1
|
Nakashima MA, Delfrate G, Albino LB, Alves GF, Oliveira JG, Fernandes D. Impact of tadalafil on cardiovascular and organ dysfunction induced by experimental sepsis. Acute Crit Care 2025; 40:46-58. [PMID: 39978956 PMCID: PMC11924389 DOI: 10.4266/acc.002904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/02/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Sepsis is a life-threatening condition that affects the cardiovascular and renal systems. Severe hypotension during sepsis compromises tissue perfusion, which can lead to multiple organ dysfunction and death. Phosphodiesterase 5 (PDE5) degrades intracellular cyclic guanosine monophosphate (cGMP) levels which promotes vasodilatation in specific sites. Our previous studies show that inhibiting cGMP production in early sepsis increases mortality, implying a protective role for cGMP production. Then, we hypothesized that cGMP increased by tadalafil (PDE5 inhibitor) could improve microcirculation and prevent sepsis-induced organ dysfunction. METHODS Rats were submitted to cecal ligation and puncture (CLP) sepsis model and treated with tadalafil (2 mg/kg, s.c.) 8 hours after the procedure. Hemodynamic, inflammatory and biochemical assessments were performed 24 hours after sepsis induction. Moreover, the effect of tadalafil on the survival of septic rats was evaluated for 5 days. RESULTS Tadalafil treatment improves basal renal blood flow during sepsis and preserves it during noradrenaline infusion. Sepsis induces hypotension, impaired response to noradrenaline, and increased cardiac and renal neutrophil infiltration, in addition to increased levels of plasma nitric oxide and lactate. None of these dysfunctions were changed by tadalafil. Additionally, tadalafil treatment did not increase the survival rate of septic rats. CONCLUSIONS Tadalafil improved microcirculation of septic animals; however, no beneficial effects were observed on macrocirculation and inflammation parameters. Then, the potential benefit of tadalafil in the prognosis of sepsis should be evaluated within a therapeutic strategy covering all sepsis injury mechanisms.
Collapse
Affiliation(s)
| | - Gabrielle Delfrate
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lucas Braga Albino
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Gustavo Ferreira Alves
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Junior Garcia Oliveira
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniel Fernandes
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
2
|
Delfrate G, Albino LB, Assreuy J, Fernandes D. CECAL SLURRY AS AN ALTERNATIVE MODEL TO CECAL LIGATION AND PUNCTURE FOR THE STUDY OF SEPSIS-INDUCED CARDIOVASCULAR DYSFUNCTION. Shock 2024; 62:547-555. [PMID: 38888572 DOI: 10.1097/shk.0000000000002412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
ABSTRACT Sepsis is a life-threatening condition widely studied by animal models. Cecal ligation and puncture (CLP) is still regarded as the gold standard model for sepsis. However, CLP has limitations due to its invasiveness and variability. Cecal slurry (CS) model is a nonsurgical and thus less invasive alternative. However, the lack of standardization of the CS model in the literature limits its practical application. Additionally, it is not well studied whether CS model reproduces septic cardiovascular dysfunction in rats, which is a crucial issue in septic patients. Thus, this study aimed to standardize the CS model in Wistar rats and evaluate sepsis-induced cardiovascular dysfunction compared to CLP. Our results showed that CS model induced important features of sepsis cardiovascular dysfunction 24 h after its onset, such as hypotension, tachycardia, and decreased contractile response to vasoconstrictors both in vivo and ex vivo as well changes in renal blood flow. Increases in blood lactate, AST, ALT, creatinine, and urea indicated organ dysfunction. CS model also induced increased production of nitric oxide metabolites and bacterial spread to tissues. CS model causes less animal suffering, it is a nonsurgical model, and, more importantly, it replicates the cardiovascular dysfunction induced by sepsis with better homogeneity than CLP. Therefore, CS model serves as an alternative and possibly as a better model for sepsis research.
Collapse
Affiliation(s)
- Gabrielle Delfrate
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | | |
Collapse
|
3
|
Almasri F, Collotta D, Aimaretti E, Sus N, Aragno M, Dal Bello F, Eva C, Mastrocola R, Landberg R, Frank J, Collino M. Dietary Intake of Fructooligosaccharides Protects against Metabolic Derangements Evoked by Chronic Exposure to Fructose or Galactose in Rats. Mol Nutr Food Res 2024; 68:e2300476. [PMID: 38158337 DOI: 10.1002/mnfr.202300476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/30/2023] [Indexed: 01/03/2024]
Abstract
SCOPE Diets rich in fat and sugars evoke chronic low-grade inflammation, leading to metabolic derangements. This study investigates the impact of fructose and galactose, two commonly consumed simple sugars, on exacerbation of the harmful effects caused by high fat intake. Additionally, the potential efficacy of fructooligosaccharides (FOS), a fermentable dietary fiber, in counteracting these effects is examined. METHODS AND RESULTS Male Sprague-Dawley rats (six/group) are fed 8 weeks as follows: control 5% fat diet (CNT), 20% fat diet (FAT), FAT+10% FOS diet (FAT+FOS), FAT+25% galactose diet (FAT+GAL), FAT+GAL+10% FOS diet (FAT+GAL+FOS), FAT+25% fructose diet (FAT+FRU), FAT+FRU+10% FOS diet (FAT+FRU+FOS). The dietary manipulations tested do not affect body weight gain, blood glucose, or markers of systemic inflammation whereas significant increases in plasma concentrations of triacylglycerols, cholesterol, aspartate aminotransferase, and alanine aminotrasferase are detected in both FAT+FRU and FAT+GAL compared to CNT. In the liver and skeletal muscle, both sugars induce significant accumulation of lipids and advanced glycation end-products (AGEs). FOS supplementation prevents these impairments. CONCLUSION This study extends the understanding of the deleterious effects of a chronic intake of simple sugars and demonstrates the beneficial role of the prebiotic FOS in dampening the sugar-induced metabolic impairments by prevention of lipid and AGEs accumulation.
Collapse
Affiliation(s)
- Fidèle Almasri
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, 70599, Stuttgart, Germany
| | - Debora Collotta
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Corso Raffaello 30, Torino, 10125, Piemonte, Italy
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin, 10125, Piemonte, Italy
| | - Nadine Sus
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, 70599, Stuttgart, Germany
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin, 10125, Piemonte, Italy
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Torino, 10126, Piemonte, Italy
| | - Carola Eva
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Corso Raffaello 30, Torino, 10125, Piemonte, Italy
| | - Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin, 10125, Piemonte, Italy
| | - Rikard Landberg
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, 70599, Stuttgart, Germany
| | - Massimo Collino
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Corso Raffaello 30, Torino, 10125, Piemonte, Italy
| |
Collapse
|
4
|
Calente TJN, Albino LB, de Oliveira JG, Delfrate G, Sordi R, Santos FA, Fernandes D. EARLY BLOOD LACTATE AS A BIOMARKER FOR CARDIOVASCULAR COLLAPSE IN EXPERIMENTAL SEPSIS. Shock 2024; 61:142-149. [PMID: 38010082 DOI: 10.1097/shk.0000000000002265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT Cecal ligation and puncture (CLP) is the gold standard model for studying septic shock, which is characterized by hypotension and hyporeactivity to vasoconstrictors. However, approximately 30% of CLP animals do not exhibit cardiovascular changes, requiring more replicates because of the high variability of the model. Therefore, biomarkers enabling the early prediction of cardiovascular collapse in sepsis would greatly benefit sepsis nonclinical studies, refining experimental models and improving clinical translation. Thus, this study aimed to test whether the early increase in lactate levels could predict hypotension and hyporesponsiveness to vasoconstrictors in a rat model of sepsis. Male and female Wistar rats were subjected to CLP or sham procedure. Tail blood lactate was measured 6, 12, and 24 h after surgery. Then, inflammatory, biochemical, and hemodynamic parameters were evaluated. Rats subjected to CLP developed hypotension, hyporesponsiveness to vasoconstrictors, an intense inflammatory process, and increased plasma markers of organ dysfunction. By using receiver operating characteristics curve analysis, we have established that a lactate value of 2.45 mmol/L can accurately discriminate between a rat exhibiting a normal vasoconstrictive response and a vasoplegic rat with 84% accuracy (area under the curve: 0.84; confidence interval [CI]: 0.67-1.00). The sensitivity, which is the ability to identify a diseased rat (true positive), was 75% (CI: 41-95), and the true negative rate was 81% (CI: 57-93). Therefore, early measurement of lactate levels in sepsis could serve as a valuable biomarker for distinguishing vasoplegic rats from those exhibiting normal vasoconstrictive responses.
Collapse
Affiliation(s)
| | - Lucas Braga Albino
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Gabrielle Delfrate
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Regina Sordi
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Fábio André Santos
- Department of Dentistry, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | | |
Collapse
|
5
|
Zimath PL, Almeida MS, Bruxel MA, Rafacho A. Oral mometasone furoate administration preserves anti-inflammatory action with fewer metabolic adverse effects in rats. Biochem Pharmacol 2023; 210:115486. [PMID: 36893817 DOI: 10.1016/j.bcp.2023.115486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Exogenous glucocorticoids (CGs) possess relevant therapeutic effects but exert diabetogenic actions when in excess. Thus, ligands with potential therapeutic applications and fewer adverse effects are needed. To this, we analyzed whether mometasone furoate (MF), a CG expected to cause fewer side effects, given through systemic routes, could maintain the anti-inflammatory actions without relevant repercussions on metabolism. METHODS The anti-inflammatory effect of MF was evaluated with both peritonitis and colitis models in rodents. Glucose and lipid metabolism were investigated in male and female rats treated daily with MF with different doses and routes of administration for seven days. The involvement of glucocorticoid receptor (GR) on MF actions was assessed in animals pretreated with mifepristone. Also, the potential reversibility of the adverse effects was assessed. Dexamethasone was used as a positive control. RESULTS MF treatment resulted in glucose intolerance in male rats treated through intraperitoneal (ip) but not oral gavage route (og). In female rats, none of the routes led to glucose intolerance. MF treatment attenuated insulin sensitivity and increased pancreatic β-cell mass, regardless of the sex and route of administration. MF treatment through og route did not result in dyslipidemia, as observed in rats treated through the ip route (both sexes). The anti-inflammatory and metabolic adverse effects of MF were GR-dependent, and metabolic outcomes altered by MF administration were reversible. CONCLUSION MF maintains anti-inflammatory activity when administered by systemic routes and exerts less impact on metabolism when administered orally in male and female rats, effects that are GR-dependent and reversible. Category: Metabolic Disorders and Endocrinology.
Collapse
Affiliation(s)
- Priscila L Zimath
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil
| | - Milena S Almeida
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil
| | - Maciel A Bruxel
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil; Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil
| | - Alex Rafacho
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil; Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil.
| |
Collapse
|
6
|
Alves GF, Stoppa I, Aimaretti E, Monge C, Mastrocola R, Porchietto E, Einaudi G, Collotta D, Bertocchi I, Boggio E, Gigliotti CL, Clemente N, Aragno M, Fernandes D, Cifani C, Thiemermann C, Dianzani C, Dianzani U, Collino M. ICOS-Fc as innovative immunomodulatory approach to counteract inflammation and organ injury in sepsis. Front Immunol 2022; 13:992614. [PMID: 36119089 PMCID: PMC9479331 DOI: 10.3389/fimmu.2022.992614] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Inducible T cell co-stimulator (ICOS), an immune checkpoint protein expressed on activated T cells and its unique ligand, ICOSL, which is expressed on antigen-presenting cells and non-hematopoietic cells, have been extensively investigated in the immune response. Recent findings showed that a soluble recombinant form of ICOS (ICOS-Fc) can act as an innovative immunomodulatory drug as both antagonist of ICOS and agonist of ICOSL, modulating cytokine release and cell migration to inflamed tissues. Although the ICOS-ICOSL pathway has been poorly investigated in the septic context, a few studies have reported that septic patients have reduced ICOS expression in whole blood and increased serum levels of osteopontin (OPN), that is another ligand of ICOSL. Thus, we investigated the pathological role of the ICOS-ICOSL axis in the context of sepsis and the potential protective effects of its immunomodulation by administering ICOS-Fc in a murine model of sepsis. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in five-month-old male wild-type (WT) C57BL/6, ICOS-/-, ICOSL-/- and OPN-/- mice. One hour after the surgical procedure, either CLP or Sham (control) mice were randomly assigned to receive once ICOS-Fc, F119SICOS-Fc, a mutated form uncapable to bind ICOSL, or vehicle intravenously. Organs and plasma were collected 24 h after surgery for analyses. When compared to Sham mice, WT mice that underwent CLP developed within 24 h a higher clinical severity score, a reduced body temperature, an increase in plasma cytokines (TNF-α, IL-1β, IL-6, IFN-γ and IL-10), liver injury (AST and ALT) and kidney (creatinine and urea) dysfunction. Administration of ICOS-Fc to WT CLP mice reduced all of these abnormalities caused by sepsis. Similar beneficial effects were not seen in CLP-mice treated with F119SICOS-Fc. Treatment of CLP-mice with ICOS-Fc also attenuated the sepsis-induced local activation of FAK, P38 MAPK and NLRP3 inflammasome. ICOS-Fc seemed to act at both sides of the ICOS-ICOSL interaction, as the protective effect was lost in septic knockout mice for the ICOS or ICOSL genes, whereas it was maintained in OPN knockout mice. Collectively, our data show the beneficial effects of pharmacological modulation of the ICOS-ICOSL pathway in counteracting the sepsis-induced inflammation and organ dysfunction.
Collapse
Affiliation(s)
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Chiara Monge
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Elisa Porchietto
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Giacomo Einaudi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Debora Collotta
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy
| | - Ilaria Bertocchi
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Nausicaa Clemente
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Daniel Fernandes
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Christoph Thiemermann
- William Harvey Research Institute, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Massimo Collino
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy
- *Correspondence: Massimo Collino,
| |
Collapse
|
7
|
The role of nitric oxide in sepsis-associated kidney injury. Biosci Rep 2022; 42:231441. [PMID: 35722824 PMCID: PMC9274646 DOI: 10.1042/bsr20220093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 01/09/2023] Open
Abstract
Sepsis is one of the leading causes of acute kidney injury (AKI), and several mechanisms including microcirculatory alterations, oxidative stress, and endothelial cell dysfunction are involved. Nitric oxide (NO) is one of the common elements to all these mechanisms. Although all three nitric oxide synthase (NOS) isoforms are constitutively expressed within the kidneys, they contribute in different ways to nitrergic signaling. While the endothelial (eNOS) and neuronal (nNOS) isoforms are likely to be the main sources of NO under basal conditions and participate in the regulation of renal hemodynamics, the inducible isoform (iNOS) is dramatically increased in conditions such as sepsis. The overexpression of iNOS in the renal cortex causes a shunting of blood to this region, with consequent medullary ischemia in sepsis. Differences in the vascular reactivity among different vascular beds may also help to explain renal failure in this condition. While most of the vessels present vasoplegia and do not respond to vasoconstrictors, renal microcirculation behaves differently from nonrenal vascular beds, displaying similar constrictor responses in control and septic conditions. The selective inhibition of iNOS, without affecting other isoforms, has been described as the ideal scenario. However, iNOS is also constitutively expressed in the kidneys and the NO produced by this isoform is important for immune defense. In this sense, instead of a direct iNOS inhibition, targeting the NO effectors such as guanylate cyclase, potassium channels, peroxynitrite, and S-nitrosothiols, may be a more interesting approach in sepsis-AKI and further investigation is warranted.
Collapse
|
8
|
Alves GF, Aimaretti E, Einaudi G, Mastrocola R, de Oliveira JG, Collotta D, Porchietto E, Aragno M, Cifani C, Sordi R, Thiemermann C, Fernandes D, Collino M. Pharmacological Inhibition of FAK-Pyk2 Pathway Protects Against Organ Damage and Prolongs the Survival of Septic Mice. Front Immunol 2022; 13:837180. [PMID: 35178052 PMCID: PMC8843946 DOI: 10.3389/fimmu.2022.837180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/14/2022] [Indexed: 12/29/2022] Open
Abstract
Sepsis and septic shock are associated with high mortality and are considered one of the major public health concerns. The onset of sepsis is known as a hyper-inflammatory state that contributes to organ failure and mortality. Recent findings suggest a potential role of two non-receptor protein tyrosine kinases, namely Focal adhesion kinase (FAK) and Proline-rich tyrosine kinase 2 (Pyk2), in the inflammation associated with endometriosis, cancer, atherosclerosis and asthma. Here we investigate the role of FAK-Pyk2 in the pathogenesis of sepsis and the potential beneficial effects of the pharmacological modulation of this pathway by administering the potent reversible dual inhibitor of FAK and Pyk2, PF562271 (PF271) in a murine model of cecal ligation and puncture (CLP)-induced sepsis. Five-month-old male C57BL/6 mice underwent CLP or Sham surgery and one hour after the surgical procedure, mice were randomly assigned to receive PF271 (25 mg/kg, s.c.) or vehicle. Twenty-four hours after surgery, organs and plasma were collected for analyses. In another group of mice, survival rate was assessed every 12 h over the subsequent 5 days. Experimental sepsis led to a systemic cytokine storm resulting in the formation of excessive amounts of both pro-inflammatory cytokines (TNF-α, IL-1β, IL-17 and IL-6) and the anti-inflammatory cytokine IL-10. The systemic inflammatory response was accompanied by high plasma levels of ALT, AST (liver injury), creatinine, (renal dysfunction) and lactate, as well as a high, clinical severity score. All parameters were attenuated following PF271 administration. Experimental sepsis induced an overactivation of FAK and Pyk2 in liver and kidney, which was associated to p38 MAPK activation, leading to increased expression/activation of several pro-inflammatory markers, including the NLRP3 inflammasome complex, the adhesion molecules ICAM-1, VCAM-1 and E-selectin and the enzyme NOS-2 and myeloperoxidase. Treatment with PF271 inhibited FAK-Pyk2 activation, thus blunting the inflammatory abnormalities orchestrated by sepsis. Finally, PF271 significantly prolonged the survival of mice subjected to CLP-sepsis. Taken together, our data show for the first time that the FAK-Pyk2 pathway contributes to sepsis-induced inflammation and organ injury/dysfunction and that the pharmacological modulation of this pathway may represents a new strategy for the treatment of sepsis.
Collapse
Affiliation(s)
- Gustavo Ferreira Alves
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy.,Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giacomo Einaudi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Debora Collotta
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy
| | - Elisa Porchietto
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Regina Sordi
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Christoph Thiemermann
- William Harvey Research Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Daniel Fernandes
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Massimo Collino
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy
| |
Collapse
|
9
|
Cheng W, Pang H, Campen MJ, Zhang J, Li Y, Gao J, Ren D, Ji X, Rothman N, Lan Q, Zheng Y, Leng S, Hu Z, Tang J. Circulatory metabolites trigger ex vivo arterial endothelial cell dysfunction in population chronically exposed to diesel exhaust. Part Fibre Toxicol 2022; 19:20. [PMID: 35313899 PMCID: PMC8939222 DOI: 10.1186/s12989-022-00463-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/15/2022] [Indexed: 11/27/2022] Open
Abstract
Background Chronic exposure to diesel exhaust has a causal link to cardiovascular diseases in various environmental and occupational settings. Arterial endothelial cell function plays an important role in ensuring proper maintenance of cardiovascular homeostasis and the endothelial cell dysfunction by circulatory inflammation is a hallmark in cardiovascular diseases. Acute exposure to diesel exhaust in controlled exposure studies leads to artery endothelial cells dysfunction in previous study, however the effect of chronic exposure remains unknown. Results We applied an ex vivo endothelial biosensor assay for serum samples from 133 diesel engine testers (DETs) and 126 non-DETs with the aim of identifying evidence of increased risk for cardiovascular diseases. Environmental monitoring suggested that DETs were exposed to high levels of diesel exhaust aerosol (282.3 μg/m3 PM2.5 and 135.2 μg/m3 elemental carbon). Surprisingly, chronic diesel exhaust exposure was associated with a pro-inflammatory phenotype in the ex vivo endothelial cell model, in a dose-dependent manner with CCL5 and VCAM as most affected genes. This dysfunction was not mediated by reduction in circulatory pro-inflammatory factors but significantly associated with a reduction in circulatory metabolites cGMP and an increase in primary DNA damage in leucocyte in a dose-dependent manner, which also explained a large magnitude of association between diesel exhaust exposure and ex vivo endothelial biosensor response. Exogenous cGMP addition experiment further confirmed the induction of ex vivo biosensor gene expressions in endothelial cells treated with physiologically relevant levels of metabolites cGMP. Conclusion Serum-borne bioactivity caused the arterial endothelial cell dysfunction may attribute to the circulatory metabolites based on the ex vivo biosensor assay. The reduced cGMP and increased polycyclic aromatic hydrocarbons metabolites-induced cyto/geno-toxic play important role in the endothelial cell dysfunction of workers chronic exposure to diesel exhaust. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00463-0.
Collapse
Affiliation(s)
- Wenting Cheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Huanhuan Pang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jianzhong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Yanting Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Jinling Gao
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Dunqiang Ren
- Department of Respiratory Medicine, Affiliated Hospital of Medical College of Qingdao University, Qingdao University, Qingdao, 266021, Shandong, China
| | - Xiaoya Ji
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Shuguang Leng
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA. .,Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA.
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Jinglong Tang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China.
| |
Collapse
|
10
|
Satoh T, Wang L, Espinosa-Diez C, Wang B, Hahn SA, Noda K, Rochon ER, Dent MR, Levine A, Baust JJ, Wyman S, Wu YL, Triantafyllou GA, Tang Y, Reynolds M, Shiva S, St Hilaire C, Gomez D, Goncharov DA, Goncharova EA, Chan SY, Straub AC, Lai YC, McTiernan CF, Gladwin MT. Metabolic Syndrome Mediates ROS-miR-193b-NFYA-Dependent Downregulation of Soluble Guanylate Cyclase and Contributes to Exercise-Induced Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction. Circulation 2021; 144:615-637. [PMID: 34157861 PMCID: PMC8384699 DOI: 10.1161/circulationaha.121.053889] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Many patients with heart failure with preserved ejection fraction have metabolic syndrome and develop exercise-induced pulmonary hypertension (EIPH). Increases in pulmonary vascular resistance in patients with heart failure with preserved ejection fraction portend a poor prognosis; this phenotype is referred to as combined precapillary and postcapillary pulmonary hypertension (CpcPH). Therapeutic trials for EIPH and CpcPH have been disappointing, suggesting the need for strategies that target upstream mechanisms of disease. This work reports novel rat EIPH models and mechanisms of pulmonary vascular dysfunction centered around the transcriptional repression of the soluble guanylate cyclase (sGC) enzyme in pulmonary artery (PA) smooth muscle cells. METHODS We used obese ZSF-1 leptin-receptor knockout rats (heart failure with preserved ejection fraction model), obese ZSF-1 rats treated with SU5416 to stimulate resting pulmonary hypertension (obese+sugen, CpcPH model), and lean ZSF-1 rats (controls). Right and left ventricular hemodynamics were evaluated using implanted catheters during treadmill exercise. PA function was evaluated with magnetic resonance imaging and myography. Overexpression of nuclear factor Y α subunit (NFYA), a transcriptional enhancer of sGC β1 subunit (sGCβ1), was performed by PA delivery of adeno-associated virus 6. Treatment groups received the SGLT2 inhibitor empagliflozin in drinking water. PA smooth muscle cells from rats and humans were cultured with palmitic acid, glucose, and insulin to induce metabolic stress. RESULTS Obese rats showed normal resting right ventricular systolic pressures, which significantly increased during exercise, modeling EIPH. Obese+sugen rats showed anatomic PA remodeling and developed elevated right ventricular systolic pressure at rest, which was exacerbated with exercise, modeling CpcPH. Myography and magnetic resonance imaging during dobutamine challenge revealed PA functional impairment of both obese groups. PAs of obese rats produced reactive oxygen species and decreased sGCβ1 expression. Mechanistically, cultured PA smooth muscle cells from obese rats and humans with diabetes or treated with palmitic acid, glucose, and insulin showed increased mitochondrial reactive oxygen species, which enhanced miR-193b-dependent RNA degradation of nuclear factor Y α subunit (NFYA), resulting in decreased sGCβ1-cGMP signaling. Forced NYFA expression by adeno-associated virus 6 delivery increased sGCβ1 levels and improved exercise pulmonary hypertension in obese+sugen rats. Treatment of obese+sugen rats with empagliflozin improved metabolic syndrome, reduced mitochondrial reactive oxygen species and miR-193b levels, restored NFYA/sGC activity, and prevented EIPH. CONCLUSIONS In heart failure with preserved ejection fraction and CpcPH models, metabolic syndrome contributes to pulmonary vascular dysfunction and EIPH through enhanced reactive oxygen species and miR-193b expression, which downregulates NFYA-dependent sGCβ1 expression. Adeno-associated virus-mediated NFYA overexpression and SGLT2 inhibition restore NFYA-sGCβ1-cGMP signaling and ameliorate EIPH.
Collapse
Affiliation(s)
- Taijyu Satoh
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Longfei Wang
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cristina Espinosa-Diez
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bing Wang
- Departments of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott A. Hahn
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kentaro Noda
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth R. Rochon
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew R. Dent
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andrea Levine
- Pulmonary & Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffrey J. Baust
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samuel Wyman
- Rangos Research Center Animal Imaging Core and Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yijen L. Wu
- Rangos Research Center Animal Imaging Core and Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Georgios A. Triantafyllou
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ying Tang
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mike Reynolds
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cynthia St Hilaire
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dmitry A. Goncharov
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis, Davis, CA, USA
| | - Elena A. Goncharova
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis, Davis, CA, USA
| | - Stephen Y. Chan
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Adam C. Straub
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Charles F. McTiernan
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark T. Gladwin
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Mokra D, Mokry J. Phosphodiesterase Inhibitors in Acute Lung Injury: What Are the Perspectives? Int J Mol Sci 2021; 22:1929. [PMID: 33669167 PMCID: PMC7919656 DOI: 10.3390/ijms22041929] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
Despite progress in understanding the pathophysiology of acute lung damage, currently approved treatment possibilities are limited to lung-protective ventilation, prone positioning, and supportive interventions. Various pharmacological approaches have also been tested, with neuromuscular blockers and corticosteroids considered as the most promising. However, inhibitors of phosphodiesterases (PDEs) also exert a broad spectrum of favorable effects potentially beneficial in acute lung damage. This article reviews pharmacological action and therapeutical potential of nonselective and selective PDE inhibitors and summarizes the results from available studies focused on the use of PDE inhibitors in animal models and clinical studies, including their adverse effects. The data suggest that xanthines as representatives of nonselective PDE inhibitors may reduce acute lung damage, and decrease mortality and length of hospital stay. Various (selective) PDE3, PDE4, and PDE5 inhibitors have also demonstrated stabilization of the pulmonary epithelial-endothelial barrier and reduction the sepsis- and inflammation-increased microvascular permeability, and suppression of the production of inflammatory mediators, which finally resulted in improved oxygenation and ventilatory parameters. However, the current lack of sufficient clinical evidence limits their recommendation for a broader use. A separate chapter focuses on involvement of cyclic adenosine monophosphate (cAMP) and PDE-related changes in its metabolism in association with coronavirus disease 2019 (COVID-19). The chapter illuminates perspectives of the use of PDE inhibitors as an add-on treatment based on actual experimental and clinical trials with preliminary data suggesting their potential benefit.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| |
Collapse
|
12
|
Su H, Ma C, Li H. Anti-infection mechanism of phosphodiesterase-5 inhibitors and their roles in coronavirus disease 2019 (Review). Exp Ther Med 2021; 21:320. [PMID: 33732293 PMCID: PMC7903479 DOI: 10.3892/etm.2021.9751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/19/2021] [Indexed: 11/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has a variety of impacts on the human body. Severe acute respiratory syndrome coronavirus 2 is the pathogen that causes COVID-19. It invades human tissues through the receptor angiotensin-converting enzyme 2, resulting in an imbalance in the angiotensin II (AngII) level and upregulation of renin-angiotensin system/AngII pathway activity. Furthermore, the binding of AngII to its receptor leads to vasoconstriction, endothelial injury and intravascular thrombosis. In addition, COVID-19 may have adverse effects on male reproductive organs and a marked impact on male reproductive health. Phosphodiesterase-5 inhibitors (PDE5Is) may improve vascular endothelial function, promote testicular and systemic blood circulation and testosterone secretion and enhance epididymal function, as well as sperm maturation and capacitation. PDE5Is may also be of use in the treatment of infectious diseases by enhancing immunity and anti-inflammatory responses and improving vascular endothelial function. Based on the pharmacological mechanism of PDE5Is, they are of unique value in the fight against infectious diseases and may be effective in combination with direct antiviral drugs. The anti-infection mechanisms of PDE5Is and their roles in COVID-19 were reviewed in the present study.
Collapse
Affiliation(s)
- Hao Su
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Chengquan Ma
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| |
Collapse
|
13
|
Pinto JMO, Leão AF, Alves GF, Mendes C, França MT, Fernandes D, Stulzer HK. New supersaturating drug delivery system as strategy to improve apparent solubility of candesartan cilexetil in biorelevant medium. Pharm Dev Technol 2019; 25:89-99. [DOI: 10.1080/10837450.2019.1675171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Aline Franciane Leão
- Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Gustavo Ferreira Alves
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Cassiana Mendes
- Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Maria Terezinha França
- Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniel Fernandes
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Hellen Karine Stulzer
- Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|