1
|
Kumar P, Kedia S, Ahuja V. Target potential of miRNAs in ulcerative colitis: what do we know? Expert Opin Ther Targets 2024; 28:829-841. [PMID: 39307951 DOI: 10.1080/14728222.2024.2408423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION The global rise in ulcerative colitis (UC) incidence highlights the urgent need for enhanced diagnostic and therapeutic strategies. Recent advances in genome-wide association studies (GWAS) have identified genetic loci associated with UC, providing insights into the disease's molecular mechanisms, including immune modulation, mucosal defense, and epithelial barrier function. Despite these findings, many GWAS signals are located in non-coding regions and are linked to low risk, suggesting that protein-coding genes alone do not fully explain UC's pathophysiology. Emerging research emphasizes the potential of microRNAs (miRNAs) as biomarkers and therapeutic targets due to their crucial role in UC. This review explores the current understanding of miRNAs in UC, including their mechanisms of action and their potential as both biomarkers and therapeutic targets. The present review provides the latest update on their potential as a biomarker and therapeutic target. AREAS COVERED This review synthesizes an extensive literature search on miRNAs in UC, focusing on their roles in the mucosal barrier, innate and adaptive immunity, and their potential applications as biomarkers and therapeutic modalities. EXPERT OPINION While miRNAs present promising opportunities as biomarkers and novel therapeutic agents in UC, challenges in validation, specificity, delivery, and clinical application need to be addressed through rigorous, large-scale studies.
Collapse
Affiliation(s)
- Peeyush Kumar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical sciences, New Delhi, India
| | - Saurabh Kedia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical sciences, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical sciences, New Delhi, India
| |
Collapse
|
2
|
Mohany KM, Gamal Y, Abdel Raheem YF. Heavy metal levels are positively associated with serum periostin and miRNA-125b levels, but inversely associated with miRNA-26a levels in pediatric asthma cases. A case-control study. J Trace Elem Med Biol 2024; 82:127364. [PMID: 38104433 DOI: 10.1016/j.jtemb.2023.127364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND The study investigated heavy metals levels [urinary cadmium (U-Cd), erythrocytic cadmium (E-Cd), urinary arsenic (U-As), and whole blood lead (WB-Pb)] in children with bronchial asthma (BA) and tested their associations with serum periostin, miRNA-125b and miRNA-26a levels, and with asthma severity clinically and laboratory [blood eosinophils count (BEC) and serum total immunoglobin E (IgE)]. Also, we tested cut-off points, for the studied parameters, to distinguish BA cases from healthy children. METHODS This case-control study included 158 children divided into control group; n = 72 and BA group; n = 86. Heavy metals were measured by an inductively coupled plasma-optical emission spectrophotometer. Serum periostin and IgE levels were measured by their corresponding ELISA kits. miRNAs relative expressions were estimated by RT-qPCR using the 2-ΔΔCT method. RESULTS Heavy metals, serum periostin, and miR-125b levels were significantly high in BA group (p < 0.001). Heavy metals levels correlated positively with serum periostin, miR-125b and IgE levels, BEC, and asthma severity. The reverse was observed regarding serum miR-26a levels. Receiver operating characteristics (ROC) curve analysis showed good to excellent abilities of U-Cd, E-Cd, U-As, WB-Pb, serum periostin, miRNA-125b, and miRNA - 26a, and total IgE levels to distinguish BA cases from healthy children. CONCLUSIONS Heavy metal toxicity in children is associated with BA severity, increased serum periostin and miRNA-125b levels, and decreased miRNA-26a levels. Specific measures to reduce children's exposure to heavy metals should be taken. Future research should consider blocking miRNA-125b action or enhancing miRNA-26a action to manage BA cases.
Collapse
Affiliation(s)
- Khalid M Mohany
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Yasser Gamal
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Yaser F Abdel Raheem
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
3
|
Boateng E, Kovacevic D, Oldenburg V, Rådinger M, Krauss-Etschmann S. Role of airway epithelial cell miRNAs in asthma. FRONTIERS IN ALLERGY 2022; 3:962693. [PMID: 36203653 PMCID: PMC9530201 DOI: 10.3389/falgy.2022.962693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/01/2022] [Indexed: 12/07/2022] Open
Abstract
The airway epithelial cells and overlying layer of mucus are the first point of contact for particles entering the lung. The severity of environmental contributions to pulmonary disease initiation, progression, and exacerbation is largely determined by engagement with the airway epithelium. Despite the cellular cross-talk and cargo exchange in the microenvironment, epithelial cells produce miRNAs associated with the regulation of airway features in asthma. In line with this, there is evidence indicating miRNA alterations related to their multifunctional regulation of asthma features in the conducting airways. In this review, we discuss the cellular components and functions of the airway epithelium in asthma, miRNAs derived from epithelial cells in disease pathogenesis, and the cellular exchange of miRNA-bearing cargo in the airways.
Collapse
Affiliation(s)
- Eistine Boateng
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Correspondence: Eistine Boateng
| | - Draginja Kovacevic
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Vladimira Oldenburg
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
4
|
Kyyaly MA, Vorobeva EV, Kothalawala DM, Fong WCG, He P, Sones CL, Al-Zahrani M, Sanchez-Elsner T, Arshad SH, Kurukulaaratchy RJ. MicroRNAs: A Promising Tool for Asthma Diagnosis and Severity Assessment. A Systematic Review. J Pers Med 2022; 12:jpm12040543. [PMID: 35455659 PMCID: PMC9030707 DOI: 10.3390/jpm12040543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Micro RNAs (miRNAs) are short, non-coding RNAs (Ribonucleic acids) with regulatory functions that could prove useful as biomarkers for asthma diagnosis and asthma severity-risk stratification. The objective of this systematic review is to identify panels of miRNAs that can be used to support asthma diagnosis and severity-risk assessment. Three databases (Medline, Embase, and SCOPUS) were searched up to 15 September 2020 to identify studies reporting differential expression of specific miRNAs in the tissues of adults and children with asthma. Studies reporting miRNAs associations in animal models that were also studied in humans were included in this review. We identified 75 studies that met our search criteria. Of these, 66 studies reported more than 200 miRNAs that are differentially expressed in asthma patients when compared to non-asthmatic controls. In addition, 16 studies reported 17 miRNAs that are differentially expressed with differences in asthma severity. We were able to construct two panels of miRNAs that are expressed in blood and can serve as core panels to further investigate the practicality and efficiency of using miRNAs as non-invasive biomarkers for asthma diagnosis and severity-risk assessment, respectively.
Collapse
Affiliation(s)
- Mohammed Aref Kyyaly
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.A.K.); (E.V.V.); (W.C.G.F.); (M.A.-Z.); (T.S.-E.); (S.H.A.)
- The David Hide Asthma and Allergy Research Centre, Isle of Wight PO30 5TG, UK
- Biomedical Science, Faculty of Sport, Health and Social Sciences, Solent University Southampton, Southampton SO14 0YN, UK
| | - Elena Vladimirovna Vorobeva
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.A.K.); (E.V.V.); (W.C.G.F.); (M.A.-Z.); (T.S.-E.); (S.H.A.)
| | - Dilini M. Kothalawala
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton, Southampton SO16 6YD, UK;
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Wei Chern Gavin Fong
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.A.K.); (E.V.V.); (W.C.G.F.); (M.A.-Z.); (T.S.-E.); (S.H.A.)
- The David Hide Asthma and Allergy Research Centre, Isle of Wight PO30 5TG, UK
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton, Southampton SO16 6YD, UK;
| | - Peijun He
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK; (P.H.); (C.L.S.)
| | - Collin L. Sones
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK; (P.H.); (C.L.S.)
| | - Mohammad Al-Zahrani
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.A.K.); (E.V.V.); (W.C.G.F.); (M.A.-Z.); (T.S.-E.); (S.H.A.)
- Faculty of Applied Medical Sciences, Al-Baha University, Al Baha 65731, Saudi Arabia
| | - Tilman Sanchez-Elsner
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.A.K.); (E.V.V.); (W.C.G.F.); (M.A.-Z.); (T.S.-E.); (S.H.A.)
- The David Hide Asthma and Allergy Research Centre, Isle of Wight PO30 5TG, UK
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.A.K.); (E.V.V.); (W.C.G.F.); (M.A.-Z.); (T.S.-E.); (S.H.A.)
- The David Hide Asthma and Allergy Research Centre, Isle of Wight PO30 5TG, UK
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton, Southampton SO16 6YD, UK;
| | - Ramesh J. Kurukulaaratchy
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.A.K.); (E.V.V.); (W.C.G.F.); (M.A.-Z.); (T.S.-E.); (S.H.A.)
- The David Hide Asthma and Allergy Research Centre, Isle of Wight PO30 5TG, UK
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton, Southampton SO16 6YD, UK;
- Correspondence: ; Tel.: +44-023-8120-5232
| |
Collapse
|
5
|
Role of microRNAs in the Pathophysiology of Ulcerative Colitis. IMMUNO 2021. [DOI: 10.3390/immuno1040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ulcerative colitis (UC) is an intractable disorder characterized by a chronic inflammation of the colon. Studies have identified UC as a multifactorial disorder affected by both genetic and environmental factors; however, the precise mechanism remains unclear. Recent advances in the field of microRNA (miRNA) research have identified an association between this small non-coding RNA in the pathophysiology of UC and altered miRNA expression profiles in patients with UC. Nevertheless, the roles of individual miRNAs are uncertain due to heterogeneity in both research samples and clinical backgrounds. In this review, we focus on miRNA expression in colonic mucosa where inflammation occurs in UC and discuss the potential roles of individual miRNAs in disease development, outlining the pathophysiology of UC.
Collapse
|
6
|
The Impact of MicroRNAs during Inflammatory Bowel Disease: Effects on the Mucus Layer and Intercellular Junctions for Gut Permeability. Cells 2021; 10:cells10123358. [PMID: 34943865 PMCID: PMC8699384 DOI: 10.3390/cells10123358] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Research on inflammatory bowel disease (IBD) has produced mounting evidence for the modulation of microRNAs (miRNAs) during pathogenesis. MiRNAs are small, non-coding RNAs that interfere with the translation of mRNAs. Their high stability in free circulation at various regions of the body allows researchers to utilise miRNAs as biomarkers and as a focus for potential treatments of IBD. Yet, their distinct regulatory roles at the gut epithelial barrier remain elusive due to the fact that there are several external and cellular factors contributing to gut permeability. This review focuses on how miRNAs may compromise two components of the gut epithelium that together form the initial physical barrier: the mucus layer and the intercellular epithelial junctions. Here, we summarise the impact of miRNAs on goblet cell secretion and mucin structure, along with the proper function of various junctional proteins involved in paracellular transport, cell adhesion and communication. Knowledge of how this elaborate network of cells at the gut epithelial barrier becomes compromised as a result of dysregulated miRNA expression, thereby contributing to the development of IBD, will support the generation of miRNA-associated biomarker panels and therapeutic strategies that detect and ameliorate gut permeability.
Collapse
|
7
|
Johansson K, Woodruff PG, Ansel KM. Regulation of airway immunity by epithelial miRNAs. Immunol Rev 2021; 304:141-153. [PMID: 34549450 PMCID: PMC9135676 DOI: 10.1111/imr.13028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
The airway epithelium is essential to protect the host from inhaled pathogens and particles. It maintains immune homeostasis and mediates tissue repair after injury. Inflammatory diseases of the airways are associated with failure of epithelial functions, including loss of barrier integrity that results in increased tissue permeability and immune activation; excessive mucus secretion and impaired mucociliary clearance that leads to airflow obstruction and microbial overgrowth; and dysregulation of cellular signals that promotes inflammation and alters tissue structure and airway reactivity. MicroRNAs play crucial roles in mounting appropriate cellular responses to environmental stimuli and preventing disease, using a common machinery and mechanism to regulate gene expression in epithelial cells, immune cells of hematopoietic origin, and other cellular components of the airways. Respiratory diseases are accompanied by dramatic changes in epithelial miRNA expression that drive persistent immune dysregulation. In this review, we discuss responses of the epithelium that promote airway immunopathology, with a focus on miRNAs that contribute to the breakdown of essential epithelial functions. We emphasize the emerging role of miRNAs in regulation of epithelial responses in respiratory health and their value as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Kristina Johansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
- Sandler Asthma Basic Research Center, University of California, San Francisco, California, USA
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of California, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Prescott G. Woodruff
- Sandler Asthma Basic Research Center, University of California, San Francisco, California, USA
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of California, San Francisco, California, USA
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - K. Mark Ansel
- Sandler Asthma Basic Research Center, University of California, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| |
Collapse
|
8
|
Roffel MP, Boudewijn IM, van Nijnatten JLL, Faiz A, Vermeulen CJ, van Oosterhout AJ, Affleck K, Timens W, Bracke KR, Maes T, Heijink IH, Brandsma CA, van den Berge M. Identification of asthma associated microRNAs in bronchial biopsies. Eur Respir J 2021; 59:13993003.01294-2021. [PMID: 34446467 DOI: 10.1183/13993003.01294-2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/30/2021] [Indexed: 11/05/2022]
Abstract
Changes in microRNA (miRNA) expression can contribute to the pathogenesis of many diseases, including asthma. We aimed to identify miRNAs that are differentially expressed between asthma patients and healthy controls and explored their association with clinical and inflammatory parameters of asthma.Differentially expressed miRNAs were determined by small RNA sequencing on bronchial biopsies of 79 asthma patients and 82 healthy controls using linear regression models. Differentially expressed miRNAs were associated with clinical and inflammatory asthma features. Potential miRNA-mRNA interactions were analysed using mRNA data available from the same bronchial biopsies and enrichment of pathways was identified with Enrichr and g:Profiler.In total 78 differentially expressed miRNAs were identified in bronchial biopsies of asthma patients compared to controls, of which 60 remained differentially expressed after controlling for smoke and inhaled corticosteroid treatment. We identified several asthma associated miRNAs, including miR-125b-5p and miR-223-3p, based on a significant association with multiple clinical and inflammatory asthma features and their negative correlation with genes associated with the presence of asthma. The most enriched biological pathway(s) affected by miR-125b-5p and miR-223-3p were inflammatory response and cilium assembly and organisation. Of interest, we identified that lower expression of miR-26a-5p was linked to more severe eosinophilic inflammation as measured in blood, sputum as well as bronchial biopsies. Collectively, we identified miR-125b-5p, miR-223-3p and miR-26a-5p, as potential regulators that could contribute to the pathogenesis of asthma.
Collapse
Affiliation(s)
- Mirjam P Roffel
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Department of Respiratory Medicine, Ghent University, University Hospital Ghent, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent, Belgium
| | - Ilse M Boudewijn
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jos L L van Nijnatten
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Faculty of Science, Respiratory Bioinformatics and Molecular Biology (RBMB), University of Technology Sydney, Sydney, Australia
| | - Alen Faiz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Faculty of Science, Respiratory Bioinformatics and Molecular Biology (RBMB), University of Technology Sydney, Sydney, Australia
| | - Corneel J Vermeulen
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Antoon J van Oosterhout
- Allergic Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Karen Affleck
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Ken R Bracke
- Department of Respiratory Medicine, Ghent University, University Hospital Ghent, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent, Belgium
| | - Tania Maes
- Department of Respiratory Medicine, Ghent University, University Hospital Ghent, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent, Belgium
| | - Irene H Heijink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Both senior authors contributed equally
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands .,Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Both senior authors contributed equally
| |
Collapse
|
9
|
Lin YH, Zhu LY, Yang YQ, Zhang ZH, Chen QG, Sun YP, Bi JJ, Luo XM, Ni ZH, Wang XB. Resveratrol inhibits MUC5AC expression by regulating SPDEF in lung cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 89:153601. [PMID: 34139546 DOI: 10.1016/j.phymed.2021.153601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/30/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND MUC5AC was recently identified to play important roles in the proliferation and metastasis of malignant mucinous lung tumor cells. Resveratrol (Res), a natural compound with anticancer effects in lung cancer cells, has been reported to inhibit mucin production in airway epithelial cells. This study aimed to investigate the inhibitory effect of Res on MUC5AC expression in lung mucinous adenocarcinoma cells and the potential mechanisms. METHODS Mucus-producing A549 human lung carcinoma cells were used to test the effects of Res on SPDEF and MUC5AC expression. Gene and protein expression was assessed by real-time quantitative PCR (qPCR), immunofluorescence and western blotting assays. SPDEF lentivirus was used to upregulate SPDEF expression levels in mucus-producing A549 human lung carcinoma cells. Cell proliferation was assessed by Cell Counting Kit-8 (CCK-8) assay. RESULTS Res decreased MUC5AC expression in an SPDEF-dependent manner in mucus-producing A549 human lung carcinoma cells, and this change was accompanied by decreased ERK expression and AKT pathway activation. Moreover, SPDEF was found to be overexpressed in lung adenocarcinoma (LUAD), especially in mucinous adenocarcinoma. In-vitro functional assays showed that overexpression of SPDEF reduced the chemosensitivity of A549 cells to cisplatin (DDP). In addition, Res treatment increased A549 cell chemosensitivity to DDP by inhibiting the SPDEF-MUC5AC axis. CONCLUSION Our results indicate that the SPDEF-MUC5AC axis is associated with DDP sensitivity, and that Res decreases SPDEF and MUC5AC expression by inhibiting ERK and AKT signaling in A549 cells, which provides a potential pharmacotherapy for the prevention and therapeutic management of mucinous adenocarcinoma.
Collapse
Affiliation(s)
- Yu-Hua Lin
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lin-Yun Zhu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yan-Qin Yang
- Department of Pathology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zhu-Hua Zhang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qing-Ge Chen
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yi-Peng Sun
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Jun-Jie Bi
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xu-Ming Luo
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zhen-Hua Ni
- Central lab, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Xiong-Biao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
10
|
Cañas JA, Rodrigo-Muñoz JM, Gil-Martínez M, Sastre B, del Pozo V. Exosomes: A Key Piece in Asthmatic Inflammation. Int J Mol Sci 2021; 22:963. [PMID: 33478047 PMCID: PMC7835850 DOI: 10.3390/ijms22020963] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Asthma is a chronic disease of the airways that has an important inflammatory component. Multiple cells are implicated in asthma pathogenesis (lymphocytes, eosinophils, mast cells, basophils, neutrophils), releasing a wide variety of cytokines. These cells can exert their inflammatory functions throughout extracellular vesicles (EVs), which are small vesicles released by donor cells into the extracellular microenvironment that can be taken up by recipient cells. Depending on their size, EVs can be classified as microvesicles, exosomes, or apoptotic bodies. EVs are heterogeneous spherical structures secreted by almost all cell types. One of their main functions is to act as transporters of a wide range of molecules, such as proteins, lipids, and microRNAs (miRNAs), which are single-stranded RNAs of approximately 22 nucleotides in length. Therefore, exosomes could influence several physiological and pathological processes, including those involved in asthma. They can be detected in multiple cell types and biofluids, providing a wealth of information about the processes that take account in a pathological scenario. This review thus summarizes the most recent insights concerning the role of exosomes from different sources (several cell populations and biofluids) in one of the most prevalent respiratory diseases, asthma.
Collapse
Affiliation(s)
- José A. Cañas
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Marta Gil-Martínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
| | - Beatriz Sastre
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
11
|
Chen Y, Zhang C, Xiao CX, Li XD, Hu ZL, He SD, Xiao XJ, Xu F. Dexamethasone can attenuate the pulmonary inflammatory response via regulation of the lncH19/miR-324-3p cascade. JOURNAL OF INFLAMMATION-LONDON 2021; 18:1. [PMID: 33413425 PMCID: PMC7789598 DOI: 10.1186/s12950-020-00266-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022]
Abstract
Objective To investigate lncRNAs and their roles in regulating the pulmonary inflammatory response under dexamethasone (Dex) treatment. Methods IL-1β (10 ng/mL) and LPS (1 μg/mL) was used to construct inflammatory cell models with A549 cells; IL-1β performed better against LPS. Different concentrations of Dex were used to attenuate the inflammation induced by IL-1β, and its effect was assessed via RT-PCR to detect inflammatory cytokine-related mRNA levels, including those of IKβ-α, IKKβ, IL-6, IL-8, and TNF-α. Furthermore, ELISA was used to detect the levels of the inflammatory cytokines TNF-α, IL-6, and IL-8. RT-PCR was used to quantify the levels of lncRNAs, including lncMALAT1, lncHotair, lncH19, and lncNeat1. LncH19 was most closely associated with the inflammatory response, which was induced by IL-1β and attenuated by Dex. Among the lncRNAs, the level of lncH19 showed the highest increase following treatment with 1 and 10 μM Dex. Therefore, lncH19 was selected for further functional studies. LncH19 expression was inhibited by shRNA transduced with lentivirus. Cell assays for cell proliferation and apoptosis as well as RT-PCR, western blot, and ELISA for inflammatory genes were conducted to confirm the functions of lncH19. The predicted target miRNAs of lncH19 were hsa-miR-346, hsa-miR-324-3p, hsa-miR-18a-3p, hsa-miR-18b-5p, hsa-miR-146b-3p, hsa-miR-19b-3p, and hsa-miR-19a-3p. Following estimation via RT-PCR, hsa-miR-346, hsa-miR-18a-3p, and hsa-miR-324-3p showed consistent patterns in A549 NC and A549 shlncH19. An miRNA inhibitor was transfected into A549 NC and A549 shlncH19 cells, and the expression levels were determined via RT-PCR. hsa-miR-324-3p was inhibited the most compared with hsa-miR-346 and hsa-miR-18a-3p and was subjected to further functional studies. RT-PCR, ELISA, and western blotting for inflammatory gene detection were conducted to validate the functions of the target hsa-miR-324-3p. Results Treatment with 1 and 10 μM Dex could effectively attenuate the inflammatory response. During this process, lncH19 expression significantly increased (P < 0.05). Therefore, treatment with 1 μM Dex was used for further study. Under IL-1β treatment with or without Dex, lncH19 inhibition led to an increase in cell proliferation; a decrease in cell apoptosis; an increase in the protein levels of inflammatory genes; phosphorylation of P65, ICAM-1, and VCAM-1; and increase inflammatory cytokines. Prediction of the targets of lncH19 and validation via RT-PCR revealed that miR-346, miR-18a-3p, and miR-324-3p negatively correlate with lncH19. Additionally, Dex increased the lncH19 expression but reduced that of the miRNAs. Among the miRNAs, miR-324-3p was the most markedly downregulated miRNA following treatment of miRNA inhibitors. The MTS assay and cell apoptosis assay showed that the miR-324-3p inhibitor inhibited cell proliferation and induced cell apoptosis, thereby significantly attenuating the inflammatory response, which reversed the effect of lncH19 in regulating cell proliferation and the secretion of inflammatory cytokines (P < 0.05). Therefore, lncH19 might regulate miR-324-3p in pulmonary inflammatory response under Dex treatment. Conclusion Dex can attenuate the pulmonary inflammatory response by regulating the lncH19/miR-324-3p cascade.
Collapse
Affiliation(s)
- Ye Chen
- Department of Pediatric, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Chao Zhang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan two road Yuzhong district, Chongqing, 400013, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400013, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400013, China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400013, China.,Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400013, China
| | - Chang-Xue Xiao
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan two road Yuzhong district, Chongqing, 400013, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400013, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400013, China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400013, China.,Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400013, China
| | - Xiao-Dong Li
- Department of Neonatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Zhi-Li Hu
- Department of Pediatric, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Shou-di He
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Xiao-Jun Xiao
- Department of Medicine, Research Center of Allergy & Immunology, Shenzhen University, Shenzhen, 518055, China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan two road Yuzhong district, Chongqing, 400013, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400013, China. .,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400013, China. .,China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400013, China. .,Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400013, China.
| |
Collapse
|
12
|
Xu L, Yi M, Tan Y, Yi Z, Zhang Y. A comprehensive analysis of microRNAs as diagnostic biomarkers for asthma. Ther Adv Respir Dis 2020; 14:1753466620981863. [PMID: 33357010 PMCID: PMC7768876 DOI: 10.1177/1753466620981863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: It is unclear whether microRNAs could be a potential diagnostic biomarker for asthma or not. The objective of this study is to figure out the diagnostic value of microRNAs in asthma. Methods: Literature retrieval, screening of publications, specific data extraction, and quality evaluation were conducted according to the standard criteria. Stata 14.0 software was used to analyze the diagnostic value of microRNA for asthma, including the combined sensitivity (Sen), specificity (Spe), the area under the curve (AUC), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR). Results: A total of 72 studies, containing 4143 cases and 2188 controls, were included for this comprehensive analysis. None of the included publications were rated low in quality. We summarized that, compared with controls, more than 100 miRNAs were reported differently expressed in asthma, although the expression trends were inconsistent. Besides, there were five studies among these 72 articles that applied the diagnostic evaluation of microRNAs in asthma. We found that the pooled Sen, Spe, and AUC for the combination of miR-185-5p, miR-155, let-7a, miR-21, miR-320a, miR-1246, miR-144-5p, and miR-1165-3p in asthma were 0.87 (95%CI: 0.72–0.95), 0.84 (95%CI: 0.74–0.91), and 0.93 (95%CI: 0.89–0.94) individually, and the PLR, NLR, and DOR were 5.5 (95%CI: 3.1–9.7), 0.15 (95%CI: 0.07–0.36), and 35 (95%CI: 10–127) in asthma, respectively. In terms of subgroup analyses, we found that the Sen for these combination miRNAs from serum was higher than that in plasma, while the Spe in plasma worked better than that in serum. Furthermore, compared with children, the combination of above miRNAs from adults had higher Spe and similar Sen. Conclusions: From our analysis, the combination of miR-185-5p, miR-155, let-7a, miR-21, miR-320a, miR-1246, miR-144-5p, and miR-1165-3p from peripheral blood could potentially act as a diagnostic biomarker for asthma. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Li Xu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,School of Life Sciences, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minhan Yi
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yun Tan
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zixun Yi
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
13
|
Ma Q, Mo G, Tan Y. Micro RNAs and the biological clock: a target for diseases associated with a loss of circadian regulation. Afr Health Sci 2020; 20:1887-1894. [PMID: 34394254 PMCID: PMC8351835 DOI: 10.4314/ahs.v20i4.46] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Circadian clocks are self-sustaining oscillators that coordinate behavior and physiology over a 24 hour period, achieving time-dependent homeostasis with the external environment. The molecular clocks driving circadian rhythmic changes are based on intertwined transcriptional/translational feedback loops that combine with a range of environmental and metabolic stimuli to generate daily internal programing. Understanding how biological rhythms are generated throughout the body and the reasons for their dysregulation can provide avenues for temporally directed therapeutics. Summary In recent years, microRNAs have been shown to play important roles in the regulation of the circadian clock, particularly in Drosophila, but also in some small animal and human studies. This review will summarize our current understanding of the role of miRNAs during clock regulation, with a particular focus on the control of clock regulated gene expression.
Collapse
Affiliation(s)
- Qianwen Ma
- Gynecology department, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine (Zhenjiang Hospital of Traditional Chinese Medicine), Zhenjiang, China
- Reproductive medicine department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Genlin Mo
- Advanced manufacturing institution, Jiangsu University, Zhenjiang, China
| | - Yong Tan
- Reproductive medicine department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Chen S, Yao Y, Lu S, Chen J, Yang G, Tu L, Chen L. CircRNA0001859, a new diagnostic and prognostic biomarkers for COPD and AECOPD. BMC Pulm Med 2020; 20:311. [PMID: 33239003 PMCID: PMC7688204 DOI: 10.1186/s12890-020-01333-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background Dysregulation of circRNAs has been reported to be functionally associated with chronic obstructive pulmonary disease (COPD). The present investigation elucidated the potential role of CircRNA0001859 in regulating chronic obstructive pulmonary disease acute (COPD) and Acute Exacerbation of COPD (AECOPD). Methods Mice model of COPD was established to screen and verify the dysregulated expression of CircRNA0001859. Fluorescence in situ hybridization (FISH) and quantitative real-time PCR (qRT-PCR) were carried out to detect the expression of CircRNA0001859. 38 stable COPD patients, 24 AECOPD patients, 57 COPD with lung cancer patients and 28 healthy person with age and sex matched to total patients were used for the present investigation. Results circRNA0001859 was downregulated in the lung tissue of mice after the three kinds of treatments (Cigarette smoke (CS)/NK alone or CS + NNK) for inducing COPD. FISH assay verified the downregulation of circRNA0001859 both in the mice lung and human bronchial epithelial cell of COPD model. Furthermore,, the level of circRNA0001859 was also downregulated in the peripheral blood of COPD and lung cancer patients. CircRNA0001859 might act as a diagnostic and prognostic biomarker for the treatment of in COPD and AECOPD with Are under the receiver operating characteristic curve (ROC curve) (AUC) of 0.7433 and 0.8717, respectively. Conclusion We explored a novel circRNA0001859, which might act as a potential therapeutic biomarker for the treatment of COPD and AECOPD.
Collapse
Affiliation(s)
- Shuifang Chen
- The First Affiliated Hospital, College of Medicine, Zhejiang University, NO.79, Qingchun Road, Hangzhou, 310003, China.
| | - Yinan Yao
- The First Affiliated Hospital, College of Medicine, Zhejiang University, NO.79, Qingchun Road, Hangzhou, 310003, China
| | - Shan Lu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, NO.79, Qingchun Road, Hangzhou, 310003, China
| | - Junjun Chen
- The First Affiliated Hospital, College of Medicine, Zhejiang University, NO.79, Qingchun Road, Hangzhou, 310003, China
| | - Guangdie Yang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, NO.79, Qingchun Road, Hangzhou, 310003, China
| | - Lingfang Tu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, NO.79, Qingchun Road, Hangzhou, 310003, China
| | - Lina Chen
- The First Affiliated Hospital, College of Medicine, Zhejiang University, NO.79, Qingchun Road, Hangzhou, 310003, China
| |
Collapse
|
15
|
Heijink IH, Kuchibhotla VNS, Roffel MP, Maes T, Knight DA, Sayers I, Nawijn MC. Epithelial cell dysfunction, a major driver of asthma development. Allergy 2020; 75:1902-1917. [PMID: 32460363 PMCID: PMC7496351 DOI: 10.1111/all.14421] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
Airway epithelial barrier dysfunction is frequently observed in asthma and may have important implications. The physical barrier function of the airway epithelium is tightly interwoven with its immunomodulatory actions, while abnormal epithelial repair responses may contribute to remodelling of the airway wall. We propose that abnormalities in the airway epithelial barrier play a crucial role in the sensitization to allergens and pathogenesis of asthma. Many of the identified susceptibility genes for asthma are expressed in the airway epithelium, supporting the notion that events at the airway epithelial surface are critical for the development of the disease. However, the exact mechanisms by which the expression of epithelial susceptibility genes translates into a functionally altered response to environmental risk factors of asthma are still unknown. Interactions between genetic factors and epigenetic regulatory mechanisms may be crucial for asthma susceptibility. Understanding these mechanisms may lead to identification of novel targets for asthma intervention by targeting the airway epithelium. Moreover, exciting new insights have come from recent studies using single‐cell RNA sequencing (scRNA‐Seq) to study the airway epithelium in asthma. This review focuses on the role of airway epithelial barrier function in the susceptibility to develop asthma and novel insights in the modulation of epithelial cell dysfunction in asthma.
Collapse
Affiliation(s)
- Irene H. Heijink
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
- Department of Pulmonology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Virinchi N. S. Kuchibhotla
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
- School of Biomedical Sciences and Pharmacy University of Newcastle Callaghan NSW Australia
| | - Mirjam P. Roffel
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent University Ghent Belgium
| | - Tania Maes
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent University Ghent Belgium
| | - Darryl A. Knight
- School of Biomedical Sciences and Pharmacy University of Newcastle Callaghan NSW Australia
- UBC Providence Health Care Research Institute Vancouver BC Canada
- Department of Anesthesiology, Pharmacology and Therapeutics University of British Columbia Vancouver BC Canada
| | - Ian Sayers
- Division of Respiratory Medicine National Institute for Health Research Nottingham Biomedical Research Centre University of Nottingham Biodiscovery Institute University of Nottingham Nottingham UK
| | - Martijn C. Nawijn
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
| |
Collapse
|
16
|
Tan BWQ, Sim WL, Cheong JK, Kuan WS, Tran T, Lim HF. MicroRNAs in chronic airway diseases: Clinical correlation and translational applications. Pharmacol Res 2020; 160:105045. [PMID: 32590100 DOI: 10.1016/j.phrs.2020.105045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are short single-stranded RNAs that have pivotal roles in disease pathophysiology through transcriptional and translational modulation of important genes. It has been implicated in the development of many diseases, such as stroke, cardiovascular conditions, cancers and inflammatory airway diseases. There is recent evidence that miRNAs play important roles in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD), and could help to distinguish between T2-low (non-eosinophilic, steroid-insensitive) versus T2-high (eosinophilic, steroid-sensitive) disease endotypes. As these are the two most prevalent chronic respiratory diseases globally, with rising disease burden, miRNA research might lead to the development of new diagnostic and therapeutic targets. Research involving miRNAs in airway disease is challenging because: (i) asthma and COPD are heterogeneous inflammatory airway diseases; there are overlapping but distinct inter- and intra-disease differences in the immunological pathophysiology, (ii) there exists more than 2000 known miRNAs and a single miRNA can regulate multiple targets, (iii) differential effects of miRNAs could be present in different cellular subtypes and tissues, and (iv) dysregulated miRNA expression might be a direct consequence of an indirect effect of airway disease onset or progression. As miRNAs are actively secreted in fluids and remain relatively stable, they have the potential for biomarker development and therapeutic targets. In this review, we summarize the preclinical data on potential miRNA biomarkers that mediate different pathophysiological mechanisms in airway disease. We discuss the framework for biomarker development using miRNA and highlight the need for careful patient characterization and endotyping in the screening and validation cohorts, profiling both airway and blood samples to determine the biological fluids of choice in different disease states or severity, and adopting an untargeted approach. Collaboration between the various stakeholders - pharmaceutical companies, laboratory professionals and clinician-scientists is crucial to reduce the difficulties and cost required to bring miRNA research into the translational stage for airway diseases.
Collapse
Affiliation(s)
- Bryce W Q Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Liang Sim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jit Kong Cheong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Win Sen Kuan
- Department of Emergency Medicine, National University Hospital, National University Health System, Singapore
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hui Fang Lim
- Division of Respiratory & Critical Care Medicine, Department of Medicine, National University Hospital, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
17
|
Xu Z, Sun H, Zhang Z, Zhang CY, Zhao QB, Xiao Q, Olasege BS, Ma PP, Zhang XZ, Wang QS, Pan YC. Selection signature reveals genes associated with susceptibility loci affecting respiratory disease due to pleiotropic and hitchhiking effect in Chinese indigenous pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:187-196. [PMID: 30744329 PMCID: PMC6946968 DOI: 10.5713/ajas.18.0658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/20/2018] [Accepted: 09/03/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Porcine respiratory disease is one of the most important health problems which causes significant economic losses. OBJECTIVE To understand the genetic basis for susceptibility to swine enzootic pneumonia (EP) in pigs, we detected 102,809 SNPs in a total of 249 individuals based on genome-wide sequencing data. METHODS Genome comparison of three susceptibility to swine EP pig breeds (Jinhua, Erhualian and Meishan) with two western lines that are considered more resistant (Duroc and Landrace) using XP-EHH and FST statistical approaches identified 691 positively selected genes. Based on QTLs, GO terms and literature search, we selected 14 candidate genes that have convincible biological functions associated with swine EP or human asthma. RESULTS Most of these genes were tested by several methods including transcription analysis and candidated genes association study. Among these genes: CYP1A1 and CTNNB1 are involved in fertility; TGFBR3 plays a role in meat quality traits; WNT2, CTNNB1 and TCF7 take part in adipogenesis and fat deposition simultaneously; PLAUR (completely linked to AXL, r2=1) plays an essential role in the successful ovulation of matured oocytes in pigs; CLPSL2 (strongly linked to SPDEF, r2=0.848) is involved in male fertility. CONCLUSION These adverse genes susceptible to swine EP may be selected while selecting for economic traits (especially reproduction traits) due to pleiotropic and hitchhiking effect of linked genes. Our study provided a completely new point of view to understand the genetic basis for susceptibility or resistance to swine EP in pigs thereby, provide insight for designing sustainable breed selection programs. Finally, the candidate genes are crucial due to their potential roles in respiratory diseases in a large number of species, including human.
Collapse
Affiliation(s)
- Zhong Xu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Hao Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Zhe Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Cheng-Yue Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Qing-bo Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Qian Xiao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Babatunde Shittu Olasege
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Pei-Pei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Xiang-Zhe Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Qi-Shan Wang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Yu-Chun Pan
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
- Shanghai Key Laboratory of Veterinary Bio-technology, Shanghai 200240,
China
| |
Collapse
|
18
|
Ding S, Liu G, Jiang H, Fang J. MicroRNA Determines the Fate of Intestinal Epithelial Cell Differentiation and Regulates Intestinal Diseases. Curr Protein Pept Sci 2019; 20:666-673. [PMID: 30678626 DOI: 10.2174/1389203720666190125110626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
The rapid self-renewal of intestinal epithelial cells enhances intestinal function, promotes the nutritional needs of animals and strengthens intestinal barrier function to resist the invasion of foreign pathogens. MicroRNAs (miRNAs) are a class of short-chain, non-coding RNAs that regulate stem cell proliferation and differentiation by down-regulating hundreds of conserved target genes after transcription via seed pairing to the 3' untranslated regions. Numerous studies have shown that miRNAs can improve intestinal function by participating in the proliferation and differentiation of different cell populations in the intestine. In addition, miRNAs also contribute to disease regulation and therefore not only play a vital role in the gastrointestinal disease management but also act as blood or tissue biomarkers of disease. As changes to the levels of miRNAs can change cell fates, miRNA-mediated gene regulation can be used to update therapeutic strategies and approaches to disease treatment.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China.,Academician Workstation of Hunan Baodong Farming Co., Ltd., Hunan 422001, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
19
|
Hoefel G, Tay H, Foster P. MicroRNAs in Lung Diseases. Chest 2019; 156:991-1000. [DOI: 10.1016/j.chest.2019.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022] Open
|
20
|
miR-125 regulates PI3K/Akt/mTOR signaling pathway in rheumatoid arthritis rats via PARP2. Biosci Rep 2019; 39:BSR20180890. [PMID: 30541899 PMCID: PMC6328865 DOI: 10.1042/bsr20180890] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/29/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to explore miR-125 effects on rheumatoid arthritis (RA) development to provide a potential target for RA. Briefly, rat RA model was established (Model group) by injection of Freund’s Complete Adjuvant into the left hind toe. Normal rats injected with saline in the same location were set as Normal group. All rats’ secondary foot swelling degree, polyarthritis index score, spleen and thymus index were measured. Synovial tissues were subjected to Hematoxylin–Eosin (HE) staining and immunohistochemistry. Synovial cells of each group were isolated and named as Normal-C group and Model-C group, respectively. Synovial cells of Model-C group further underwent cotransfection with miR-125 mimics and PARP2-siRNA (mimics+siPARP2 group) or with miR-125 negative control (NC) and PARP2-siRNA NC (NC group). Quantitative reverse transcriptase PCR (qRT-PCR), Western blot, luciferase reporter assay, ELISA, and MTT assay were performed. As a result, compared with Normal group, rats of Model group showed significantly higher secondary foot swelling degree, polyarthritis index score, spleen and thymus index (P<0.01). Down-regulated miR-125 and up-regulated PARP2 was found in synovial tissues of Model group when compared with Normal group (P<0.01). Synovial tissues of Model-C group exhibited severe hyperplasia and inflammatory cell infiltration. Luciferase reporter assay indicated that PARP2 was directly inhibited by miR-125. Compared with NC group, cells of mimics+siPARP2 group had significantly lower IL-1β, MMP-1 and TIMP-1 levels, absorbance value, and p-PI3K, p-Akt and p-mTOR relative expression (P<0.01 or P<0.05). Thus, miR-125 might attenuate RA development by regulating PI3K/Akt/mTOR signaling pathway via directly inhibiting PARP2 expression.
Collapse
|
21
|
Jin R, Hu S, Liu X, Guan R, Lu L, Lin R. Intranasal instillation of miR‑410 targeting IL‑4/IL‑13 attenuates airway inflammation in OVA‑induced asthmatic mice. Mol Med Rep 2018; 19:895-900. [PMID: 30535486 PMCID: PMC6323201 DOI: 10.3892/mmr.2018.9703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022] Open
Abstract
Asthma is a common chronic inflammatory respiratory disease characterised by airway inflammation and hyperresponsiveness. The present study was designed to clarify the effect of intranasal miR-410 administration in an ovalbumin (OVA)-induced murine model of asthma. It was found that miR-410 expression was significantly decreased in the lungs of OVA-induced asthmatic mice (P<0.05) and miR-410 was overexpressed via intranasal instillation. Bioinformatics indicated that the 3′-untranslated regions of interleukin (IL)-4 and IL-13 messenger RNAs (mRNAs) contain miR-410 binding sites. The IL-4 and IL-13 genes were confirmed to be miR-410-regulated using the dual-luciferase reporter assay. Additionally, intranasal administration of miR-410 markedly attenuated airway inflammation and reduced infiltration of inflammatory cells into bronchoalveolar lavage fluid (P<0.05) as determined by bronchoalveolar lavage fluid analysis. Moreover, miR-410 significantly decreased the lung expression of IL-4 and IL-13 (P<0.05), although the levels of mRNAs encoding IL-4 and IL-13 in lungs did not change significantly as determined by real-time PCR analysis. In conclusion, we found that intranasal administration of miR-410 effectively inhibited airway inflammation in OVA-induced asthmatic mice by targeting IL-4 and IL-13 at the post-transcriptional level. miR-410 is thus a promising treatment for allergic asthma.
Collapse
Affiliation(s)
- Rong Jin
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Sujuan Hu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiaomei Liu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Renzheng Guan
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Ling Lu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Rongjun Lin
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
22
|
Yan YR, Luo Y, Zhong M, Shao L. MiR-216a inhibits proliferation and promotes apoptosis of human airway smooth muscle cells by targeting JAK2. J Asthma 2018; 56:938-946. [PMID: 30299194 DOI: 10.1080/02770903.2018.1509991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective: Accumulating evidence suggests that aberrantly expressed microRNAs in airway smooth muscle (ASM) cells could change airway remodeling during the development of asthma. However, the underlying functions of microRNAs in ASM cell proliferation and apoptosis need to be further elucidated. Methods: By using RT-qPCR, miR-216a expression level was examined in the asthmatic patients and non-asthmatic individuals. Cell proliferation assay and flow cytometry analysis were used in ASM cells in which miR-216a was an abnormal expression. MiR-216a predicted to target gene was explored by bioinformatic software, and further analyzed by Western blotting and luciferase reporter assay. Results: Our results demonstrated that miR-216a levels were considerably lower in the ASM cells of asthmatic patients than in those of non-asthmatic individuals. Further study verified that the overexpression of miR-216a markedly suppressed cell proliferation and promoted cell apoptosis, whereas the knockdown of miR-216a had opposite effects in ASM cells. In addition, luciferase reporter assays and Western blotting identified that JAK2 was the direct functional target of miR-216a, and the ectopic expression of JAK2 partially rescued the inhibitory effect of miR-216a in ASM cells. Conclusions: The above data indicate that miR-216a may function as a key regulator of airway remodeling by targeting JAK2, thus suggesting the potential role of miR-216a in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Ya-Ru Yan
- a Department of Allergy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Yang Luo
- b Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Ming Zhong
- b Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Li Shao
- a Department of Allergy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , P.R. China
| |
Collapse
|
23
|
Fekonja S, Korošec P, Rijavec M, Jeseničnik T, Kunej T. Asthma MicroRNA Regulome Development Using Validated miRNA-Target Interaction Visualization. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:607-615. [PMID: 30124362 DOI: 10.1089/omi.2018.0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Asthma is a common multifactorial complex disease caused by an interaction of genetic and environmental factors. There are no robust biomarkers or molecular diagnostics for asthma or its detailed phenotypic stratification in the clinic. Regulatory and epigenomic factors are priority candidates for asthma biomarker discovery and translational research because this common disease emerges in association with host/environment interactions. In this context, epigenomic molecular events such as microRNA (miRNA) silencing affect asthma susceptibility and severity. We report here an analysis of the miRNAs in the literature, their targets associated with asthma, and present the findings organized as an miRNA-target network, an miRNA regulome of asthma. The miRNA-target interactions in asthma were extracted from the PubMed and the Web of Science databases, while the miRNA-target network was visualized with the Cytoscape tool. Genomic locations of miRNA and target genes were displayed using the Ensembl Whole Genome tool. We cataloged miRNAs associated with asthma and their experimentally validated targets, retrieving 48 miRNAs associated with asthma, and 54 experimentally validated miRNA targets. Four central molecules involved in 34.5% of all interactions were identified in the network. The miRNA-target pairs were constructed as an asthma-associated miRNA-target regulatory network. The network revealed subnetworks pointing toward potential asthma biomarker candidates. The asthma miRNA regulome reported here offers a strong foundation for future translational research and systems medicine applications for asthma diagnostic and therapeutic innovation. Developed protocol for constructing miRNA regulome could now be used for biomarker development in multifactorial diseases.
Collapse
Affiliation(s)
- Simon Fekonja
- 1 Department of Animal Science, Biotechnical Faculty, University of Ljubljana , Domžale, Slovenia
| | - Peter Korošec
- 2 Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnick, Golnik, Slovenia
| | - Matija Rijavec
- 2 Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnick, Golnik, Slovenia
| | - Taja Jeseničnik
- 3 Agronomy Department, Biotechnical Faculty, University of Ljubljana , Jamnikarjeva, Ljubljana, Slovenia
| | - Tanja Kunej
- 1 Department of Animal Science, Biotechnical Faculty, University of Ljubljana , Domžale, Slovenia
| |
Collapse
|
24
|
Reid AT, Veerati PC, Gosens R, Bartlett NW, Wark PA, Grainge CL, Stick SM, Kicic A, Moheimani F, Hansbro PM, Knight DA. Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches. Pharmacol Ther 2017; 185:155-169. [PMID: 29287707 DOI: 10.1016/j.pharmthera.2017.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysregulated induction of goblet cell differentiation results in excessive production and retention of mucus and is a common feature of several chronic airways diseases. To date, therapeutic strategies to reduce mucus accumulation have focused primarily on altering the properties of the mucus itself, or have aimed to limit the production of mucus-stimulating cytokines. Here we review the current knowledge of key molecular pathways that are dysregulated during persistent goblet cell differentiation and highlights both pre-existing and novel therapeutic strategies to combat this pathology.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.
| | - Punnam Chander Veerati
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Peter A Wark
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Chris L Grainge
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Stephen M Stick
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia; Occupation and Environment, School of Public Health, Curtin University, Bentley 6102, Western Australia, Australia
| | - Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
25
|
Qi M, Zhou J, Zhang X, Zhong X, Zhang Y, Zhang X, Deng X, Li H, Wang Q. Effect of Xiaoqinglong decoction on mucus hypersecretion in the airways and cilia function in a murine model of asthma. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2017. [DOI: 10.1016/j.jtcms.2017.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Abstract
杯状细胞(goblet cell, GC)由肠黏膜基底干细胞分化而来, 形似高脚杯, 内含黏液颗粒, 黏液颗粒的组成成分主要为黏蛋白. MUC2是一种重要的拥有特殊网状结构的黏蛋白. GC分泌黏液到肠上皮细胞形成黏液层填补细胞间隙. 黏液层使得GC能在肠黏膜抵御内外源侵袭时发挥重要作用, 尤其是将上皮与肠道菌分离, 从而能维持肠道微生态平衡. 除此之外, GC还能接受和参与免疫调节. 更重要的是GC及其分泌黏蛋白的缺陷与肠道多种疾病密切相关. 总之, GC对肠道健康的作用不容小视.
Collapse
|
27
|
ox-LDL induces endothelial dysfunction by promoting Arp2/3 complex expression. Biochem Biophys Res Commun 2016; 475:182-8. [DOI: 10.1016/j.bbrc.2016.05.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/27/2023]
|