1
|
Broadley KJ. Reappraisal of the mechanism of cardiovascular responses to sympathomimetic amines in anaesthetised rats: dual α 1-adrenoceptor and trace amine receptor mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2627-2639. [PMID: 39240355 PMCID: PMC11919973 DOI: 10.1007/s00210-024-03218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/04/2024] [Indexed: 09/07/2024]
Abstract
Established dogma is that sympathomimetic amines, including β-phenylethylamine (PEA), increase blood pressure by releasing noradrenaline from sympathetic neurons. Recent evidence allowing longer contact with isolated immersed tissues indicates other mechanisms. The present study re-evaluates the mechanism of pressor responses to PEA in anaesthetised rats with longer exposure to infusions. Blood pressure and heart rate were monitored by cannulating a common carotid artery of anaesthetised male Sprague-Dawley rats. Drugs were administered by bolus doses or by 20-min infusions via a cannulated jugular vein. Increases in blood pressure by bolus doses of the α-adrenoceptor agonist, phenylephrine, were converted to depressor responses by prazosin and therefore α-adrenoceptor-mediated. Pressor responses to bolus doses of PEA were reduced. PEA infusions yielded four-phase responses: An initial increase in pressure (phase 1) blocked by prazosin was due to α-adrenoceptor vasoconstriction and a secondary fall in pressure (phase 2) due to vasodilatation by nitric oxide release. A later pressure increase (phase 3), further elevated after infusion stopped (phase 4), was not attenuated by prazosin and therefore non-adrenergic. This study showed for the first time that the sympathomimetic amine, β-phenylethylamine, increases blood pressure by two mechanisms. The established indirect sympathomimetic mechanism applies to bolus dose administration. However, with prolonged exposure to infusions, an additional slow-onset sustained non-adrenergic blood pressure increase occurs, most likely mediated via trace amine-associated receptors (TAAR-1). This response will dominate with prolonged exposures in clinical practice. These results prompt a re-evaluation of established dogma on the indirect sympathomimetic mechanisms of these amines.
Collapse
Affiliation(s)
- Kenneth J Broadley
- Division of Pharmacology, Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward Vll Avenue, Cathays Park, Cardiff, Wales, CF10 3NB, UK.
| |
Collapse
|
2
|
Pinckaers NET, Blankesteijn WM, Mircheva A, Shi X, Opperhuizen A, van Schooten FJ, Vrolijk MF. In Vitro Activation of Human Adrenergic Receptors and Trace Amine-Associated Receptor 1 by Phenethylamine Analogues Present in Food Supplements. Nutrients 2024; 16:1567. [PMID: 38892500 PMCID: PMC11174489 DOI: 10.3390/nu16111567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Pre-workout supplements are popular among sport athletes and overweight individuals. Phenethylamines (PEAs) and alkylamines (AA) are widely present in these supplements. Although the health effects of these analogues are not well understood yet, they are hypothesised to be agonists of adrenergic (ADR) and trace amine-associated receptors (TAARs). Therefore, we aimed to pharmacologically characterise these compounds by investigating their activating properties of ADRs and TAAR1 in vitro. The potency and efficacy of the selected PEAs and AAs was studied by using cell lines overexpressing human ADRα1A/α1B/α1D/α2a/α2B/β1/β2 or TAAR1. Concentration-response relationships are expressed as percentages of the maximal signal obtained by the full ADR agonist adrenaline or the full TAAR1 agonist phenethylamine. Multiple PEAs activated ADRs (EC50 = 34 nM-690 µM; Emax = 8-105%). Almost all PEAs activated TAAR1 (EC50 = 1.8-92 µM; Emax = 40-104%). Our results reveal the pharmacological profile of PEAs and AAs that are often used in food supplements. Several PEAs have strong agonistic properties on multiple receptors and resemble potencies of the endogenous ligands, indicating that they might further stimulate the already activated sympathetic nervous system in exercising athletes via multiple mechanisms. The use of supplements containing one, or a combination of, PEA(s) may pose a health risk for their consumers.
Collapse
Affiliation(s)
- Nicole E. T. Pinckaers
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
- Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - W. Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Anastasiya Mircheva
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Xiao Shi
- Research Service, Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, 3540 AA Utrecht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
- Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Misha F. Vrolijk
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
- Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
3
|
Broadley KJ, Mehta D. Trace amine-induced vasoconstriction of human mammary artery and saphenous vein. Vascul Pharmacol 2023; 151:107191. [PMID: 37399882 DOI: 10.1016/j.vph.2023.107191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Sympathomimetic amines, including β-phenylethylamine (PEA), constrict animal blood vessels but their mechanism of action is not now thought to be through α-adrenoceptors and release of noradrenaline but via trace amine-associated receptors (TAARs). This information is not available for human blood vessels. Functional studies were therefore performed on human arteries and veins to establish whether they constrict to PEA and whether any constrictions are adrenoceptor-mediated. Isolated internal mammary artery or saphenous vein rings were set up in Kreb's-bicarbonate solution at 37 ± 0.5 °C gassed with O2:CO2 (95:5) under class 2 containment. Isometric contractions were measured and cumulative concentration-response curves for PEA or the α-adrenoceptor agonist, phenylephrine were established. PEA showed concentration-related contractions. The maximum was significantly greater in arteries (1.53 ± 0.31 g, n = 9) than veins (0.55 ± 0.18 g, n = 10), but not when plotted as % of KCl contractions. PEA showed slowly developing contractions plateauing at 17,3 ± 3.7 min in mammary artery. The reference α-adrenoceptor agonist, phenylephrine, exhibited more rapid onset (peak 5.0 ± 1.2 min) but non-sustained contractions. In saphenous veins, PEA (62.8 ± 10.7%) and phenylephrine (61.4 ± 9.7%, n = 4) displayed the same maximum, but phenylephrine was more potent. The α1-adrenoceptor antagonist, prazosin (1 μM), blocked phenylephrine contractions of mammary arteries but not PEA contractions in either vessel. PEA causes substantial vasoconstriction of human saphenous vein and mammary artery, which explains its vasopressor actions. This response, however, was not mediated via α1-adrenoceptors, but likely due to TAARs. The classification of PEA as a sympathomimetic amine on human blood vessels is therefore no longer valid and requires revision.
Collapse
Affiliation(s)
- Kenneth J Broadley
- Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward Vll Avenue, Cardiff, Wales CF10 3NB, UK.
| | - Dheeraj Mehta
- Department of Cardiothoracic Surgery, University Hospital of Wales, Cardiff, Wales CF14 4XW, UK
| |
Collapse
|
4
|
Biringer RG. Migraine signaling pathways: amino acid metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2022; 477:2269-2296. [PMID: 35482233 DOI: 10.1007/s11010-022-04438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Migraine is a common, debilitating disorder for which attacks typically result in a throbbing, pulsating headache. Although much is known about migraine, its complexity renders understanding the complete etiology currently out of reach. However, two important facts are clear, the brain and the metabolism of the migraineur differ from that of the non-migraineur. This review centers on the altered amino acid metabolism in migraineurs and how it helps define the pathology of migraine.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
5
|
Amato A, Terzo S, Marchesa P, Maffongelli A, Martorana M, Scoglio S, Mulè F. Spasmolytic Effects of Aphanizomenon Flos Aquae (AFA) Extract on the Human Colon Contractility. Nutrients 2021; 13:nu13103445. [PMID: 34684446 PMCID: PMC8539423 DOI: 10.3390/nu13103445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The blue-green algae Aphanizomenon flos aquae (AFA), rich in beneficial nutrients, exerts various beneficial effects, acting in different organs including the gut. Klamin® is an AFA extract particularly rich in β-PEA, a trace-amine considered a neuromodulator in the central nervous system. To date, it is not clear if β-PEA exerts a role in the enteric nervous system. The aims of the present study were to investigate the effects induced by Klamin® on the human distal colon mechanical activity, to analyze the mechanism of action, and to verify a β-PEA involvement. The organ bath technique, RT-PCR, and immunohistochemistry (IHC) were used. Klamin® reduced, in a concentration-dependent manner, the amplitude of the spontaneous contractions. EPPTB, a trace-amine receptor (TAAR1) antagonist, significantly antagonized the inhibitory effects of both Klamin® and exogenous β-PEA, suggesting a trace-amine involvement in the Klamin® effects. Accordingly, AphaMax®, an AFA extract containing lesser amount of β-PEA, failed to modify colon contractility. Moreover, the Klamin® effects were abolished by tetrodotoxin, a neural blocker, but not by L-NAME, a nitric oxide-synthase inhibitor. On the contrary methysergide, a serotonin receptor antagonist, significantly antagonized the Klamin® effects, as well as the contractility reduction induced by 5-HT. The RT-PCR analysis revealed TAAR1 gene expression in the colon and the IHC experiments showed that 5-HT-positive neurons are co-expressed with TAAR1 positive neurons. In conclusion, the results of this study suggest that Klamin® exerts spasmolytic effects in human colon contractility through β-PEA, that, by activating neural TAAR1, induce serotonin release from serotoninergic neurons of the myenteric plexus.
Collapse
Affiliation(s)
- Antonella Amato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (S.T.); (F.M.)
- Correspondence: ; Tel.: +39-091-2389-7506
| | - Simona Terzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (S.T.); (F.M.)
| | - Pierenrico Marchesa
- U.O. Oncology Hospital, A.R.N.A.S. Ospedali Civico Di Cristina Benfratelli, Palermo, Via Carmelo Lazzaro, 4, 90127 Palermo, Italy; (P.M.); (A.M.); (M.M.)
| | - Angela Maffongelli
- U.O. Oncology Hospital, A.R.N.A.S. Ospedali Civico Di Cristina Benfratelli, Palermo, Via Carmelo Lazzaro, 4, 90127 Palermo, Italy; (P.M.); (A.M.); (M.M.)
| | - Martina Martorana
- U.O. Oncology Hospital, A.R.N.A.S. Ospedali Civico Di Cristina Benfratelli, Palermo, Via Carmelo Lazzaro, 4, 90127 Palermo, Italy; (P.M.); (A.M.); (M.M.)
| | | | - Flavia Mulè
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (S.T.); (F.M.)
| |
Collapse
|
6
|
Gajęcka M, Majewski MS, Zielonka Ł, Grzegorzewski W, Onyszek E, Lisieska-Żołnierczyk S, Juśkiewicz J, Babuchowski A, Gajęcki MT. Concentration of Zearalenone, Alpha-Zearalenol and Beta-Zearalenol in the Myocardium and the Results of Isometric Analyses of the Coronary Artery in Prepubertal Gilts. Toxins (Basel) 2021; 13:toxins13060396. [PMID: 34199438 PMCID: PMC8228058 DOI: 10.3390/toxins13060396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
The carry-over of zearalenone (ZEN) to the myocardium and its effects on coronary vascular reactivity in vivo have not been addressed in the literature to date. Therefore, the objective of this study was to verify the hypothesis that low ZEN doses (MABEL, NOAEL and LOAEL) administered per os to prepubertal gilts for 21 days affect the accumulation of ZEN, α-ZEL and β-ZEL in the myocardium and the reactivity of the porcine coronary arteries to vasoconstrictors: acetylcholine, potassium chloride and vasodilator sodium nitroprusside. The contractile response to acetylcholine in the presence of a cyclooxygenase (COX) inhibitor, indomethacin and / or an endothelial nitric oxide synthase (e-NOS) inhibitor, L-NAME was also studied. The results of this study indicate that the carry-over of ZEN and its metabolites to the myocardium is a highly individualized process that occurs even at very low mycotoxin concentrations. The concentrations of the accumulated ZEN metabolites are inversely proportional to each other due to biotransformation processes. The levels of vasoconstrictors, acetylcholine and potassium chloride, were examined in the left anterior descending branch of the porcine coronary artery after oral administration of ZEN. The LOAEL dose clearly decreased vasoconstriction in response to both potassium chloride and acetylcholine (P < 0.05 for all values) and increased vasodilation in the presence of sodium nitroprusside (P = 0.021). The NOAEL dose significantly increased vasoconstriction caused by acetylcholine (P < 0.04), whereas the MABEL dose did not cause significant changes in the vascular response. Unlike higher doses of ZEN, 5 μg/kg had no negative influence on the vascular system.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (Ł.Z.); (M.T.G.)
- Correspondence:
| | - Michał S. Majewski
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland;
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (Ł.Z.); (M.T.G.)
| | - Waldemar Grzegorzewski
- Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland;
- Interdisciplinary Center for Preclinical and Clinical Research, Department of Biotechnology, Institute of Biol-ogy and Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Po-land
| | - Ewa Onyszek
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Sylwia Lisieska-Żołnierczyk
- Independent Public Health Care Centre of the Ministry of the Interior and Administration, and the Warmia and Mazury Oncology Centre in Olsztyn, Wojska Polskiego 37, 10-228 Olsztyn, Poland;
| | - Jerzy Juśkiewicz
- Department of Biological Function of Foods, Institute of Animal Reproduction and Food Research, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Andrzej Babuchowski
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Maciej T. Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (Ł.Z.); (M.T.G.)
| |
Collapse
|
7
|
Modulation of vascular responses of guinea-pig aorta by non-endothelial nitric oxide: A minor role for the endothelium. Vascul Pharmacol 2019; 121:106580. [DOI: 10.1016/j.vph.2019.106580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/19/2019] [Accepted: 07/21/2019] [Indexed: 11/21/2022]
|
8
|
Batista‐Lima FJ, Rodrigues FMDS, Gadelha KKL, Oliveira DMND, Carvalho EF, Oliveira TL, Nóbrega FC, Brito TS, Magalhães PJC. Dual excitatory and smooth muscle‐relaxant effect of β‐phenylethylamine on gastric fundus strips in rats. Clin Exp Pharmacol Physiol 2018; 46:40-47. [DOI: 10.1111/1440-1681.13033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/27/2018] [Accepted: 09/12/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Francisco José Batista‐Lima
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza CE Brazil
| | | | - Kalinne Kelly Lima Gadelha
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza CE Brazil
| | | | - Emanuella Feitosa Carvalho
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza CE Brazil
| | - Tatyanne Linhares Oliveira
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza CE Brazil
| | - Fernanda Carlos Nóbrega
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza CE Brazil
| | - Teresinha Silva Brito
- Departament of Health Sciences Rural Federal University of the Semiarid Mossoró RN Brazil
| | | |
Collapse
|