMID: 32320383 PMCID: PMC7202523 DOI: 10.18632/aging.103109] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Intervertebral disc degeneration (IDD) is characterized by the decrease of nucleus pulposus cells (NPCs). With the increase of the degree of degeneration, the reactive oxygen species (ROS) in nucleus pulposus tissue increases. Pyroptosis is a newly discovered form of cell death and its relationship with oxidative stress in NPCs remains unclear. This study was performed to investigate the mechanisms of pyroptosis of NPCs under oxidative stress. NPCs were isolated from IDD patients by surgical treatment. Pyroptosis related proteins like NLR family pyrin domain containing 3(NLRP3) and PYD and CARD domain containing (PYCARD) were detected by western blot, and membrane pore formation was observed by hochest33342/PI double staining or scanning electron microscope. The results showed that ROS induced the pyroptosis of NPCs and it depended on the expression of NLRP3 and PYCARD. The increased ROS level also increased transcription factor nuclear factor, erythroid 2 like 2 (NFE2L2, Nrf2) and the autophagy of NPCs, both of which attenuated the pyroptosis. In summary, ROS induces the pyroptosis of NPCs through the NLRP3/ PYCARD pathway, and establishes negative regulation by increasing autophagy and NFE2L2. These findings may provide a better understanding of the mechanism of IDD and potential therapeutic approaches for IDD treatment.
Collapse
Affiliation(s)
- Zhibiao Bai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Wei Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Danshuang He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Yiyang Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Weiwei Yi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Changqi Luo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Jieliang Shen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Zhenming Hu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| |
Collapse
|
21
|
Ren J, Hu D, Mao Y, Yang H, Liao W, Xu W, Ge P, Zhang H, Sang X, Lu X, Zhong S. Alteration in gut microbiota caused by time-restricted feeding alleviate hepatic ischaemia reperfusion injury in mice. J Cell Mol Med 2019; 23:1714-1722. [PMID: 30588757 PMCID: PMC6378231 DOI: 10.1111/jcmm.14069] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/12/2018] [Accepted: 11/12/2018] [Indexed: 01/06/2023] Open
Abstract
Time-restricted feeding (TRF), that is, no caloric intake for 14-16 hours each day leads to favourable nutritional outcomes. This study is the first to investigate TRF through a surgical perspective verifying its efficacy against liver ischaemia reperfusion (I/R) injury. We randomly assigned 100 10-week-old wild-type male C57BL/6 mice into two feeding regimens: TRF and ad libitum access to food. Main outcomes were evaluated at 6, 12 and 24 hours post-I/R surgery after 12 weeks of intervention. TRF group demonstrated minor liver injury via histological study; lower serum levels of liver enzymes, glucose and lipids; higher concentrations of free fatty acid and β-hydroxybutyrate; decreased oxidative stress and inflammatory biomarkers; as well as less severe cell apoptosis and proliferation. Further exploration indicated better gut microenvironment and intestinal epithelial tight junction function. TRF employed its positive influence on a wide spectrum of biochemical pathways and ultimately revealed protective effect against hepatic I/R injury possibly through adjusting the gut microbiota. The results referred to a strong indication of adopting better feeding pattern for surgical patients.
Collapse
Affiliation(s)
- Jinjun Ren
- Peking Union Medical College Hospital, Beijing, China
| | - Dandan Hu
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yilei Mao
- Peking Union Medical College Hospital, Beijing, China
| | - Huayu Yang
- Peking Union Medical College Hospital, Beijing, China
| | - Wenjun Liao
- Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Xu
- Peking Union Medical College Hospital, Beijing, China
| | - Penglei Ge
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbing Zhang
- Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinting Sang
- Peking Union Medical College Hospital, Beijing, China
| | - Xin Lu
- Peking Union Medical College Hospital, Beijing, China
| | | |
Collapse
|
22
|
Triterpenoids from fruits of Sorbus pohuashanensis inhibit acetaminophen-induced acute liver injury in mice. Biomed Pharmacother 2019; 109:493-502. [DOI: 10.1016/j.biopha.2018.10.160] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023] Open
|
23
|
Tang F, Fan K, Wang K, Bian C. Amygdalin attenuates acute liver injury induced by D-galactosamine and lipopolysaccharide by regulating the NLRP3, NF-κB and Nrf2/NQO1 signalling pathways. Biomed Pharmacother 2018; 111:527-536. [PMID: 30597306 DOI: 10.1016/j.biopha.2018.12.096] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Acute liver injury (ALI) is a life-threatening syndrome accompanied by overwhelming inflammation. Amygdalin (AGD) has been reported to possess various biological activities, particularly anti-inflammatory activity. The current study was designed to assess the protective effects and underlying mechanisms of AGD against ALI induced by d-galactosamine (GalN) and lipopolysaccharide (LPS) in mice. The results indicated that AGD treatment effectively reduced the lethality, ameliorated the histopathological liver changes, reduced the malondialdehyde (MDA) and myeloperoxidase (MPO) levels, and decreased the alanine transaminase (ALT) and aspartate aminotransferase (AST) levels resulting from LPS/GalN challenge. Moreover, AGD significantly inhibited LPS/GalN-induced inflammatory responses in mice with ALI by reducing not only the secretion of tumour necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 but also the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Additionally, our results demonstrated that the inhibitory effect of AGD was due to the suppressed activation of nuclear factor-kappa B (NF-κB) and nucleotide-binding domain (NOD-)like receptor protein 3 (NLRP3) inflammasome activity. Furthermore, AGD treatment substantially increased nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and enhanced NAD (P) H: quinoneoxidoreductase 1 protein expression, which was reversed by a Nrf2 inhibitor, in HepG2 cells. In summary, our investigations suggested that the ability of AGD to ameliorate LPS/GalN-induced ALI may involve the inhibition of the NLRP3 inflammasome and NF-κB signalling pathways and the upregulation of the Nrf2/NQO1 signalling pathway.
Collapse
Affiliation(s)
- Fayin Tang
- College of pharmaceutical Engineering, Henan University of Husbandry and Economy, Zhengzhou, 450046, Henan Province, China; College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun 130062, China
| | - Kefeng Fan
- College of pharmaceutical Engineering, Henan University of Husbandry and Economy, Zhengzhou, 450046, Henan Province, China
| | - Kunli Wang
- College of pharmaceutical Engineering, Henan University of Husbandry and Economy, Zhengzhou, 450046, Henan Province, China
| | - Chuanzhou Bian
- College of pharmaceutical Engineering, Henan University of Husbandry and Economy, Zhengzhou, 450046, Henan Province, China.
| |
Collapse
|
24
|
Zhang HY, Wang HL, Zhong GY, Zhu JX. Molecular mechanism and research progress on pharmacology of traditional Chinese medicine in liver injury. PHARMACEUTICAL BIOLOGY 2018; 56:594-611. [PMID: 31070528 PMCID: PMC6282438 DOI: 10.1080/13880209.2018.1517185] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/27/2018] [Accepted: 08/21/2018] [Indexed: 05/09/2023]
Abstract
CONTEXT Liver disease is a common threat to human health, caused by a variety of factors that damage the liver. Recent studies have shown that active ingredients (for example: flavonoids, saponins, acids, phenols, and alkaloids) from Traditional Chinese Medicine (TCM) can have hepatoprotective benefits, which represents an attractive source of drug discovery for treating liver injury. OBJECTIVE We reviewed recent contributions on the chemically induced liver injury, immunological liver damage, alcoholic liver injury, and drug-induced liver injury, in order to summarize the research progress in molecular mechanism and pharmacology of TCM, and provides a comprehensive overview of new TCM treatment strategies for liver disease. MATERIALS AND METHODS Relevant literature was obtained from scientific databases such as Pubmed, Web of Science. and CNKI databases on ethnobotany and ethnomedicines (from January 1980 to the end of May 2018). The experimental studies involving the antihepatic injury role of the active agents from TCM and the underlying mechanisms were identified. The search terms included 'liver injury' or 'hepatic injury', and 'traditional Chinese medicine', or 'herb'. RESULTS A number of studies revealed that the active ingredients of TCM exhibit potential therapeutic benefits against liver injury, while the underlying mechanisms appear to contribute to the regulation of inflammation, oxidant stress, and pro-apoptosis signaling pathways. DISCUSSION AND CONCLUSIONS The insights provided in this review will help further exploration of botanical drugs in the development of liver injury therapy via study on the effective components of TCM.
Collapse
Affiliation(s)
- Hong Yang Zhang
- Research Center of Traditional Chinese Medicine Resources and Minority Medicine, Jiangxi University of Traditional Chinese Medicine, Nan Chang, China
| | - Hong Ling Wang
- Research Center of Traditional Chinese Medicine Resources and Minority Medicine, Jiangxi University of Traditional Chinese Medicine, Nan Chang, China
| | - Guo Yue Zhong
- Research Center of Traditional Chinese Medicine Resources and Minority Medicine, Jiangxi University of Traditional Chinese Medicine, Nan Chang, China
| | - Ji Xiao Zhu
- Research Center of Traditional Chinese Medicine Resources and Minority Medicine, Jiangxi University of Traditional Chinese Medicine, Nan Chang, China
| |
Collapse
|
25
|
Tian Y, Li Y, Li F, Zhi Q, Li F, Tang Y, Yang Y, Yin R, Ming J. Protective effects of Coreopsis tinctoria flowers phenolic extract against D-galactosamine/lipopolysaccharide -induced acute liver injury by up-regulation of Nrf2, PPARα, and PPARγ. Food Chem Toxicol 2018; 121:404-412. [DOI: 10.1016/j.fct.2018.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 12/27/2022]
|
26
|
Li M, Wang S, Li X, Jiang L, Wang X, Kou R, Wang Q, Xu L, Zhao N, Xie K. Diallyl sulfide protects against lipopolysaccharide/d-galactosamine-induced acute liver injury by inhibiting oxidative stress, inflammation and apoptosis in mice. Food Chem Toxicol 2018; 120:500-509. [DOI: 10.1016/j.fct.2018.07.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/11/2018] [Accepted: 07/28/2018] [Indexed: 12/12/2022]
|
27
|
Peng J. The Pharmacological Targets and Clinical Evidence of Natural Products With Anti-hepatic Inflammatory Properties. Front Pharmacol 2018; 9:455. [PMID: 29922155 PMCID: PMC5996099 DOI: 10.3389/fphar.2018.00455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022] Open
Abstract
Inflammation contributes heavily to the pathogenesis of liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Inflammation is probably a promising target for treatment of liver diseases. The natural products are considered as the potential source of new drug discovery and their pharmacological effects on hepatic inflammation have been widely reported. In this review, the natural products with anti-hepatic inflammatory properties are summarized based on their pharmacological effects and mechanisms, which are related to the suppression on the inflammation mediators including cytokines and chemokines, pattern recognition receptors, the activated transcriptional factors, and the potential regulatory factors. The clinical evidence is also summarized.
Collapse
Affiliation(s)
- Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
28
|
Wang S, Zhang B, Wang W, Feng G, Yuan D, Zhang X. Elucidating the Structure-Reactivity Correlations of Phenothiazine-Based Fluorescent Probes toward ClO−. Chemistry 2018; 24:8157-8166. [DOI: 10.1002/chem.201800356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Shichao Wang
- Faculty of Health Sciences; University of Macau, Taipa; Macau SAR China
| | - Boyu Zhang
- Faculty of Health Sciences; University of Macau, Taipa; Macau SAR China
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences; Fuzhou 350002 China
| | - Gang Feng
- Faculty of Health Sciences; University of Macau, Taipa; Macau SAR China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences; Fuzhou 350002 China
| | - Xuanjun Zhang
- Faculty of Health Sciences; University of Macau, Taipa; Macau SAR China
| |
Collapse
|
29
|
Hu JJ, Wang H, Pan CW, Lin MX. Isovitexin alleviates liver injury induced by lipopolysaccharide/d-galactosamine by activating Nrf2 and inhibiting NF-κB activation. Microb Pathog 2018; 119:86-92. [PMID: 29604422 DOI: 10.1016/j.micpath.2018.03.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 12/23/2022]
Abstract
The aim of this study was to investigate the protective effects and mechanism of isovitexin, a glycosylflavonoid isolated from rice hulls of Oryza sativa, on Lipopolysaccharide (LPS)/d-galactosamine (D-Gal)-induced acute liver injury. The mice were randomly divided into five groups: control group, LPS/D-Gal group, and LPS/D-Gal + isovitexin groups. The mice of LPS/D-Gal group were received of LPS (50 μg/kg) and D-gal (800 mg/kg) intraperitoneal. The mice of LPS/D-Gal + isovitexin groups were received isovitexin (25, 50, 100 mg/kg) 1 h before LPS/D-Gal treatment. The results showed that the severity of liver injury was attenuated by treatment of isovitexin, as confirmed by the decreased liver histopathologic changes, as well as serum AST and ALT levels. Furthermore, the levels of TNF-α in serum and liver tissues, MPO activity and MDA content were significantly inhibited by isovitexin. In addition, isovitexin significantly attenuated NF-κB phosphorylation induced by LPS/D-Gal. The expression of Nrf2 and HO-1 were significantly up-regulated by isovitexin. In conclusion, isovitexin could protect against LPS/D-Gal-induced liver injury by inhibiting inflammatory and oxidative responses. Isovitexin also had protective effects against carbon tetrachloride (CCl4)-induced liver injury. Isovitexin may used as a potential agent for the treatment of liver injury.
Collapse
Affiliation(s)
- Jian-Jian Hu
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Hui Wang
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, 650051, China
| | - Chen-Wei Pan
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, PR China
| | - Meng-Xiang Lin
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
30
|
Hennig P, Garstkiewicz M, Grossi S, Di Filippo M, French LE, Beer HD. The Crosstalk between Nrf2 and Inflammasomes. Int J Mol Sci 2018; 19:ijms19020562. [PMID: 29438305 PMCID: PMC5855784 DOI: 10.3390/ijms19020562] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/03/2023] Open
Abstract
The Nrf2 (nuclear factor E2-related factor or nuclear factor (erythroid-derived 2)-like 2) transcription factor is a key player in cytoprotection and activated in stress conditions caused by reactive oxygen species (ROS) or electrophiles. Inflammasomes represent central regulators of inflammation. Upon detection of various stress factors, assembly of the inflamasome protein complex results in activation and secretion of proinflammatory cytokines. In addition, inflammasome activation causes pyroptosis, a lytic form of cell death, which supports inflammation. There is growing evidence of a crosstalk between the Nrf2 and inflammasome pathways at different levels. For example, Nrf2 activating compounds inhibit inflammasomes and consequently inflammation. This review summarizes what is known about the complex and predominantly antagonistic relationship of both stress-activated pathways.
Collapse
Affiliation(s)
- Paulina Hennig
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Martha Garstkiewicz
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Serena Grossi
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Michela Di Filippo
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Lars E French
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, CH-8091 Zurich, Switzerland.
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, CH-8091 Zurich, Switzerland.
| |
Collapse
|
31
|
Protective roles and mechanisms of Dendrobium officinal polysaccharides on secondary liver injury in acute colitis. Int J Biol Macromol 2018; 107:2201-2210. [DOI: 10.1016/j.ijbiomac.2017.10.085] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/03/2017] [Accepted: 10/14/2017] [Indexed: 12/26/2022]
|
32
|
Abstract
Modulation of inflammasomes has tremendous therapeutic potential and is hotly pursued by industry and academia alike. Indeed a growing number of patents are emerging to protect the intellectual property in valuable compound classes. This chapter focusses specifically on the suite of small-molecule NLRP3 inflammasome inhibitors published, as specific modulation of other inflammasomes is not yet well established. Synthetic molecules, known drugs and natural product NLRP3 modulators will be detailed. Some of the molecular classes discussed have been extensively characterised through cell-based screening, pharmacokinetic profiling and therapeutic proof of concept animal models. However, many inhibitors lack rigorous studies and/or have multiple activities of which NLRP3 modulation is only one. While this is not intended as an exhaustive list, it should give an impression of the range of structures and strategies that are being used, alongside challenges encountered, in an effort to exploit the significant therapeutic benefits of targeting inflammasomes.
Collapse
Affiliation(s)
- Avril A B Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
33
|
Selective visualization of endogenous hypochlorous acid in zebrafish during lipopolysaccharide-induced acute liver injury using a polymer micelles-based ratiometric fluorescent probe. Biosens Bioelectron 2018; 99:318-324. [DOI: 10.1016/j.bios.2017.08.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/29/2017] [Accepted: 08/02/2017] [Indexed: 12/23/2022]
|
34
|
Finkin-Groner E, Finkin S, Zeeli S, Weinstock M. Indoline derivatives mitigate liver damage in a mouse model of acute liver injury. Pharmacol Rep 2017. [PMID: 28628850 DOI: 10.1016/j.pharep.2017.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Exposure of mice to D-galactosamine (GalN) and lipopolysaccharide (LPS) induces acute liver failure through elevation of TNF-α, which causes liver damage resembling that in humans. The current study evaluated in this model the effect of two indoline derivatives, which have anti-inflammatory activity in macrophages. METHODS AN1297 and AN1284 (0.025-0.75mg/kg) or dexamethasone (3mg/kg), were injected subcutaneously, 15min before intraperitoneal injection of GalN (800mg) plus LPS (50μg) in male Balb/C mice. After 6h, their livers were evaluated histologically by staining with hematoxylin and eosin for tissue damage and by cleaved caspase 3 for apoptosis. Activity of liver enzymes, alanine transaminase (ALT) and aspartate aminotransferase (AST) and levels of TNF-α and IL-6 were measured in plasma, and those of TNF-α and IL-6, in the liver. RESULTS AN1297 (0.075-0.75mg/kg) and AN1284 (0.25-0.75mg/kg) maximally reduced ALT by 51% and 80%, respectively. Only AN1284 (0.25 and 0.75mg/kg) reduced AST by 41% and 48%. AN1297 and AN1284 (0.25mg/kg) decreased activation of caspase 3 (a sign of apoptosis) by 80% and plasma TNF-α by 75%. AN1297 and AN1284 (0.075mg/kg) prevented the rise in TNF-α and IL-6 in the liver. AN1284 (0.25mg/kg) reduced mortality from 90% to 20% (p<0.01) and AN1297, to 60% (p=0.121). Both indoline derivatives inhibited the phosphorylation of MAPK p38 and DNA binding of the transcription factor, AP-1. CONCLUSION While both compounds are highly potent anti-inflammatory agents, AN1284 is more effective in mitigating the underlying causes of GalN/LPS-induced acute liver failure in mice.
Collapse
Affiliation(s)
- Efrat Finkin-Groner
- Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shlomi Finkin
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shani Zeeli
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Marta Weinstock
- Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
35
|
Nigro D, Menotti F, Cento AS, Serpe L, Chiazza F, Dal Bello F, Romaniello F, Medana C, Collino M, Aragno M, Mastrocola R. Chronic administration of saturated fats and fructose differently affect SREBP activity resulting in different modulation of Nrf2 and Nlrp3 inflammasome pathways in mice liver. J Nutr Biochem 2017; 42:160-171. [DOI: 10.1016/j.jnutbio.2017.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/21/2016] [Accepted: 01/19/2017] [Indexed: 12/11/2022]
|
36
|
Bao S, Zhao Q, Zheng J, Li N, Huang C, Chen M, Cheng Q, Zhu M, Yu K, Liu C, Shi G. Interleukin-23 mediates the pathogenesis of LPS/GalN-induced liver injury in mice. Int Immunopharmacol 2017; 46:97-104. [PMID: 28282579 DOI: 10.1016/j.intimp.2017.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/26/2017] [Accepted: 03/01/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Interleukin-23 (IL-23) is required for T helper 17 (Th17) cell responses and IL-17 production in hepatitis B virus infection. A previous study showed that the IL-23/IL-17 axis aggravates immune injury in patients with chronic hepatitis B virus infection. However, the role of IL-23 in acute liver injury remains unclear. OBJECTIVE The purpose of this study was to determine the role of the inflammatory cytokine IL-23 in lipopolysaccharide/d-galactosamine (LPS/GalN)-induced acute liver injury in mice. METHODS Serum IL-23 from patients with chronic hepatitis B virus (CHB), acute-on-chronic liver failure (ACLF) and healthy individuals who served as healthy controls (HCs) was measured by ELISA. An IL-23p19 neutralizing antibody or an IL-23p40 neutralizing antibody was administered intravenously at the time of challenge with LPS (10μg/kg) and GalN (400mg/kg) in C57BL/6 mice. Hepatic pathology and the expression of Th17-related cytokines, including IL-17 and TNF-α; neutrophil chemoattractants, including Cxcl1, Cxcl2, Cxcl9, and Cxcl10; and the stabilization factor Csf3 were assessed in liver tissue. RESULTS Serum IL-23 was significantly upregulated in ACLF patients compared with CHB patients and HCs (P<0.05 for both). Serum IL-23 was significantly upregulated in the non-survival group compared with the survival group of ACLF patients, which was consistent with LPS/GalN-induced acute hepatic injury in mice (P<0.05 for both). Moreover, after treatment, serum IL-23 was downregulated in the survival group of ACLF patients (P<0.001). Compared with LPS/GalN mice, mice treated with either an IL-23p19 neutralizing antibody or an IL-23p40 neutralizing antibody showed less severe liver tissue histopathology and significant reductions in the expression of Th17-related inflammatory cytokine, including IL-17 and TNF-α; neutrophil chemoattractants, including Cxcl1, Cxcl2, Cxcl9, and Cxcl10; and stabilization factors Csf3 within the liver tissue compared with LPS/GalN mice (P<0.05 for all). CONCLUSION High serum IL-23 was associated with mortality in ACLF patients and LPS/GalN-induced acute liver injury in mice. IL-23 neutralizing antibodies attenuated liver injury by reducing the expression of Th17-related inflammatory cytokines, neutrophil chemoattractants and stabilization factors within the liver tissue, which indicated that IL-23 likely functions upstream of Th17-related cytokine and chemokine expression to recruit inflammatory cells into the liver.
Collapse
Affiliation(s)
- Suxia Bao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qiang Zhao
- Institute of Liver Diseases, Dawn Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200040, China
| | - Jianming Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ning Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chong Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mingquan Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qi Cheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mengqi Zhu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kangkang Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chenghai Liu
- Institute of Liver Diseases, Dawn Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200040, China
| | - Guangfeng Shi
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
37
|
Lee SB, Kang JW, Kim SJ, Ahn J, Kim J, Lee SM. Afzelin ameliorates D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure by modulating mitochondrial quality control and dynamics. Br J Pharmacol 2016; 174:195-209. [PMID: 27861739 DOI: 10.1111/bph.13669] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Fulminant hepatic failure (FHF) is a fatal clinical syndrome that results in excessive inflammation and hepatocyte death. Mitochondrial dysfunction is considered to be a possible mechanism of FHF. Afzelin, a flavonol glycoside found in Houttuynia cordata Thunberg, has anti-inflammatory and antioxidant properties. The present study elucidated the cytoprotective mechanisms of afzelin against D-galactosamine (GalN)/LPS induced FHF, particularly focusing on mitochondrial quality control and dynamics. EXPERIMENTAL APPROACH Mice were administered afzelin i.p. 1 h before receiving GalN (800 mg·kg-1 )/LPS (40 μg·kg-1 ), and they were then killed 5 h after GalN/LPS treatment. KEY RESULTS Afzelin improved the survival rate and reduced the serum levels of alanine aminotransferase and pro-inflammatory cytokines in GalN/LPS-treated mice. Afzelin attenuated the mitochondrial damage, as indicated by diminished mitochondrial swelling and mitochondrial glutamate dehydrogenase activity in GalN/LPS-treated mice. Afzelin enhanced mitochondrial biogenesis, as indicated by increased levels of PPAR-γ coactivator 1α, nuclear respiratory factor 1 and mitochondrial transcription factor A. Afzelin also decreased the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Furthermore, while GalN/LPS significantly increased the level of fission-related protein, dynamin-related protein 1, and decreased the level of fusion-related protein, mitofusin 2; these effects were attenuated by afzelin. CONCLUSIONS AND IMPLICATIONS Our findings demonstrated that afzelin protects against GalN/LPS-induced liver injury by enhancing mitochondrial biogenesis, suppressing excessive mitophagy and balancing mitochondrial dynamics.
Collapse
Affiliation(s)
- Sang-Bin Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jung-Woo Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - So-Jin Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jongmin Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
38
|
Zhang J, Zhu XY, Hu XX, Liu HW, Li J, Feng LL, Yin X, Zhang XB, Tan W. Ratiometric Two-Photon Fluorescent Probe for in Vivo Hydrogen Polysulfides Detection and Imaging during Lipopolysaccharide-Induced Acute Organs Injury. Anal Chem 2016; 88:11892-11899. [PMID: 27934104 DOI: 10.1021/acs.analchem.6b03702] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute organ injury observed during sepsis, caused by an uncontrolled release of inflammatory mediators, such as lipopolysaccharide (LPS), is quite fatal. The development of efficient methods for early diagnosis of sepsis and LPS-induced acute organ injury in living systems is of great biomedical importance. In living systems, cystathionine γ-lyase (CSE) can be overexpressed due to LPS, and H2Sn can be formed by CSE-mediated cysteine metabolism. Thus, acute organ injury during sepsis may be correlated with H2Sn levels, making accurate detection of H2Sn in living systems of great physiological and pathological significance. In this work, our previously reported fluorescent platform was employed to design and synthesize a FRET-based ratiometric two-photon (TP) fluorescent probe TPR-S, producing a large emission shift in the presence of H2Sn. In this work, a naphthalene derivative two-photon fluorophore was chosen as the energy donor; a rhodol derivative fluorophore served as the acceptor. The 2-fluoro-5-nitrobenzoate group of probe TPR-S reacted with H2Sn and was selectively removed to release the fluorophore, resulting in a fluorescent signal decrease at 448 nm and enhancement at 541 nm. The ratio value of the fluorescence intensity between 541 and 448 nm (I541 nm/I448 nm) varied from 0.13 to 8.12 (∼62-fold), with the H2Sn concentration changing from 0 to 1 mM. The detection limit of the probe was 0.7 μM. Moreover, the probe was applied for imaging H2Sn in living cells, tissues, and organs of LPS-induced acute organ injury, which demonstrated its practical application in complex biosystems as a potential method to achieve early diagnosis of LPS-induced acute organ injury.
Collapse
Affiliation(s)
- Jing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Xiao-Yan Zhu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Xiao-Xiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Jin Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Li Li Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Xia Yin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| |
Collapse
|