1
|
Li R, Shi G, Liu Y, Lin X, Gao P, Wang F, Zhou L, Li L. Bioactive compounds from Crataegus pinnatifida Bge. leaves: potential health benefits. Org Biomol Chem 2025; 23:920-930. [PMID: 39655889 DOI: 10.1039/d4ob01663g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The leaves of Crataegus pinnatifida Bge., a medicinal plant and a source of brewed tea, are often overlooked as a byproduct of fruit consumption. Despite this, these leaves have demonstrated significant cardiovascular protective and lipid-lowering properties. To further investigate their potential applications, nine novel compounds (1-9) and twelve known flavonoids were isolated from C. pinnatifida leaves. Their structures were elucidated through comprehensive spectroscopic analysis, including experimental and calculated electronic circular dichroism. The antioxidant capacities of these 21 compounds were assessed using DPPH˙ and ABTS˙+ assays. Notably, the newly identified biphenyl compounds 7 and 8 exhibited potent antioxidant activities, surpassing that of vitamin C in both assays. Additionally, the ABTS˙+ assay revealed that flavonoid O-glycosides generally possess stronger antioxidant activity compared to flavonoid C-glycosides. To evaluate their cytoprotective potential, compounds 12-14 and 18-20 were tested against H2O2-induced neurotoxicity in human neuroblastoma SH-SY5Y cells. At 100 μM, these compounds demonstrated significant protective effects. Furthermore, flavonoid C-glycosides exhibited stronger protective activity against alcohol-induced injury in BRL-3A hepatocytes than flavonoid O-glycosides. In conclusion, this study provides compelling evidence that C. pinnatifida leaves contain valuable bioactive compounds with potent antioxidant and cytoprotective properties. These findings further validate the traditional use of this plant and offer promising avenues for future research and potential therapeutic applications.
Collapse
Affiliation(s)
- Rongrong Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, China.
| | - Gaohui Shi
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, China.
| | - Yue Liu
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, China.
| | - Xinxin Lin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning Province, China
| | - Pinyi Gao
- College of Pharmaceutical and Biotechnology Engineering, Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning Province, China
| | - Liqing Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, China.
| | - Lingzhi Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, China.
| |
Collapse
|
2
|
Al-Medhtiy MH, Mohammed MT, M Raouf MMH, Al-Qaaneh AM, Jabbar AAJ, Abdullah FO, Mothana RA, Alanzi AR, Hassan RR, Abdulla MA, Saleh MI, Hasson S. A triterpenoid (corosolic acid) ameliorated AOM-mediated aberrant crypt foci in rats: modulation of Bax/PCNA, antioxidant and inflammatory mechanisms. J Mol Histol 2024; 55:765-783. [PMID: 39122895 DOI: 10.1007/s10735-024-10229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Corosolic acid (CA) is a well-known natural pentacyclic triterpene found in numerous therapeutic plants that can exhibit many bioactivities including anti-inflammatory and anti-tumor actions. The current investigation explores the chemoprotective roles of CA against azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in rats. Thirty Sprague Dawley rats were grouped in 5 cages; Group A, normal control rats inoculated subcutaneously (sc) with two doses of normal saline and fed orally on 10% tween 20; Groups B-E received two doses (sc) of azoxymethane in two weeks and treated with either 10% tween 20 (group B) or two intraperitoneal injections of 35 mg/kg 5-fluorouracil each week for one month (group C), while group D and E treated with 30 and 60 mg/kg, respectively, for 2 months. The toxicity results showed lack of any behavioral abnormalities or mortality in rats ingested with up-to 500 mg/kg of CA. The present AOM induction caused a significant initiation of ACF characterized by an increased number, larger in size, and well-matured tissue clusters in cancer controls. AOM inoculation created a bizarrely elongated nucleus, and strained cells, and significantly lowered the submucosal glands in colon tissues of cancer controls compared to 5-FU or CA-treated rats. CA treatment led to significant suppression of ACF incidence, which could be mediated by its modulatory effects on the immunohistochemical proteins (pro-apoptotic (Bax) and reduced PCNA protein expressions in colon tissues). Moreover, CA-treated rats had improved oxidative stress-mediated cytotoxicity indicated by increased endogenous antioxidants (SOD and CAT) and reduced lipid peroxidation indicators (MDA). In addition, CA ingestion (30 and 60 mg/kg) suppressed the inflammatory cascades, indicated by decreased serum TNF-α and IL-6 cytokines and increased anti-inflammatory (IL-10) cytokines consequently preventing further tumor development. CA treatment maintained liver and kidney functions in rats exposed to AOM cytotoxicity. CA could be a viable alternative for the treatment of oxidative-related human disorders including ACF.
Collapse
Affiliation(s)
- Morteta H Al-Medhtiy
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, University of Kufa, Kufa, Najaf Region, 540011, Iraq
| | - Mohammed T Mohammed
- Department of Microbiology, Faculty of veterinary medicine, University of Kufa, Kufa, Iraq
| | - Mohammed M Hussein M Raouf
- Department of Biomedical Sciences, College of Applied Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt, 19117, Jordan
| | - Ahmed A J Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, 44001, Iraq.
| | - Fuad Othman Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ramzi A Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Rawaz Rizgar Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil, 44001, Iraq
| | - Mahmood Ameen Abdulla
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Musher Ismail Saleh
- Department of Chemistry, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region, Erbil, 44001, Iraq
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| |
Collapse
|
3
|
Wu TK, Hung TW, Chen YS, Pan YR, Hsieh YH, Tsai JP. Corosolic acid inhibits metastatic response of human renal cell carcinoma cells by modulating ERK/MMP2 signaling. ENVIRONMENTAL TOXICOLOGY 2024; 39:857-868. [PMID: 37860891 DOI: 10.1002/tox.23999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Corosolic acid (CA), a plant-derived pentacyclic triterpenoid, has potent anti-inflammatory, anti-metabolic, and anti-neoplastic actions against a variety of human cancers. However, the specific mechanism by which CA inhibits the progression of renal cell carcinoma (RCC) is yet unclear. We found that CA (≤8 μM) had no influence on either the growth or viability of RCC cell lines (786-O, ACHN, and Caki-1) or normal HK2 cells. However, in a dose-dependent manner, CA prevented the invasion and migration of RCC cells. Human protease array analysis showed that CA reduced MMP2 expression. At increasing concentrations of CA, the expression of MMP2 was dose-dependently reduced, as shown by western blot and RT-PCR analyses as well as immunofluorescence staining. CA also stimulated ERK1/2 phosphorylation in 786-O and Caki-1 cells. Transfection of CA-treated RCC cells with siRNA-ERK restored MMP2 protein expression and the motility and invasion capabilities of RCC cells. Molecular docking study results showed that CA and MMP2 interact strongly. These findings elucidate the mechanism by which CA prevents RCC cells from migrating and invading, and these findings indicate that CA may be a potential anti-metastatic therapy for RCC.
Collapse
Affiliation(s)
- Tsai-Kun Wu
- Division of Renal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tung-Wei Hung
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yong-Syuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ying-Ru Pan
- Department of Medical Research, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jen-Pi Tsai
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| |
Collapse
|
4
|
Salete-Granado D, Carbonell C, Puertas-Miranda D, Vega-Rodríguez VJ, García-Macia M, Herrero AB, Marcos M. Autophagy, Oxidative Stress, and Alcoholic Liver Disease: A Systematic Review and Potential Clinical Applications. Antioxidants (Basel) 2023; 12:1425. [PMID: 37507963 PMCID: PMC10376811 DOI: 10.3390/antiox12071425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Ethanol consumption triggers oxidative stress by generating reactive oxygen species (ROS) through its metabolites. This process leads to steatosis and liver inflammation, which are critical for the development of alcoholic liver disease (ALD). Autophagy is a regulated dynamic process that sequesters damaged and excess cytoplasmic organelles for lysosomal degradation and may counteract the harmful effects of ROS-induced oxidative stress. These effects include hepatotoxicity, mitochondrial damage, steatosis, endoplasmic reticulum stress, inflammation, and iron overload. In liver diseases, particularly ALD, macroautophagy has been implicated as a protective mechanism in hepatocytes, although it does not appear to play the same role in stellate cells. Beyond the liver, autophagy may also mitigate the harmful effects of alcohol on other organs, thereby providing an additional layer of protection against ALD. This protective potential is further supported by studies showing that drugs that interact with autophagy, such as rapamycin, can prevent ALD development in animal models. This systematic review presents a comprehensive analysis of the literature, focusing on the role of autophagy in oxidative stress regulation, its involvement in organ-organ crosstalk relevant to ALD, and the potential of autophagy-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
| | - Cristina Carbonell
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - David Puertas-Miranda
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Víctor-José Vega-Rodríguez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Marina García-Macia
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Instituto de Biología Funcional y Genómica (IBFG), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Zhang X, Dong Z, Fan H, Yang Q, Yu G, Pan E, He N, Li X, Zhao P, Fu M, Dong J. Scutellarin prevents acute alcohol-induced liver injury via inhibiting oxidative stress by regulating the Nrf2/HO-1 pathway and inhibiting inflammation by regulating the AKT, p38 MAPK/NF-κB pathways. J Zhejiang Univ Sci B 2023; 24:617-631. [PMID: 37455138 PMCID: PMC10350365 DOI: 10.1631/jzus.b2200612] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 04/15/2023]
Abstract
Alcoholic liver disease (ALD) is the most frequent liver disease worldwide, resulting in severe harm to personal health and posing a serious burden to public health. Based on the reported antioxidant and anti-inflammatory capacities of scutellarin (SCU), this study investigated its protective role in male BALB/c mice with acute alcoholic liver injury after oral administration (10, 25, and 50 mg/kg). The results indicated that SCU could lessen serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and improve the histopathological changes in acute alcoholic liver; it reduced alcohol-induced malondialdehyde (MDA) content and increased glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) activity. Furthermore, SCU decreased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β messenger RNA (mRNA) expression levels, weakened inducible nitric oxide synthase (iNOS) activity, and inhibited nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome activation. Mechanistically, SCU suppressed cytochrome P450 family 2 subfamily E member 1 (CYP2E1) upregulation triggered by alcohol, increased the expression of oxidative stress-related nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) pathways, and suppressed the inflammation-related degradation of inhibitor of nuclear factor-κB (NF-κB)-α (IκBα) as well as activation of NF-κB by mediating the protein kinase B (AKT) and p38 mitogen-activated protein kinase (MAPK) pathways. These findings demonstrate that SCU protects against acute alcoholic liver injury via inhibiting oxidative stress by regulating the Nrf2/HO-1 pathway and suppressing inflammation by regulating the AKT, p38 MAPK/NF-κB pathways.
Collapse
Affiliation(s)
- Xiao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhicheng Dong
- Department of Oncology, the Second People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Hui Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiankun Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guili Yu
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Panpan Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mian Fu
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
6
|
Martins-Gomes C, Nunes FM, Silva AM. Modulation of Cell Death Pathways for Cellular Protection and Anti-Tumoral Activity: The Role of Thymus spp. Extracts and Their Bioactive Molecules. Int J Mol Sci 2023; 24:ijms24021691. [PMID: 36675206 PMCID: PMC9864824 DOI: 10.3390/ijms24021691] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Natural products used for their health-promoting properties have accompanied the evolution of humanity. Nowadays, as an effort to scientifically validate the health-promoting effects described by traditional medicine, an ever-growing number of bioactivities are being described for natural products and the phytochemicals that constitute them. Among them, medicinal plants and more specifically the Thymus genus spp., arise as products already present in the diet and with high acceptance, that are a source of phytochemicals with high pharmacological value. Phenolic acids, flavonoid glycoside derivatives, and terpenoids from Thymus spp. have been described for their ability to modulate cell death and survival pathways, much-valued bioactivities in the pharmaceutical industry, that continually sought-after new formulations to prevent undesired cell death or to control cell proliferation. Among these, wound treatment, protection from endogenous/exogenous toxic molecules, or the induction of selective cell death, such as the search for new anti-tumoral agents, arise as main objectives. This review summarizes and discusses studies on Thymus spp., as well as on compounds present in their extracts, with regard to their health-promoting effects involving the modulation of cell death or survival signaling pathways. In addition, studies regarding the main bioactive molecules and their cellular molecular targets were also reviewed. Concerning cell survival and proliferation, Thymus spp. present themselves as an option for new formulations designed for wound healing and protection against chemicals-induced toxicity. However, Thymus spp. extracts and some of their compounds regulate cell death, presenting anti-tumoral activity. Therefore Thymus spp. is a rich source of compounds with nutraceutical and pharmaceutical value.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Chemistry, School of Life Sciences and Environment, UTAD, 5001-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life Sciences and Environment, UTAD, 5001-801 Vila Real, Portugal
- Correspondence: ; Tel.: +351-259-350-921
| |
Collapse
|
7
|
Fang C, Pan J, Qu N, Lei Y, Han J, Zhang J, Han D. The AMPK pathway in fatty liver disease. Front Physiol 2022; 13:970292. [PMID: 36203933 PMCID: PMC9531345 DOI: 10.3389/fphys.2022.970292] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Lipid metabolism disorders are the primary causes for the occurrence and progression of various liver diseases, including non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) caused by a high-fat diet and ethanol. AMPK signaling pathway plays an important role in ameliorating lipid metabolism disorders. Progressive research has clarified that AMPK signal axes are involved in the prevention and reduction of liver injury. Upregulation of AMK can alleviate FLD in mice induced by alcohol or insulin resistance, type 2 diabetes, and obesity, and most natural AMPK agonists can regulate lipid metabolism, inflammation, and oxidative stress in hepatocytes, consequently regulating FLD in mice. In NAFLD and AFLD, increasing the activity of AMPK can inhibit the synthesis of fatty acids and cholesterol by down-regulating the expression of adipogenesis gene (FAS, SREBP-1c, ACC and HMGCR); Simultaneously, by increasing the expression of fatty acid oxidation and lipid decomposition genes (CPT1, PGC1, and HSL, ATGL) involved in fatty acid oxidation and lipid decomposition, the body’s natural lipid balance can be maintained. At present, some AMPK activators are thought to be beneficial during therapeutic treatment. Therefore, activation of AMPK signaling pathway is a potential therapeutic target for disorders of the liver. We summarized the most recent research on the role of the AMPK pathway in FLD in this review. Simultaneously, we performed a detailed description of each signaling axis of the AMPK pathway, as well as a discussion of its mechanism of action and therapeutic significance.
Collapse
Affiliation(s)
- Chunqiu Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jianheng Pan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Ning Qu
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuting Lei
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jiajun Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jingzhou Zhang
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dong Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
- *Correspondence: Dong Han,
| |
Collapse
|
8
|
Han H, Chen M, Li Z, Zhou S, Wu Y, Wei J. Corosolic Acid Protects Rat Chondrocytes Against IL-1β-Induced ECM Degradation by Activating Autophagy via PI3K/AKT/mTOR Pathway and Ameliorates Rat Osteoarthritis. Drug Des Devel Ther 2022; 16:2627-2637. [PMID: 35965964 PMCID: PMC9364989 DOI: 10.2147/dddt.s365279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Osteoarthritis (OA) is an age-related degenerative disease associated with enhanced degradation of extracellular matrix (ECM) and decreased autophagy. Our study is aimed to explore how corosolic acid (CRA) affect cartilage ECM metabolism and the potential mechanism. Methods Rat chondrocytes were pretreated with different concentrations of CRA (0, 2.5, 5, and 10 μM), and were stimulated with IL-1β (10ng/mL) for 24 h, subsequently. RT-qPCR, Western blot, and immunofluorescence were used to detect the expression of genes related to ECM metabolism and explore the potential molecular mechanism. The effect of CRA on articular cartilage was observed in the surgically induced OA rat model with the method of Safranin O/Fast green and immunohistochemical staining. Results Results showed that CRA reversed the IL-1β-induced degradation of aggrecan and type II collagen and the high expression of MMP13 and ADAMTS5. Mechanistically, CRA enhanced autophagy through inhibiting the classical PI3K/AKT/mTOR signaling pathway. Furthermore, inhibition of autophagy partly abolished the protective effects of CRA on ECM synthesis in IL-1β-treated chondrocytes. Correspondingly, the protective effect of CRA was also confirmed in a rat OA model. Conclusion Herein, we demonstrate that CRA can enhance autophagy by inhibiting PI3K/AKT/mTOR signaling pathway, prevent IL-1β-induced cartilage ECM degradation, and may be a potentially applicable candidate for the treatment of OA.
Collapse
Affiliation(s)
- Hui Han
- Department of Sports Medicine and Joint Orthopedics, Liuzhou People’s Hospital, Liuzhou, Guangxi, People’s Republic of China
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Ming Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Zhenyu Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Siqi Zhou
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Yingbin Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jian Wei
- Department of Sports Medicine and Joint Orthopedics, Liuzhou People’s Hospital, Liuzhou, Guangxi, People’s Republic of China
- Correspondence: Jian Wei, Department of Sports Medicine and Joint Orthopedics, Liuzhou People’s Hospital, Liuzhou, Guangxi, People’s Republic of China, Tel +86-13669663233, Email
| |
Collapse
|
9
|
LI BB, PANG K, HAO L, ZANG GH, WANG J, WANG XT, ZHANG JJ, CAI LJ, YANG CD, HAN CH. Corosolic acid improves erectile function in metabolic syndrome rats by reducing reactive oxygen species generation and increasing nitric oxide bioavailability. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Bi-Bo LI
- Nanjing University of Chinese Medicine, China
| | | | - Lin HAO
- Xuzhou Central Hospital, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Qian XP, Zhang XH, Sun LN, Xing WF, Wang Y, Sun SY, Ma MY, Cheng ZP, Wu ZD, Xing C, Chen BN, Wang YQ. Corosolic acid and its structural analogs: A systematic review of their biological activities and underlying mechanism of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153696. [PMID: 34456116 DOI: 10.1016/j.phymed.2021.153696] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The corosolic acid (CA), also known as plant insulin, is a pentacyclic triterpenoid extracted from plants such as Lagerstroemia speciosa. It has been shown to have anti-diabetic, anti-inflammatory and anti-tumor effects. Its structural analogs ursolic acid (UA), oleanolic acid (OA), maslinic acid (MA), asiatic acid (AA) and betulinic acid (BA) display similar individual pharmacological activities to those of CA. However, there is no systematic review documenting pharmacological activities of CA and its structural analogues. This study aims to fill this gap in literature. PURPOSE This systematic review aims to summarize the medical applications of CA and its analogues. METHODS A systematic review summarizes and compares the extraction techniques, pharmacokinetic parameters, and pharmacological effects of CA and its structural analogs. Hypoglycemic effect is one of the key inclusion criteria for searching Web of Science, PubMed, Embase and Cochrane databases up to October 2020 without language restrictions. 'corosolic acid', 'ursolic acid', 'oleanolic acid', 'maslinic acid', 'asiatic acid', 'betulinic acid', 'extraction', 'pharmacokinetic', 'pharmacological' were used to extract relevant literature. The PRISMA guidelines were followed. RESULTS At the end of the searching process, 140 articles were selected for the systematic review. Information of CA and five of its structural analogs including UA, OA, MA, AA and BA were included in this review. CA and its structural analogs are pentacyclic triterpenes extracted from plants and they have low solubilities in water due to their rigid scaffold and hydrophobic properties. The introduction of water-soluble groups such as sugar or amino groups could increase the solubility of CA and its structural analogs. Their biological activities and underlying mechanism of action are reviewed and compared. CONCLUSION CA and its structural analogs UA, OA, MA, AA and BA are demonstrated to show activities in lowering blood sugar, anti-inflammation and anti-tumor. Their oral absorption and bioavailability can be improved through structural modification and formulation design. CA and its structural analogs are promising natural product-based lead compounds for further development and mechanistic studies.
Collapse
Affiliation(s)
- Xu-Ping Qian
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Xuzhou Medical University, Xuzhou, China
| | - Xue-Hui Zhang
- Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Wei-Fan Xing
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Yu Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Shi-Yu Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Meng-Yuan Ma
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Xuzhou Medical University, Xuzhou, China
| | - Zi-Ping Cheng
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Zu-Dong Wu
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Chen Xing
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Bei-Ning Chen
- Department of Chemistry, University of Sheffield, Brookhill, Sheffield S3 7HF, United Kingdom.
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
11
|
Yan J, Nie Y, Luo M, Chen Z, He B. Natural Compounds: A Potential Treatment for Alcoholic Liver Disease? Front Pharmacol 2021; 12:694475. [PMID: 34290612 PMCID: PMC8287649 DOI: 10.3389/fphar.2021.694475] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol intake is a direct cause of alcoholic liver disease (ALD). ALD usually manifests as fatty liver in the initial stage and then develops into alcoholic hepatitis (ASH), fibrosis and cirrhosis. Severe alcoholism induces extensive hepatocyte death, liver failure, and even hepatocellular carcinoma (HCC). Currently, there are few effective clinical means to treat ALD, except for abstinence. Natural compounds are a class of compounds extracted from herbs with an explicit chemical structure. Several natural compounds, such as silymarin, quercetin, hesperidin, and berberine, have been shown to have curative effects on ALD without side effects. In this review, we pay particular attention to natural compounds and developing clinical drugs based on natural compounds for ALD, with the aim of providing a potential treatment for ALD.
Collapse
Affiliation(s)
- Junbin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunmeng Nie
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Minmin Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Liu G, Cui Z, Gao X, Liu H, Wang L, Gong J, Wang A, Zhang J, Ma Q, Huang Y, Piao G, Yuan H. Corosolic acid ameliorates non-alcoholic steatohepatitis induced by high-fat diet and carbon tetrachloride by regulating TGF-β1/Smad2, NF-κB, and AMPK signaling pathways. Phytother Res 2021; 35:5214-5226. [PMID: 34213784 DOI: 10.1002/ptr.7195] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023]
Abstract
Hawthorn (Crataegus pinnatifida Bunge. var. major) is an edible and medicinal fruit that is very common in food and traditional Chinese medicine. Corosolic acid (CA), a pentacyclic triterpenoid, which is an active component of hawthorn (Crataegus pinnatifida Bunge. var. major), has been exhibiting various pharmacological activities such as antidiabetic, antibacterial, anticancer, antiinflammatory, and antioxidant effects. The study aimed to evaluate the effect of CA on non-alcoholic steatohepatitis (NASH) in mice induced by 60 kcal% high-fat diet (HFD) and carbon tetrachloride (CCl4 ). CA lowered liver index and serum AST, ALT, TG, and TC levels compared to those in the model group. Histological analyses of the liver tissues of mice treated with CA revealed significantly decreased number of lipid droplets and alleviated inflammation and fibrosis. CA inhibited the transcripts of pro-fibrogenic markers (including α-SMA, collagen I, and TIMP-1) and the levels of pro-inflammatory cytokines (including TNF-α, IL-1β, caspase-1, and IL-6) associated with hepatic fibrosis, and NF-κB translocation and TGF-β1/Smad2 and AMPK pathways. In addition, CA reduced lipid accumulation via the regulation of AMPK and NF-κB activation in FFA-induced steatotic HepG2 cells. CA also decreased α-SMA, collagen I expressions, and Smad2 phosphorylation, which were reduced by TGF-β1 treatment in LX2 cells. Our results suggested that CA ameliorated NASH through regulating TGF-β1/Smad2, NF-κB, and AMPK signaling pathways, and CA could be developed as a potential health functional food or therapeutic agent for NASH patients.
Collapse
Affiliation(s)
- Guancheng Liu
- College of Pharmacy, Yanbian University, Jilin, China
| | - Zhe Cui
- Department of Pharmacy, Yanbian University Hospital, Jilin, China
| | - Xiaoyan Gao
- College of Pharmacy, Yanbian University, Jilin, China
| | - Huizhe Liu
- College of Pharmacy, Yanbian University, Jilin, China
| | - Linghe Wang
- College of Integration Science, Yanbian University, Jilin, China
| | - Jinyan Gong
- College of Pharmacy, Yanbian University, Jilin, China
| | - Ao Wang
- College of Pharmacy, Yanbian University, Jilin, China
| | - Jianxiu Zhang
- College of Pharmacy, Yanbian University, Jilin, China
| | - Qianqian Ma
- College of Pharmacy, Yanbian University, Jilin, China
| | - Yuan Huang
- Department of Gastroenterology, Yanbian University Hospital, Jilin, China
| | - Guangchun Piao
- College of Pharmacy, Yanbian University, Jilin, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
| | - Haidan Yuan
- College of Pharmacy, Yanbian University, Jilin, China.,College of Integration Science, Yanbian University, Jilin, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
| |
Collapse
|
13
|
Wang X, Chang X, Zhan H, Li C, Zhang Q, Li S, Sun Y. Curcumin combined with Baicalin attenuated ethanol-induced hepatitis by suppressing p38 MAPK and TSC1/ eIF-2α/ATF4 pathways in rats. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Li Y, Xu J, Li D, Ma H, Mu Y, Zheng D, Huang X, Li L. Chemical Characterization and Hepatoprotective Effects of a Standardized Triterpenoid-Enriched Guava Leaf Extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3626-3637. [PMID: 33733770 DOI: 10.1021/acs.jafc.0c07125] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nutraceutical/pharmaceutical agents capable of maintaining redox and inflammation homeostasis are considered as candidates for the prevention and/or treatment of liver diseases. Psidium guajava (commonly known as guava) leaf is a commercially available functional food that has been reported to possess hepatoprotective property. However, the hepatoprotective constituents in guava leaf are not known. In the current study, a standardized triterpenoid-enriched extract of guava leaves (TGL) was developed. A new ursolic acid derivative, namely 2α,3β,6β,23,30-pentahydroxyurs-11,13(18)-dien-28,20β-olide (1), and 23 known triterpenoids were isolated and identified from TGL. The hepatoprotective effects of TGL were evaluated through a model using acetaminophen (APAP)-exposed C57BL/6 male mice. Pretreatment of TGL (75 and 150 mg/kg) restored the mice hepatic architecture, improved the serum ALT and AST levels, and reduced the hepatic ROS and MDA contents. Further molecular mechanistic study revealed that TGL modulated Nrf2 and MAPK signaling pathways to alleviate APAP-induced oxidative and inflammatory stress in liver. In addition, the new compound 1 from TGL showed protective effects against APAP-induced cytotoxicity via activation of the Nrf2 pathway in HepG2 cells. Overall, this is the first report on the hepatoprotective effects of a standardized triterpenoid-enriched extract of guava leaves, which supports its potential nutraceutical application in liver disease management.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Jialin Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Hang Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Dan Zheng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
15
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
16
|
Mosaddeghi P, Eslami M, Farahmandnejad M, Akhavein M, Ranjbarfarrokhi R, Khorraminejad-Shirazi M, Shahabinezhad F, Taghipour M, Dorvash M, Sakhteman A, Zarshenas MM, Nezafat N, Mobasheri M, Ghasemi Y. A systems pharmacology approach to identify the autophagy-inducing effects of Traditional Persian medicinal plants. Sci Rep 2021; 11:336. [PMID: 33431946 PMCID: PMC7801619 DOI: 10.1038/s41598-020-79472-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
Aging is correlated with several complex diseases, including type 2 diabetes, neurodegeneration diseases, and cancer. Identifying the nature of this correlation and treatment of age-related diseases has been a major subject of both modern and traditional medicine. Traditional Persian Medicine (TPM) embodies many prescriptions for the treatment of ARDs. Given that autophagy plays a critical role in antiaging processes, the present study aimed to examine whether the documented effect of plants used in TPM might be relevant to the induction of autophagy? To this end, the TPM-based medicinal herbs used in the treatment of the ARDs were identified from modern and traditional references. The known phytochemicals of these plants were then examined against literature for evidence of having autophagy inducing effects. As a result, several plants were identified to have multiple active ingredients, which indeed regulate the autophagy or its upstream pathways. In addition, gene set enrichment analysis of the identified targets confirmed the collective contribution of the identified targets in autophagy regulating processes. Also, the protein-protein interaction (PPI) network of the targets was reconstructed. Network centrality analysis of the PPI network identified mTOR as the key network hub. Given the well-documented role of mTOR in inhibiting autophagy, our results hence support the hypothesis that the antiaging mechanism of TPM-based medicines might involve autophagy induction. Chemoinformatics study of the phytochemicals using docking and molecular dynamics simulation identified, among other compounds, the cyclo-trijuglone of Juglans regia L. as a potential ATP-competitive inhibitor of mTOR. Our results hence, provide a basis for the study of TPM-based prescriptions using modern tools in the quest for developing synergistic therapies for ARDs.
Collapse
Affiliation(s)
- Pouria Mosaddeghi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahboobeh Eslami
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Mitra Farahmandnejad
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahshad Akhavein
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Ratin Ranjbarfarrokhi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadhossein Khorraminejad-Shirazi
- grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Farbod Shahabinezhad
- grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadjavad Taghipour
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadreza Dorvash
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Amirhossein Sakhteman
- grid.412571.40000 0000 8819 4698Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.9668.10000 0001 0726 2490Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mohammad M. Zarshenas
- grid.412571.40000 0000 8819 4698Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Meysam Mobasheri
- grid.472338.9Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Islamic Azad University of Medical Sciences, Tehran, Iran ,Iranian Institute of New Sciences (IINS), Tehran, Iran
| | - Younes Ghasemi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| |
Collapse
|
17
|
Albuquerque RDDG, Oliveira AP, Ferreira C, Passos CLA, Fialho E, Soares DC, Amaral VF, Bezerra GB, Esteves RS, Santos MG, Albert ALM, Rocha L. Anti-Leishmania amazonensis activity of the terpenoid fraction from Eugenia pruniformis leaves. AN ACAD BRAS CIENC 2020; 92:e20201181. [PMID: 33295583 DOI: 10.1590/0001-3765202020201181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Leishmaniasis is caused by protozoan parasites belonging to the genus Leishmania and includes cutaneous, mucocutaneous and visceral clinical forms. Drugs currently available for leishmaniasis treatment present high toxicity, and development of parasite resistance. Plants constitute an important source of compounds with leishmanicidal potential. This study aimed to evaluate the anti-Leishmania amazonensis activity of the terpenoid fraction of Eugenia pruniformis leaves (TF-EpL). TF-EpL was active against the promastigote and intracellular amastigote forms of L. amazonensis with IC50(24h) value of 43.60μg/mL and 44.77μg/mL, respectively. TF-EpL altered the cell cycle of the parasite, increasing 2.32-fold the cells in the Sub-G0/G1 phase. TF-EpL also changed the ΔΨm and increased ROS and the number of annexin-V-PI positive promastigotes, which suggests incidental death. β-sitosterol, ursolic acid, corosolic acid and asiatic acid were isolated from TF-EpL. The results showed the antileishmanial activity of E. pruniformis terpenoids and its potential for further studies as a source of new drugs for leishmaniasis.
Collapse
Affiliation(s)
- Ricardo D D G Albuquerque
- Universidade Federal Fluminense, Laboratório de Tecnologia de Produtos Naturais, Faculdade de Farmácia, Rua Dr. Mário Vianna, 523, Santa Rosa, 24241-000 Niterói, RJ, Brazil
| | - Adriana P Oliveira
- Universidade Federal do Rio de Janeiro, Laboratório Multidisciplinar de Ciências Farmacêuticas, Faculdade de Farmácia, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Christian Ferreira
- Universidade Federal do Rio de Janeiro, Laboratório de Alimentos Funcionais, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Carlos L A Passos
- Universidade Federal do Rio de Janeiro, Laboratório de Alimentos Funcionais, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Eliane Fialho
- Universidade Federal do Rio de Janeiro, Laboratório de Alimentos Funcionais, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Deivid C Soares
- Laboratório de Imunobiologia das Leishmanioses, Av. Carlos Chagas Filho 373, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Veronica F Amaral
- Universidade Federal do Rio de Janeiro, Laboratório de Imunoparasitologia, Departamento de Imunobiologia, Universidade Federal Fluminense, Outeiro de São João Batista, s/n, Centro, 24020-140 Niterói, RJ, Brazil
| | - Gabrielle B Bezerra
- Universidade Federal do Rio de Janeiro, Laboratório de Imunoparasitologia, Departamento de Imunobiologia, Universidade Federal Fluminense, Outeiro de São João Batista, s/n, Centro, 24020-140 Niterói, RJ, Brazil
| | - Ricardo S Esteves
- Universidade Federal Fluminense, Laboratório de Tecnologia de Produtos Naturais, Faculdade de Farmácia, Rua Dr. Mário Vianna, 523, Santa Rosa, 24241-000 Niterói, RJ, Brazil
| | - Marcelo G Santos
- Universidade do Estado do Rio de Janeiro, Departamento de Ciências, Faculdade de Formação de Professores, Rua Dr. Francisco Portela, 1470, Patronato, 24435-005 São Gonçalo, RJ, Brazil
| | - AndrÉ L M Albert
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde, Av. Brasil, 4365, Manguinhos, 21041-361 Rio de Janeiro, RJ, Brazil
| | - Leandro Rocha
- Universidade Federal Fluminense, Laboratório de Tecnologia de Produtos Naturais, Faculdade de Farmácia, Rua Dr. Mário Vianna, 523, Santa Rosa, 24241-000 Niterói, RJ, Brazil
| |
Collapse
|
18
|
Corosolic acid ameliorates cardiac hypertrophy via regulating autophagy. Biosci Rep 2020; 39:221187. [PMID: 31746323 PMCID: PMC6893168 DOI: 10.1042/bsr20191860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Aim: In this work, we explored the role of corosolic acid (CRA) during pressure overload-induced cardiac hypertrophy. Methods and results: Cardiac hypertrophy was induced in mice by aortic banding. Four weeks post-surgery, CRA-treated mice developed blunted cardiac hypertrophy, fibrosis, and dysfunction, and showed increased LC3 II and p-AMPK expression. In line with the in vivo studies, CRA also inhibited the hypertrophic response induced by PE stimulation accompanying with increased LC3 II and p-AMPK expression. It was also found that CRA blunted cardiomyocyte hypertrophy and promoted autophagy in Angiotensin II (Ang II)-treated H9c2 cells. Moreover, to further verify whether CRA inhibits cardiac hypertrophy by the activation of autophagy, blockade of autophagy was achieved by CQ (an inhibitor of the fusion between autophagosomes and lysosomes) or 3-MA (an inhibitor of autophagosome formation). It was found that autophagy inhibition counteracts the protective effect of CRA on cardiac hypertrophy. Interestingly, AMPK knockdown with AMPKα2 siRNA-counteracted LC3 II expression increase and the hypertrophic response inhibition caused by CRA in PE-treated H9c2 cells. Conclusion: These results suggest that CRA may protect against cardiac hypertrophy through regulating AMPK-dependent autophagy.
Collapse
|
19
|
Sonar MP, Rathod VK. Extraction of type II antidiabetic compound corosolic acid from Lagerstroemia speciosa by batch extraction and three phase partitioning. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Zhang JX, Feng WJ, Liu GC, Ma QQ, Li HL, Gao XY, Liu HZ, Piao GC, Yuan HD. Corosolic Acid Attenuates Hepatic Lipid Accumulation and Inflammatory Response via AMPK/SREBPs and NF-κB/MAPK Signaling Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:579-595. [DOI: 10.1142/s0192415x20500299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Corosolic acid (CA) is the main active component of Lagetstroemia speciosa and has been known to serve as several different pharmacological effects, such as antidiabetic, anti-oxidant, and anticancer effects. In this study, effects of CA on the hepatic lipid accumulation were examined using HepG2 cells and tyloxapol (TY)-induced hyperlipidemia ICR mice. CA significantly inhibited hepatic lipid accumulation via inhibition of SREBPs, and its target genes FAS, SCD1, and HMGCR transcription in HepG2 cells. These effects were mediated through activation of AMPK, and these effects were all abolished in the presence of compound C (CC, an AMPK inhibitor). In addition, CA clearly alleviated serum ALT, AST, TG, TC, low-density lipoprotein cholesterol (LDL-C), and increased high-density lipoprotein cholesterol (HDL-C) levels, and obviously attenuated TY-induced liver steatosis and inflammation. Moreover, CA significantly upregulated AMPK, ACC, LKB1 phosphorylation, and significantly inhibited lipin1, SREBPs, TNF-[Formula: see text], F4/80, caspase-1 expression, NF-[Formula: see text]B translocation, and MAPK activation in TY-induced hyperlipidemia mice. Our results suggest that CA is a potent antihyperlipidemia and antihepatic steatosis agent and the mechanism involved both lipogenesis and cholesterol synthesis and inflammation response inhibition via AMPK/SREBPs and NF-[Formula: see text]B/MAPK signaling pathways.
Collapse
Affiliation(s)
- Jian-Xiu Zhang
- Key Laboratory of Natural Resources of Changbai, Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, P. R. China
| | - Wei-Jun Feng
- Key Laboratory of Natural Resources of Changbai, Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, P. R. China
| | - Guan-Cheng Liu
- Key Laboratory of Natural Resources of Changbai, Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, P. R. China
| | - Qian-Qian Ma
- Key Laboratory of Natural Resources of Changbai, Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, P. R. China
| | - Hai-Lan Li
- Key Laboratory of Natural Resources of Changbai, Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, P. R. China
| | - Xiao-Yan Gao
- Key Laboratory of Natural Resources of Changbai, Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, P. R. China
| | - Hui-Zhe Liu
- Key Laboratory of Natural Resources of Changbai, Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, P. R. China
| | - Guang-Chun Piao
- Key Laboratory of Natural Resources of Changbai, Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, P. R. China
| | - Hai-Dan Yuan
- Key Laboratory of Natural Resources of Changbai, Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, P. R. China
| |
Collapse
|
21
|
Liao X, Hu F, Chen Z. A HPLC-MS method for profiling triterpenoid acids and triterpenoid esters in Osmanthus fragrans fruits. Analyst 2020; 144:6981-6988. [PMID: 31631209 DOI: 10.1039/c9an01542f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Triterpenoids, as an important family of plant secondary metabolites, have important biological activities associated with health and disease prevention. In this work, we proposed a HPLC-MS method for profiling multiple groups of triterpenoid acids and triterpenoid esters differing only in one position of the hydroxyl or methyl group in O. fragrans fruits. A total of thirty-one compounds were identified, and twenty-seven components were discovered in O. fragrans fruits for the first time. The HPLC-MS profiling method was applied in the analysis of the triterpenoids of O. fragrans flowers, and the time courses of triterpenoids of O. fragrans fruits.
Collapse
Affiliation(s)
- Xiaoyan Liao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | | | | |
Collapse
|
22
|
Li S, Xu Y, Guo W, Chen F, Zhang C, Tan HY, Wang N, Feng Y. The Impacts of Herbal Medicines and Natural Products on Regulating the Hepatic Lipid Metabolism. Front Pharmacol 2020; 11:351. [PMID: 32265720 PMCID: PMC7105674 DOI: 10.3389/fphar.2020.00351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
The dysregulation of hepatic lipid metabolism is one of the hallmarks in many liver diseases including alcoholic liver diseases (ALD) and non-alcoholic fatty liver diseases (NAFLD). Hepatic inflammation, lipoperoxidative stress as well as the imbalance between lipid availability and lipid disposal, are direct causes of liver steatosis. The application of herbal medicines with anti-oxidative stress and lipid-balancing properties has been extensively attempted as pharmaceutical intervention for liver disorders in experimental and clinical studies. Although the molecular mechanisms underlying their hepatoprotective effects warrant further exploration, increasing evidence demonstrated that many herbal medicines are involved in regulating lipid accumulation processes including hepatic lipolytic and lipogenic pathways, such as mitochondrial and peroxisomal β-oxidation, the secretion of very low density lipoprotein (VLDL), the non-esterified fatty acid (NEFA) uptake, and some vital hepatic lipogenic enzymes. Therefore, in this review, the pathways or crucial mediators participated in the dysregulation of hepatic lipid metabolism are systematically summarized, followed by the current evidences and advances in the positive impacts of herbal medicines and natural products on the lipid metabolism pathways are detailed. Furthermore, several herbal formulas, herbs or herbal derivatives, such as Erchen Dection, Danshen, resveratrol, and berberine, which have been extensively studied for their promising potential in mediating lipid metabolism, are particularly highlighted in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
23
|
Hu S, Li SW, Yan Q, Hu XP, Li LY, Zhou H, Pan LX, Li J, Shen CP, Xu T. Natural products, extracts and formulations comprehensive therapy for the improvement of motor function in alcoholic liver disease. Pharmacol Res 2019; 150:104501. [PMID: 31689520 DOI: 10.1016/j.phrs.2019.104501] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
|
24
|
Kong LZ, Chandimali N, Han YH, Lee DH, Kim JS, Kim SU, Kim TD, Jeong DK, Sun HN, Lee DS, Kwon T. Pathogenesis, Early Diagnosis, and Therapeutic Management of Alcoholic Liver Disease. Int J Mol Sci 2019; 20:ijms20112712. [PMID: 31159489 PMCID: PMC6600448 DOI: 10.3390/ijms20112712] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023] Open
Abstract
Alcoholic liver disease (ALD) refers to the damages to the liver and its functions due to alcohol overconsumption. It consists of fatty liver/steatosis, alcoholic hepatitis, steatohepatitis, chronic hepatitis with liver fibrosis or cirrhosis, and hepatocellular carcinoma. However, the mechanisms behind the pathogenesis of alcoholic liver disease are extremely complicated due to the involvement of immune cells, adipose tissues, and genetic diversity. Clinically, the diagnosis of ALD is not yet well developed. Therefore, the number of patients in advanced stages has increased due to the failure of proper early detection and treatment. At present, abstinence and nutritional therapy remain the conventional therapeutic interventions for ALD. Moreover, the therapies which target the TNF receptor superfamily, hormones, antioxidant signals, and MicroRNAs are used as treatments for ALD. In particular, mesenchymal stem cells (MSCs) are gaining attention as a potential therapeutic target of ALD. Therefore, in this review, we have summarized the current understandings of the pathogenesis and diagnosis of ALD. Moreover, we also discuss the various existing treatment strategies while focusing on promising therapeutic approaches for ALD.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Ying-Hao Han
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Dong-Ho Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Korea.
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Hu-Nan Sun
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Dong Sun Lee
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| |
Collapse
|
25
|
Yang L, Yang C, Thomes PG, Kharbanda KK, Casey CA, McNiven MA, Donohue TM. Lipophagy and Alcohol-Induced Fatty Liver. Front Pharmacol 2019; 10:495. [PMID: 31143122 PMCID: PMC6521574 DOI: 10.3389/fphar.2019.00495] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
This review describes the influence of ethanol consumption on hepatic lipophagy, a selective form of autophagy during which fat-storing organelles known as lipid droplets (LDs) are degraded in lysosomes. During classical autophagy, also known as macroautophagy, all forms of macromolecules and organelles are sequestered in autophagosomes, which, with their cargo, fuse with lysosomes, forming autolysosomes in which the cargo is degraded. It is well established that excessive drinking accelerates intrahepatic lipid biosynthesis, enhances uptake of fatty acids by the liver from the plasma and impairs hepatic secretion of lipoproteins. All the latter contribute to alcohol-induced fatty liver (steatosis). Here, our principal focus is on lipid catabolism, specifically the impact of excessive ethanol consumption on lipophagy, which significantly influences the pathogenesis alcohol-induced steatosis. We review findings, which demonstrate that chronic ethanol consumption retards lipophagy, thereby exacerbating steatosis. This is important for two reasons: (1) Unlike adipose tissue, the liver is considered a fat-burning, not a fat-storing organ. Thus, under normal conditions, lipophagy in hepatocytes actively prevents lipid droplet accumulation, thereby maintaining lipostasis; (2) Chronic alcohol consumption subverts this fat-burning function by slowing lipophagy while accelerating lipogenesis, both contributing to fatty liver. Steatosis was formerly regarded as a benign consequence of heavy drinking. It is now recognized as the "first hit" in the spectrum of alcohol-induced pathologies that, with continued drinking, progresses to more advanced liver disease, liver failure, and/or liver cancer. Complete lipid droplet breakdown requires that LDs be digested to release their high-energy cargo, consisting principally of cholesteryl esters and triacylglycerols (triglycerides). These subsequently undergo lipolysis, yielding free fatty acids that are oxidized in mitochondria to generate energy. Our review will describe recent findings on the role of lipophagy in LD catabolism, how continuous heavy alcohol consumption affects this process, and the putative mechanism(s) by which this occurs.
Collapse
Affiliation(s)
- Li Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Paul G. Thomes
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Departments of Internal Medicine and of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum K. Kharbanda
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Departments of Internal Medicine and of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Carol A. Casey
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Departments of Internal Medicine and of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mark A. McNiven
- Division of Gastroenterology and Hepatology, Department of Biochemistry and Molecular Biology, Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, MN, United States
| | - Terrence M. Donohue
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Departments of Internal Medicine and of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
26
|
Gao H, Lv Y, Liu Y, Li J, Wang X, Zhou Z, Tipoe GL, Ouyang S, Guo Y, Zhang J, Hao X, Li W, Koike K, So KF, Xiao J. Wolfberry-Derived Zeaxanthin Dipalmitate Attenuates Ethanol-Induced Hepatic Damage. Mol Nutr Food Res 2019; 63:e1801339. [PMID: 30938072 DOI: 10.1002/mnfr.201801339] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/06/2019] [Indexed: 11/11/2022]
Abstract
SCOPE Besides abstinence and nutritional support, there is no proven clinical treatment for patients with alcoholic fatty liver disease (AFLD). Here, the therapeutic effects and mechanisms of action of wolfberry-derived zeaxanthin dipalmitate (ZD) on AFLD models are demonstrated. METHODS AND RESULTS The hepatoprotective effects of ZD are evaluated in vitro and in vivo. Direct interacting receptors of ZD on cell membranes are identified by liver-specific knockdown and biophysical measurements. Downstream signaling pathways are delineated using molecular and cellular biological methods. It is demonstrated that ZD attenuates hepatocyte and whole-liver injury in ethanol-treated cells (dose: 1 µm) and a chronic binge AFLD rat model (dose: 10 mg kg-1 ), respectively. The direct targets of ZD on the cell membrane include receptor P2X7 and adiponectin receptor 1 (adipoR1). Signals from P2X7 and adipoR1 modulate the phosphatidylinositide 3-kinase-Akt and/or AMP-activated protein kinase-FoxO3a pathways, to restore mitochondrial autophagy (mitophagy) functions suppressed by ethanol intoxication. In addition, ZD alleviates hepatic inflammation partially via the inhibition of Nod-like receptor 3 inflammasome, whose activation is a direct consequence of suppressed mitophagy. Liver-specific inhibition of receptors or mitophagy significantly impairs the beneficial effects of ZD. CONCLUSIONS ZD is an effective and promising agent for the potential treatment of AFLD.
Collapse
Affiliation(s)
- Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China.,Clinical Medicine Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yi Lv
- Laboratory of Neuroendocrinology, School of Biological Sciences, Fujian Normal University, Fuzhou, China
| | - Yingxia Liu
- State Key Discipline of Infectious Diseases, Department of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Jingjing Li
- GMH Institute of CNS Regeneration, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China
| | - Xiaogang Wang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Zhengqun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - George L Tipoe
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Songying Ouyang
- Laboratory of Neuroendocrinology, School of Biological Sciences, Fujian Normal University, Fuzhou, China
| | - Yutong Guo
- Yinchuan Bairuiyuan Biotechnology, Yinchuan, China
| | | | | | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Kwok-Fai So
- GMH Institute of CNS Regeneration, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China
| | - Jia Xiao
- Clinical Medicine Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.,School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
27
|
Sandeep, Misra RC, Chanotiya CS, Mukhopadhyay P, Ghosh S. Oxidosqualene cyclase and CYP716 enzymes contribute to triterpene structural diversity in the medicinal tree banaba. THE NEW PHYTOLOGIST 2019; 222:408-424. [PMID: 30472753 DOI: 10.1111/nph.15606] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Pentacyclic triterpenes (PCTs) represent a major class of bioactive metabolites in banaba (Lagerstroemia speciosa) leaves; however, biosynthetic enzymes and their involvement in the temporal accumulation of PCTs remain to be studied. We use an integrated approach involving transcriptomics, metabolomics and gene function analysis to identify oxidosqualene cyclases (OSCs) and cytochrome P450 monooxygenases (P450s) that catalyzed sequential cyclization and oxidative reactions towards PCT scaffold diversification. Four monofunctional OSCs (LsOSC1,3-5) converted the triterpene precursor 2,3-oxidosqualene to either lupeol, β-amyrin or cycloartenol, and a multifunctional LsOSC2 formed α-amyrin as a major product along with β-amyrin. Two CYP716 family P450s (CYP716A265, CYP716A266) catalyzed C-28 oxidation of α-amyrin, β-amyrin and lupeol to form ursolic acid, oleanolic acid and betulinic acid, respectively. However, CYP716C55 catalyzed C-2α hydroxylation of ursolic acid and oleanolic acid to produce corosolic acid and maslinic acid, respectively. Besides, combined transcript and metabolite analysis suggested major roles for the LsOSC2, CYP716A265 and CYP716C55 in determining leaf ursane and oleanane profiles. Combinatorial expression of OSCs and CYP716s in Saccharomyces cerevisiae and Nicotiana benthamiana led to PCT pathway reconstruction, signifying the utility of banaba enzymes for bioactive PCT production in alternate plant/microbial hosts that are more easily tractable than the tree species.
Collapse
Affiliation(s)
- Sandeep
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Rajesh Chandra Misra
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Chandan Singh Chanotiya
- Chemical Sciences Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Pradipto Mukhopadhyay
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Sumit Ghosh
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| |
Collapse
|
28
|
Lee YJ, Shu MS, Kim JY, Kim YH, Sim KH, Sung WJ, Eun JR. Cilostazol protects hepatocytes against alcohol-induced apoptosis via activation of AMPK pathway. PLoS One 2019; 14:e0211415. [PMID: 30695051 PMCID: PMC6350983 DOI: 10.1371/journal.pone.0211415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/14/2019] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is a worldwide health problem and hepatocyte apoptosis has been associated with the development/progression of ALD. However, no definite effective pharmacotherapy for ALD is currently available. Cilostazol, a selective type III phosphodiesterase inhibitor has been shown to protect hepatocytes from ethanol-induced apoptosis. In the present study, the underlying mechanisms for the protective effects of cilostazol were examined. Primary rat hepatocytes were treated with ethanol in the presence or absence of cilostazol. Cell viability and intracellular cAMP were measured. Apoptosis was detected by Hoechst staining, TUNEL assay, and caspase-3 activity assay. The roles of cAMP and AMP-activated protein kinase (AMPK) pathways in the action of CTZ were explored using pharmacological inhibitors and siRNAs. Liver from mice received ethanol (5 g/kg body weight) by oral gavage following cilostazol treatment intraperitoneally was obtained for measurement of apoptosis and activation of AMPK pathway. Cilostazol inhibited ethanol-induced hepatocyte apoptosis and potentiated the increases in cAMP level induced by forskolin. However, the anti-apoptotic effect of cilostazol was not reversed by an inhibitor of adenylyl cyclase. Interestingly, cilostazol activated AMPK and increased the level of LC3-II, a marker of autophagy. The inhibition of AMPK abolished the effects of cilostazol on LC3-II expression and apoptosis. Moreover, the inhibition of LKB1 and CaMKK2, upstream kinases of AMPK, dampened cilostazol-inhibited apoptosis as well as AMPK activation. In conclusion, cilostazol protected hepatocytes from apoptosis induced by ethanol mainly via AMPK pathway which is regulated by both LKB1 and CaMKK2. Our results suggest that cilostazol may have potential as a promising therapeutic drug for treatment of ALD.
Collapse
Affiliation(s)
- Youn Ju Lee
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Mi-Sun Shu
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Jong-Yeon Kim
- Deparment of Physiology, School of Medicine, Yeungnam University, Daegu, Korea
| | - Yun-Hye Kim
- Deparment of Physiology, School of Medicine, Yeungnam University, Daegu, Korea
| | - Kyeong Hwa Sim
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Woo Jung Sung
- Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Jong Ryeol Eun
- Department of Internal medicine, Myongj Hospital, Hanyang University College of Medicine, Goyang, Korea
- * E-mail:
| |
Collapse
|
29
|
Peng M, Qiang L, Xu Y, Li C, Li T, Wang J. Inhibition of JNK and activation of the AMPK-Nrf2 axis by corosolic acid suppress osteolysis and oxidative stress. Nitric Oxide 2018; 82:12-24. [PMID: 30453049 DOI: 10.1016/j.niox.2018.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/06/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
The intracellular reactive oxygen species contribute to RANKL-induced osteoclastogenesis and osteolysis. Nuclear factor-erythroid 2-related factor 2 (Nrf2), a redox-sensitive transcription factor, is critical in the cellular defense against oxidative stress by induction of antioxidants and cytoprotective enzymes. In the current study, it was first demonstrated that RANKL-induced osteoclastogenesis and hydroxylapatite resorption were suppressed by Corosolic acid (CA) via inhibiting p-JNK and activating p-AMPK. Meanwhile, p-65, p-38, Akt, and GSK-3β were partly inhibited during the treatment of CA. Osteoclastogenesis related genes, including NFATc1, c-fos, cathepsin K, and CTR were down-regulated by CA as well. Furthermore, the intracellular oxidative stress of CA-treated osteoclasts was dramatically decreased and Nrf2 was translocated into the nucleus to activate antioxidants including HO-1, NQO-1, and GCLC by CA. The LPS-induced mice calvarial osteolysis model was established for the in vivo investigation. Micro-CT morphometric analysis revealed that the treatment of CA restored LPS-induced bone loss and formation of osteoclasts. Besides, p-p65 and p-JNK were activated in the LPS group but inhibited by CA in vivo. The treatment of CA also activated p-AMPK during its attenuating LPS-induced osteolysis. Conclusively, CA effectively protects against LPS-induced osteolysis by suppressing osteoclastogenesis and oxidative stress through the inhibition of the JNK and activation of the AMPK-Nrf2 axis.
Collapse
Affiliation(s)
- Mingzheng Peng
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Lei Qiang
- Southwest Jiaotong University College of Medicine, 610031, No.111, North Section, 2nd Ring Road, Chengdu, Sichuan, China
| | - Yan Xu
- Southwest Jiaotong University College of Medicine, 610031, No.111, North Section, 2nd Ring Road, Chengdu, Sichuan, China
| | - Cuidi Li
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1804 Huashan Rd, Shanghai, 200030, China
| | - Tao Li
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China.
| |
Collapse
|
30
|
Li L, Zhong Y, Ma Z, Yang C, Wei H, Chen L, Li C, Wu D, Rong MZ, Li Y. Methyl ferulic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway. Int J Oncol 2018; 53:225-236. [PMID: 29749464 DOI: 10.3892/ijo.2018.4379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/19/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the anti-apoptotic effects of methyl ferulic acid (MFA) on L-02 cell apoptosis induced by ethanol, and to elucidate the possible underlying mechanisms. L-02 cells were examined after being soaked in ethanol (400 mM) to allow the ethanol to permeate into the cells for 24 h. Cell survival was measured by MTT assay. Cell apoptosis was assessed by both flow cytometry and single-stranded DNA assays. Intracellular reactive oxygen species (ROS) production was determined using the 2',7'-dichlorofluorescein-diacetate dye. The protein expression levels of p38, p-p38, JNK, p-JNK, NADPH oxidase 4 (NOX4), p22, Bax and Bcl-2 were measured by western blot analysis. The mRNA expression levels of NOX4 and p22 were measured by RT-PCR. It was identified that MFA markedly suppressed the ethanol-induced apoptosis and necrosis of L-02 cells. In addition, MFA decreased the expression levels of superoxide dismutase, catalase and phospholipid hydroperoxide gluthione peroxidase, and downregulated the levels of Bax/Bcl-2 and the cleaved forms of caspase-3 in a dose- and time-dependent manner. This indicated that MFA attenuated the apoptosis of L-02 cells. MFA also decreased the elevated mRNA and protein expression levels of Nox4 and p22phox, and the production of intracellular ROS triggered by ethanol. Further analysis demonstrated that MFA significantly attenuated the phosphorylation of JNK and p38, which are major components of the mitogen-activated protein kinase (MAPK) pathways. On the whole, the findings of this study demonstrated that MFA attenuated the apoptotic cell death of L-02 cells by reducing the generation of ROS and inactivating the MAPK pathways.
Collapse
Affiliation(s)
- Li Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yujuan Zhong
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Zuheng Ma
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 76, Sweden
| | - Chengfang Yang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Hanning Wei
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Li Chen
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Chen Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Dan Wu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Ming Zhi Rong
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yongwen Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
31
|
Yang CF, Zhong YJ, Ma Z, Li L, Shi L, Chen L, Li C, Wu D, Chen Q, Li YW. NOX4/ROS mediate ethanol‑induced apoptosis via MAPK signal pathway in L‑02 cells. Int J Mol Med 2018; 41:2306-2316. [PMID: 29336467 DOI: 10.3892/ijmm.2018.3390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 01/09/2018] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to assess the molecular mechanism of ethanol‑induced oxidative stress‑mediated apoptosis in L‑02 liver cells in order to elucidate novel pathways associated with alcoholic liver disease. L‑02 cells were treated with 400 mM ethanol with or without inhibitors. The cell viability was measured by an MTT assay. Cell apoptosis was assessed by flow cytometry and a single‑stranded DNA (ssDNA) assay. Intracellular reactive oxygen species (ROS) production of L‑02 cells was determined using the 2',7'‑dichlorofluorescein‑diacetate dye. The protein expression of c‑Jun N‑terminal kinase (JNK), phosphorylated (p)‑JNK, P38, p‑P38, NADPH oxidase (NOX)1, NOX4, p22phox, B‑cell lymphoma 2 (Bcl‑2) and Bcl‑2‑associated X protein were measured by western blot analysis. The mRNA expression of NOX1, NOX4 and p22phox was measured by reverse transcription polymerase chain reaction analysis. The results indicated that after treatment with various concentrations of ethanol for the indicated durations, L‑02 cells were displayed a significant decrease in cell viability in a dose‑and time‑dependent manner. Ethanol‑induced apoptosis and cell death of L‑02 cells was accompanied by the generation of ROS, elevated expression of NOX, as well as phosphorylation of JNK and P‑38. In addition, increased expression of Bcl‑2 was induced by 400 mM ethanol. Furthermore, treatment with NOX inhibitor attenuated the ethanol‑induced a decrease in cell viability, and an increase in apoptosis and Bcl‑2 expression. In conclusion, ethanol induced apoptosis in the L‑02 hepatocyte cell line via generation of ROS and elevated expression of NOX4. This indicated that activation of JNK and p38 in the mitogen‑activated protein kinase pathway promotes apoptosis in L‑02 cells.
Collapse
Affiliation(s)
- Cheng-Fang Yang
- Department of Pharmacology, College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yu-Juan Zhong
- Department of Pharmacology, College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Zuheng Ma
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm SE‑171 76, Sweden
| | - Li Li
- Department of Pharmacology, College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Lin Shi
- Department of Pharmacology, College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Li Chen
- Department of Pharmacology, College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Chen Li
- Department of Pharmacology, College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Dan Wu
- Department of Pharmacology, College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Qi Chen
- Department of Pharmacology, College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yong-Wen Li
- Department of Pharmacology, College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
32
|
Shi X, Sun R, Zhao Y, Fu R, Wang R, Zhao H, Wang Z, Tang F, Zhang N, Tian X, Yao J. Promotion of autophagosome–lysosome fusion via salvianolic acid A-mediated SIRT1 up-regulation ameliorates alcoholic liver disease. RSC Adv 2018; 8:20411-20422. [PMID: 35541657 PMCID: PMC9080827 DOI: 10.1039/c8ra00798e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
Autophagosome and lysosome fusion was restored by salvianolic acid A-mediated SIRT1 up-regulation and protected against chronic ethanol-induced liver injury.
Collapse
|
33
|
Wan T, Wang S, Ye M, Ling W, Yang L. Cyanidin-3-O-β-glucoside protects against liver fibrosis induced by alcohol via regulating energy homeostasis and AMPK/autophagy signaling pathway. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
34
|
Qin J, Mai Y, Li Y, Jiang Z, Gao Y. Effect of mild hypothermia preconditioning against low temperature (4°C) induced rat liver cell injury in vitro. PLoS One 2017; 12:e0176652. [PMID: 28453529 PMCID: PMC5409157 DOI: 10.1371/journal.pone.0176652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
Bioartificial liver holds special position in the field of regenerative medicine, and cold environment at 4℃ is widely used for the short storage of both organ and liver cell for later application. However, the disadvantages of such cold storage could influence cell viability and lead to cell apoptosis in different degrees. In this study, we mainly explore the pre-protective effect of mild hypothermia against low temperature (4℃)-induced rat liver cell injury in vitro. Our results indicated that the precondition with mild hypothermia could increase cell viability, such as cell proliferation, LDH regulation and glycogen synthesis ability of liver cell. The precondition also decreased the ROS production and relieved cell apoptosis in liver cells. Compared with the model group, the mitochondrial membrane potential was restored in the mild hypothermia group, as well as the mitochondrial membrane permeability transition pore opening, indicating that the therapeutic mechanism was related to mitochondrial protection. Further analysis showed that PI3K-Akt-GSK3β signal pathway might be associated with the pre-protective effect of mild hypothermia. Thus, our study suggested that the precondition with mild hypothermia hold the protective effect for liver cell in cold environment, and further developed a novel strategy for the storage of liver seed cells, even bioartificial liver.
Collapse
Affiliation(s)
- Jiasheng Qin
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Regenerative Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yanxing Mai
- Department of Geriatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yang Li
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Regenerative Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zesheng Jiang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Regenerative Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yi Gao
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Regenerative Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
- * E-mail:
| |
Collapse
|