1
|
He Z, Tan X, Yuan M, Chen L, Meng Y, Wang Q, Hu J, Qiu Z, Yang Y. Anethole trithione mitigates LPS/D-Gal-induced acute liver injury by suppressing ROS production and NF-κB activity. Int Immunopharmacol 2025; 152:114371. [PMID: 40054324 DOI: 10.1016/j.intimp.2025.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/14/2025] [Accepted: 02/24/2025] [Indexed: 03/24/2025]
Abstract
Acute liver injury (ALI) is a prevalent form of hepatic disease associated with significant morbidity and mortality due to medical treatments, exposure to toxins or viral infections. Anethole trithione (ATT) is a heterocyclic sulfur compound recognized for its chemoprotective properties against cancer and drug-induced toxicity. This study aimed to evaluate the effectiveness of ATT in the treatment of ALI. The therapeutic effects of ATT on hepatic injury were evaluated in vivo by inducing ALI in mice through the administration of lipopolysaccharide (LPS) and D-galactosamine (D-Gal). Additionally, HepG2 and Huh7 cells exposed to LPS were utilized to investigate the underlying mechanisms in vitro. The results indicated that ATT significantly reduced the production of reactive oxygen species (ROS), mitigated oxidative stress-related biochemical markers, and inhibited hepatocyte apoptosis in vivo, resulting in marked improvement in ALI in the murine model. Mechanistic studies conducted both in vivo and in vitro demonstrated that ATT alleviates LPS/D-Gal-induced ALI by inhibiting ROS production and the activity of nuclear factor-kappa B (NF-κB). Collectively, these findings underscore the potential therapeutic benefits of ATT in the management of ALI.
Collapse
Affiliation(s)
- Zhen He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiangyun Tan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ming Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Liang Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qi Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Junjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Zhenpeng Qiu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China.
| | - Yuan Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China.
| |
Collapse
|
2
|
Zhang W, Guo S, Dou J, Zhang X, Shi F, Zhang C, Zhang H, Lan X, Su Y. Berberine and its derivatives: mechanisms of action in myocardial vascular endothelial injury - a review. Front Pharmacol 2025; 16:1543697. [PMID: 40103596 PMCID: PMC11914797 DOI: 10.3389/fphar.2025.1543697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/31/2025] [Indexed: 03/20/2025] Open
Abstract
Myocardial vascular endothelial injury serves as a crucial inducer of cardiovascular diseases. Mechanisms such as endoplasmic reticulum stress, apoptosis, inflammation, oxidative stress, autophagy, platelet dysfunction, and gut microbiota imbalance are intimately linked to this condition. Berberine and its derivatives have demonstrated potential in modulating these mechanisms. This article reviews the pathogenesis of endothelial injury in myocardial vessels, the pharmacological effects of berberine and its derivatives, particularly their interactions with targets implicated in vascular endothelial injury. Furthermore, it discusses clinical applications, methods to enhance bioavailability, and toxicity concerns, aiming to lay a foundation for the development of BBR as a therapeutic agent for cardiovascular diseases.
Collapse
Affiliation(s)
- Wenhui Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Siyi Guo
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinjin Dou
- Department of Cardiovascular, The Fourth Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Fan Shi
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Chun Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Huxiao Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaodong Lan
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yi Su
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Long D, Mao C, Zhang W, Zhu Y, Xu Y. Natural products for the treatment of ulcerative colitis: focus on the JAK/STAT pathway. Front Immunol 2025; 16:1538302. [PMID: 40078988 PMCID: PMC11897526 DOI: 10.3389/fimmu.2025.1538302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Ulcerative colitis (UC) is an autoimmune disease with an incompletely understood pathogenesis. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway plays a key role in immune response and inflammation. More and more studies demonstrated that JAK/STAT signaling pathway is associated with the pathogenesis of UC. The JAK/STAT pathway affects UC in multiple ways by regulating intestinal inflammatory response, affecting intestinal mucosal barrier, modulating T cell homeostasis, and regulating macrophages. Encouragingly, natural products are promising candidates for the treatment of UC. Natural products have the advantage of being multi-targeted and rich in therapeutic modalities. This review summarized the research progress of JAK/STAT pathway-mediated UC. Furthermore, the latest studies on natural products targeting the JAK/STAT pathway for the treatment of UC were systematically summarized, including active ingredients such as arbutin, aloe polysaccharide, berberine, matrine, curcumin, Ginsenoside Rh2, and so on. The aim of this paper is to provide new ideas for drug development to regulate JAK/STAT signaling for treating UC.
Collapse
Affiliation(s)
- Dan Long
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Wu H, Wu L, Luo L, Wu YT, Zhang QX, Li HY, Zhang BF. Quercetin inhibits mitophagy-mediated apoptosis and inflammatory response by targeting the PPARγ/PGC-1α/NF-κB axis to improve acute liver failure. Int Immunopharmacol 2024; 143:113444. [PMID: 39454407 DOI: 10.1016/j.intimp.2024.113444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Reactive oxygen species (ROS) from mitochondrial dysfunction are critical in triggering apoptosis and inflammation in acute liver failure (ALF). Quercetin (QUE), an antioxidant, is renowned for its therapeutic effects onliverdiseases. There are no studies on whether QUE regulates mitophagy level in hepatocytes to inhibit ALF. OBJECTIVE This study investigates QUE's protective effects on ALF and elucidates the mechanisms involved. METHODS The ALF and hepatocyte inflammatory injury model was established using LPS and D-Galn. To predict potential targets and mechanisms of QUE in ALF treatment, transcriptomics, network pharmacology, molecular docking techniques, and ChIP were employed. The expression level related to mitophagy, apoptosis, and signaling pathways were detected by CCK8, IHC, IF staining, TUNEL, RT-qPCR, TEM, Western blotting, ELISA, and flow cytometry. RESULTS Network pharmacology and transcriptomics revealed common targets between QUE and ALF. Enrichment analysis showed that the anti-ALF targets of QUE were significantly associated with mitochondria and NF-κB-related pathways. Subsequent experiments showed that QUE pretreatment significantly alleviated the loss of hepatocyte viability, enhanced mitochondrial membrane potential, activated mitophagy, and promoted the clearance of damaged mitochondria, thereby reducing ROS accumulation, significantly reducing cell apoptosis and inflammatory responses, reducing ALT and AST levels, and improving liver tissue pathology. Mechanistically, molecular docking, DARTS, and CETSA analyses confirmed that QUE directly binds to the PPARγ molecule, which reduced binding to IκB and significantly inhibit the NF-κB pathway to exert its protective effects. CONCLUSION In short, our results provide the first evidence that QUE improves acute liver failure by promoting mitophagy through regulating the PPARγ/PGC-1α/NF-κB axis and inhibiting apoptosis and inflammatory responses mediated by mitochondrial dysfunction, which provides evidence for the potential of QUE in the treatment of ALF.
Collapse
Affiliation(s)
- Huan Wu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Long Wu
- Department of Anus and Intestinal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Li Luo
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ye-Ting Wu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Qing-Xiu Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hai-Yang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Bao-Fang Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
5
|
Liu H, Fan D, Wang J, Wang Y, Li A, Wu S, Zhang B, Liu J, Wang S. Lactobacillus rhamnosus NKU FL1-8 Isolated from Infant Feces Ameliorates the Alcoholic Liver Damage by Regulating the Gut Microbiota and Intestinal Barrier in C57BL/6J Mice. Nutrients 2024; 16:2139. [PMID: 38999886 PMCID: PMC11243132 DOI: 10.3390/nu16132139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Alcoholic liver damage is caused by long-term or heavy drinking, and it may further progress into alcoholic liver diseases (ALD). Probiotic supplements have been suggested for the prevention or improvement of liver damage. This study was designed to consider the ameliorative effects of Lactobacillus rhamnosus NKU FL1-8 isolated from infant feces against alcoholic liver damage. The mice were gavaged with a 50% ethanol solution and treated with 109 CFU of L. rhamnosus NKU FL1-8 suspension. The factors for liver function, oxidative stress, inflammation, gut microbiota composition, and intestinal barrier integrity were measured. The results showed that L. rhamnosus NKU FL1-8 could decrease the levels of aspartate aminotransferase (AST) to 61% and alanine aminotransferase (ALT) to 50% compared with ethanol given by gavage. It could inhibit the expression level of malondialdehyde (MDA), increase superoxide dismutase (SOD), glutathione (GSH) to relieve oxidative stress, and down-regulate the cytokines to decrease hepatic inflammation. After treatment, the level of triglycerides was reduced, and the expression levels of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and the peroxisome proliferators-activated receptor-α (PPAR-α) pathway were up-regulated. Additionally, the 16S rRNA sequencing analysis showed that L. rhamnosus NKU FL1-8 increased the relative abundance of Lactobacillus, Ruminococcaceae, etc. At the same time, L. rhamnosus NKU FL1-8 could significantly reduce lipopolysaccharides (LPS) and enhance intestinal tight junction proteins. These results demonstrated that L. rhamnosus NKU FL1-8 could reduce the level of oxidative stress, fat accumulation, and liver inflammation caused by alcohol in the host. The underlying mechanism could be that L. rhamnosus NKU FL1-8 inhibits LPS by regulating the gut microbiota and repairing the intestinal barrier. Thereby, these findings support L. rhamnosus NKU FL1-8 as a potential functional food for the relief of ALD.
Collapse
Affiliation(s)
- Haiwei Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Dancai Fan
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Yuanyifei Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Ang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Sihao Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Jingmin Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Zeng Y, He Y, Wang L, Xu H, Zhang Q, Wang Y, Zhang J, Wang L. Dihydroquercetin improves experimental acute liver failure by targeting ferroptosis and mitochondria-mediated apoptosis through the SIRT1/p53 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155533. [PMID: 38552433 DOI: 10.1016/j.phymed.2024.155533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Ferroptosis and mitochondria-mediated apoptosis are both involved in the pathogenesis of acute liver failure (ALF). Ferroptosis-produced reactive oxygen species (ROS) trigger the chain oxidation of polyunsaturated phospholipids and promote mitochondrial apoptosis. Dihydroquercetin (DHQ) also plays an important protective role against liver injury. PURPOSE Here, we aimed to investigate the protective effects of DHQ on ALF. We also explored the underlying mechanism. METHODS We established a Lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced ALF mouse model and tumor necrosis factor-α (TNF-α)/D-Gal-induced ALF LO2 cell model. 2',7'-Dichlorofluorescein diacetate (DCFH-DA) and Dihydroethidium (DHE) were used to detect total ROS levels. Lipid ROS was assessed using C11-BODIPY flow cytometry. Lipid peroxidative products levels were detected using MDA ELISA assay and 4-hydroxynonenal (4-HNE) immunohistochemistry. QRT-PCR and western blots were used to test mRNA and protein expression levels, respectively. Cell viability was evaluated with CCK8 assay, and apoptosis was analyzed using flow cytometry. RESULTS DHQ treatment improved LPS/D-Gal-induced ALF, as well as TNF-α/D-Gal-induced reductions in LO2 viability and increased sirtuin 1 (SIRT1) expression. DHQ pretreatment also reduced the accumulation of ROS, reduced lipid peroxidation, elevated mitochondrial membrane potentials (ΔΨm), and decreased liver cell apoptosis both in vivo and in vitro. Additionally, the knockdown of SIRT1 and p53 activator (Tenovin-6) treatment reversed DHQ's inhibitory effects on ferroptosis and mitochondria-mediated apoptosis in vitro. DHQ enhanced p53 deacetylation by both up-regulating SIRT1 expression and directly bonding to SIRT1. We also found that Tenovin-6's stimulatory effects on ferroptosis and mitochondria-mediated apoptosis in the DHQ-treated LO2 ALF cell model were partially attenuated by overexpression of solute carrier family 7member 11 (SLC7A11), as well as by apoptotic protease activating factor 1 (Apaf-1) knockdown. CONCLUSION Our results suggest that DHQ alleviated ALF by inhibiting both ferroptosis and mitochondria-mediated apoptosis by regulating the SIRT1/p53 axis. Thus, DHQ may serve as a novel therapy for ALF.
Collapse
Affiliation(s)
- Yuqiao Zeng
- Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Yiyu He
- Department of Cardiovascular Disease, Renmin Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei 430060, China
| | - Li Wang
- Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Hao Xu
- Infection Control Center, Linyi People's Hospital. Lanshan District, Linyi City, Shandong 276000, China
| | - Qianwen Zhang
- Infection Control Center, Linyi People's Hospital. Lanshan District, Linyi City, Shandong 276000, China
| | - Yanjun Wang
- Jilin Jianwei Natural Biotechnology Co., Ltd. Kuancheng District, Changchun City, Jilin 510664, China
| | - Jianhua Zhang
- Outpatient Department, Shandong Public Health Clinical Center, Lixia District, Jinan City, Shandong 250100, China
| | - Likun Wang
- Infection Control Center, Linyi People's Hospital. Lanshan District, Linyi City, Shandong 276000, China.
| |
Collapse
|
7
|
Chen Z, Ding W, Yang X, Lu T, Liu Y. Isoliquiritigenin, a potential therapeutic agent for treatment of inflammation-associated diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117059. [PMID: 37604329 DOI: 10.1016/j.jep.2023.117059] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice is a medicinal herb with a 2000-year history of applications in traditional Chinese medicine. Isoliquiritigenin (ISL) is a bioactive chalcone compound isolated from licorice. It has attracted increasing attention in recent years due to its excellent anti-inflammatory activity. AIM OF THE STUDY This study is to provide a comprehensive summary of the anti-inflammatory activity of ISL and the underlying molecular mechanisms, and discuss new insights for its potential clinical applications as an anti-inflammation agent. MATERIALS AND METHODS We examined literatures published in the past twenty years from PubMed, Research Gate, Web of Science, Google Scholar, and SciFinder, with single or combined key words of "isoliquiritigenin", "inflammation", and "anti-inflammatory". RESULTS ISL elicits its anti-inflammatory activity by mediating various cellular processes. It inhibits the upstream of the nuclear factor kappa B (NF-κB) pathway and activates the nuclear factor erythroid related factor 2 (Nrf2) pathway. In addition, it suppresses the NOD-like receptor protein 3 (NLRP3) pathway and restrains the mitogen-activated protein kinase (MAPK) pathway. CONCLUSIONS Current studies indicate a great therapeutical potential of ISL as a drug candidate for treatment of inflammation-associated diseases. However, the pharmacokinetics, biosafety, and bioavailability of ISL remain to be further investigated.
Collapse
Affiliation(s)
- Ziyi Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tiangong Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
8
|
Alhareth DY, Alanazi A, Alanazi WA, Ansari MA, Nagi MN, Ahmad SF, Attia MSM, Nadeem A, Bakheet SA, Attia SM. Carfilzomib Mitigates Lipopolysaccharide/D-Galactosamine/Dimethylsulfoxide-Induced Acute Liver Failure in Mice. Biomedicines 2023; 11:3098. [PMID: 38002097 PMCID: PMC10669466 DOI: 10.3390/biomedicines11113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Acute liver failure (ALF) is a disease accompanied by severe liver inflammation. No effective therapy is available yet apart from liver transplantation; therefore, developing novel treatments for ALF is urgently required. Inflammatory mediators released by NF-кB activation play an essential role in ALF. Proteasome inhibitors have many medical uses, such as reducing inflammation and NF-кB inhibition, which are believed to account for most of their repurposing effects. This study was undertaken to explore the possible protective effects and the underlying mechanisms of carfilzomib, a proteasome inhibitor, in a mouse model of ALF induced by lipopolysaccharide/D-galactosamine/dimethylsulfoxide (LPS/GalN/DMSO). Carfilzomib dose-dependently protected mice from LPS/GalN/DMSO-induced liver injury, as indicated by the decrease in serum alanine aminotransferase and aspartate aminotransferase levels. LPS/GalN/DMSO increased TNF-α, NF-кB, lipid peroxidation, NO, iNOS, cyclooxygenase-II, myeloperoxidase, and caspase-3 levels. Carfilzomib administration mitigated LPS/GalN/DMSO-induced liver damage by decreasing the elevated levels of TNF-α, NF-кB, lipid peroxidation, nitric oxide, iNOS, cyclooxygenase-II, myeloperoxidase, caspase-3, and histopathological changes. A restored glutathione level was also observed in the carfilzomib-treated LPS/GalN/DMSO mice. Our results demonstrate that carfilzomib protects against LPS/GalN/DMSO-induced ALF by inhibiting NF-кB, decreasing inflammatory mediators, oxidative/nitrosative stress, neutrophil recruitment, and apoptosis, suggesting that carfilzomib may be a potential therapeutic agent for ALF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| |
Collapse
|
9
|
Li H, Niu X, Zhang D, Qu MH, Yang K. The role of the canonical nf-κb signaling pathway in the development of acute liver failure. Biotechnol Genet Eng Rev 2023; 39:775-795. [PMID: 36578157 DOI: 10.1080/02648725.2022.2162999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
As a clinical emergency with a high mortality rate, the treatment of acute liver failure has been paid attention to by society. At present, liver transplantation is the most effective treatment for acute liver failure, but there is still an insufficient supply of liver sources and a poor prognosis. In view of the current therapeutic development of this disease, more researchers have turned their attention to the research of drugs related to the NF-κB pathway. The NF-κB canonical pathway has been proven to play a role in a variety of diseases, regulating inflammation, apoptosis, and other physiological processes. More and more evidence shows that the NF-κB canonical pathway regulates the pathogenesis of acute liver failure. In this review, we will summarize the regulation process of the NF-κB canonical pathway on acute liver failure, and develop a new way to treat acute liver failure by targeting the components of the pathway.
Collapse
Affiliation(s)
- Hanyue Li
- Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of life science and Technology, Weifang Medical University, Weifang, China
| | - Xiao Niu
- Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of life science and Technology, Weifang Medical University, Weifang, China
| | - Dajin Zhang
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, China
| | - Mei-Hua Qu
- Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of life science and Technology, Weifang Medical University, Weifang, China
| | - Kunning Yang
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, China
| |
Collapse
|
10
|
Chang L, Zhang A, Liu W, Cao P, Dong L, Gao X. Calycosin inhibits hepatocyte apoptosis in acute liver failure by suppressing the TLR4/NF-κB pathway: An in vitro study. Immun Inflamm Dis 2023; 11:e935. [PMID: 37506138 PMCID: PMC10336678 DOI: 10.1002/iid3.935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a serious liver disease that is difficult to treat owing to its unclear pathogenesis. This study aimed to investigate the roles and molecular mechanisms of calycosin (CA) in ALF. METHODS In this study, the roles and mechanism of CA in ALF were explored using an in vitro lipopolysaccharide (LPS)-induced ALF cell model. Additionally, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide assay was used to assess the effect of CA on the activity of LPS-induced L02 human liver epithelial cells, and flow cytometry was used to detect apoptosis in L02 cells. Expression levels of apoptosis-related genes, Bax and Bcl-2, were measured using reverse transcription-quantitative polymerase chain reaction and Western blot analysis. Expression levels of inflammatory factors in LPS-induced L02 cells were measured using an enzyme-linked immunosorbent assay. Additionally, the effect of CA on ALF was inhibited via transfection of a toll-like receptor 4 (TLR4)-plasmid to elucidate the relationship between CA and TLR4/nuclear factor (NF)-κB signaling pathway in ALF. RESULTS CA had no toxic effects on L02 cells, but enhanced the activity of LPS-induced L02 cells in a dose-dependent manner. Apoptosis and inflammatory factor release was increased in ALF, activating the TLR4/NF-κB signaling pathway. However, CA treatment inhibited the apoptosis and release of inflammatory factors. Further mechanistic studies revealed that the upregulation of TLR4 expression reversed the alleviating effects of CA on inflammation and apoptosis in LPS-induced L02 cells. CONCLUSION CA alleviates inflammatory damage in LPS-induced L02 cells by inhibiting the TLR4/NF-κB pathway and may be a promising therapeutic agent for ALF treatment.
Collapse
Affiliation(s)
- Le Chang
- Gastroenterology Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Aiqing Zhang
- Gastroenterology Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Wenjuan Liu
- Gastroenterology Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Ping Cao
- Gastroenterology Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Lixian Dong
- Gastroenterology Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Xiaoxue Gao
- Gastroenterology Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
11
|
Ramakrishna K, Sinku S, Majumdar S, Singh N, Gajendra TA, Rani A, Krishnamurthy S. Indole-3-carbinol ameliorated the thioacetamide-induced hepatic encephalopathy in rats. Toxicology 2023; 492:153542. [PMID: 37150287 DOI: 10.1016/j.tox.2023.153542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Indole-3-carbinol (I3C) is reported to have hepatic and neuroprotective properties. However, the I3C role in the protection of the liver and brain in the pathological condition of hepatic encephalopathy has not been investigated. Therefore, in the present study, we have assessed the hepatic and neuroprotective roles of I3C against thioacetamide (TAA)- induced hepatic encephalopathy in Wistar rats. TAA (300mg/kg) was intraperitoneally administered to Wistar rats to induce hepatic encephalopathy. The elevated levels of ammonia in the blood, liver, and brain were substantially lowered by I3C treatment (25, 50, and 100mg/kg, oral, 7 days). I3C significantly ameliorated the TAA-induced liver dysfunction by decreasing the alanine transaminase, aspartate transaminase, and alkaline phosphatase enzymes and reduced the elevated cytochrome P4502E1 (CYP2E1) activity in the liver and brain. Further, I3C alleviated mitochondrial dysfunction and oxidative stress in the brain. I3C treatment improved the anti-inflammatory cytokine interleukin (IL)-10 while reducing inflammatory cytokines such as tumor necrosis factor-1 and IL-6 in hepatic encephalopathy rats. I3C reduced the levels of apoptotic indicators mediated by the mitochondria, including cytochrome c, caspase 9, and caspase 3. Concurrently, I3C mitigated the liver and brain histological abnormalities in hepatic encephalopathy rats. Therefore, the present study concluded that the I3C protected the liver and brain from TAA-induced hepatic encephalopathy injury by inhibiting CYP2E1 enzyme activity and decreasing ammonia, oxidative stress, inflammation, and apoptosis. The present study provides preclinical validation of I3C use as hepatic and neuroprotective for hepatic encephalopathy management.
Collapse
Affiliation(s)
- Kakarla Ramakrishna
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University (IIT BHU), Varanasi, Uttar Pradesh, India; Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| | - Sangeetha Sinku
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University (IIT BHU), Varanasi, Uttar Pradesh, India
| | - Shreyasi Majumdar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University (IIT BHU), Varanasi, Uttar Pradesh, India
| | - Neha Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University (IIT BHU), Varanasi, Uttar Pradesh, India
| | - T A Gajendra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University (IIT BHU), Varanasi, Uttar Pradesh, India
| | - Asha Rani
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University (IIT BHU), Varanasi, Uttar Pradesh, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University (IIT BHU), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
12
|
Jiao M, Wang J, Liu W, Zhao X, Qin Y, Zhang C, Yin H, Zhao C. VX-765 inhibits pyroptosis and reduces inflammation to prevent acute liver failure by upregulating PPARα expression. Ann Hepatol 2023; 28:101082. [PMID: 36893888 DOI: 10.1016/j.aohep.2023.101082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/29/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION AND OBJECTIVES As a fatal clinical syndrome, acute liver failure (ALF) is characterized by overwhelming liver inflammation and hepatic cell death. Finding new therapeutic methods has been a challenge in ALF research. VX-765 is a known pyroptosis inhibitor and has been reported to prevent damage in a variety of diseases by reducing inflammation. However, the role of VX-765 in ALF is still unclear. MATERIALS AND METHODS ALF model mice were treated with D-galactosamine (D-GalN) and lipopolysaccharide (LPS). LO2 cells were stimulated with LPS. Thirty subjects were enrolled in clinical experiments. The levels of inflammatory cytokines, pyroptosis-associated proteins and peroxisome proliferator-activated receptor α (PPARα) were detected using quantitative reverse transcription-polymerase chain reaction (qRT‒PCR), western blotting and immunohistochemistry. An automatic biochemical analyzer was used to determine the serum aminotransferase enzyme levels. Hematoxylin and eosin (HE) staining was used to observe the pathological features of the liver. RESULTS With the progression of ALF, the expression levels of interleukin (IL) -1β, IL-18, caspase-1, and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were increased. VX-765 could reduce the mortality rate of ALF mice, relieve liver pathological damage, and reduce inflammatory responses to protect against ALF. Further experiments showed that VX-765 could protect against ALF through PPARα, and this protective effect against ALF was reduced in the context of PPARα inhibition. CONCLUSIONS As ALF progresses, inflammatory responses and pyroptosis deteriorate gradually. VX-765 can inhibit pyroptosis and reduce inflammatory responses to protect against ALF by upregulating PPARα expression, thus providing a possible therapeutic strategy for ALF.
Collapse
Affiliation(s)
- Mingjing Jiao
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiachao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Wenpeng Liu
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanjun Qin
- Emergency Department, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunhuan Zhang
- Research Department, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongzhu Yin
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Caiyan Zhao
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
13
|
Ma JF, Gao JP, Shao ZW. Acute liver failure: A systematic review and network meta-analysis of optimal type of stem cells in animal models. World J Stem Cells 2023; 15:1-15. [PMID: 36713788 PMCID: PMC9850664 DOI: 10.4252/wjsc.v15.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The therapeutic effects of various stem cells in acute liver failure (ALF) have been demonstrated in preclinical studies. However, the specific type of stem cells with the highest therapeutic potential has not been determined.
AIM To validate the efficacy of stem cells in ALF model and to identify the most promising stem cells.
METHODS A search was conducted on the PubMed, Web of Science, Embase, Scopus, and Cochrane databases from inception to May 3, 2022, and updated on November 16, 2022 to identify relevant studies. Two independent reviewers performed the literature search, identification, screening, quality assessment, and data extraction.
RESULTS A total of 89 animal studies were included in the analysis. The results of traditional meta-analysis showed that stem cell therapy could significantly reduce the serum levels of alanine aminotransferase [weighted mean difference (WMD) = -181.05 (-191.71, -170.39)], aspartate aminotransferase [WMD = -309.04 (-328.45, -289.63)], tumor necrosis factor-alpha [WMD = -8.75 (-9.93, -7.56)], and interleukin-6 [WMD = -10.43 (-12.11, -8.76)] in animal models of ALF. Further subgroup analysis and network meta-analysis showed that although mesenchymal stem cells are the current research hotspot, the effect of liver stem cells (LSCs) on improving liver function is significantly better than that of the other five types of stem cells. In addition, the ranking results showed that the possibility of LSCs improving liver function ranked first. This fully proves the great therapeutic potential of LSCs, which needs to be paid more attention in the future.
CONCLUSION LSCs may have a higher therapeutic potential. Further high-quality animal experiments are needed to explore the most effective stem cells for ALF.
Collapse
Affiliation(s)
- Jun-Feng Ma
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou 730030, Gansu Province, China
| | - Jian-Ping Gao
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou 730030, Gansu Province, China
| | - Zi-Wei Shao
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou 730030, Gansu Province, China
| |
Collapse
|
14
|
Lan Y, Wang H, Wu J, Meng X. Cytokine storm-calming property of the isoquinoline alkaloids in Coptis chinensis Franch. Front Pharmacol 2022; 13:973587. [PMID: 36147356 PMCID: PMC9485943 DOI: 10.3389/fphar.2022.973587] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Coronavirus disease (COVID-19) has spread worldwide and its effects have been more devastating than any other infectious disease. Importantly, patients with severe COVID-19 show conspicuous increases in cytokines, including interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, IL-8, tumor necrosis factor (TNF)-α, IL-1, IL-18, and IL-17, with characteristics of the cytokine storm (CS). Although recently studied cytokine inhibitors are considered as potent and targeted approaches, once an immunological complication like CS happens, anti-viral or anti-inflammation based monotherapy alone is not enough. Interestingly, certain isoquinoline alkaloids in Coptis chinensis Franch. (CCFIAs) exerted a multitude of biological activities such as anti-inflammatory, antioxidant, antibacterial, and immunomodulatory etc, revealing a great potential for calming CS. Therefore, in this timeline review, we report and compare the effects of CCFIAs to attenuate the exacerbation of inflammatory responses by modulating signaling pathways like NF-ĸB, mitogen-activated protein kinase, JAK/STAT, and NLRP3. In addition, we also discuss the role of berberine (BBR) in two different triggers of CS, namely sepsis and viral infections, as well as its clinical applications. These evidence provide a rationale for considering CCFIAs as therapeutic agents against inflammatory CS and this suggestion requires further validation with clinical studies.
Collapse
Affiliation(s)
- Yuejia Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiasi Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jiasi Wu, ; Xianli Meng,
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jiasi Wu, ; Xianli Meng,
| |
Collapse
|
15
|
Huang L, Chen J, Wu D, Wang K, Lou W, Wu J. Berberine Attenuates IL-1 β-Induced Damage of Nucleus Pulposus Cells via Activating the AMPK/mTOR/Ulk1 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6133629. [PMID: 35915801 PMCID: PMC9338861 DOI: 10.1155/2022/6133629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022]
Abstract
Intervertebral disc degeneration (IDD) is a chronic progressive condition mainly caused by excessive inflammatory cytokines. Berberine (BBR) exerts anti-inflammatory effect on diseases and protective effect against IDD. However, the mechanism is not uncertain. This study is aimed at investigating the molecular mechanism of BBR on IDD. Nucleus pulposus (NP) cells were treated with BBR at different concentrations. The IDD rat model was established by acupuncture. The effect of BBR on interleukin- (IL-) 1β-induced cell proliferation was measured by CCK-8 assay and BrdU staining. The role of BBR in IL-1β-induced apoptosis, autophagy repression, and extracellular matrix (ECM) degradation was measured by Annexin/PI staining, immunofluorescence, and immunoblot. The effect of BBR on IDD was investigated in rat. Our findings showed that BBR restored cell growth and attenuated apoptosis in IL-1β-induced NP cells. BBR also prevented the IL-1β-induced ECM degradation through regulating ECM-related enzymes and factors. Additionally, BBR significantly activated autophagy repressed by IL-1β. Autophagy stimulated by BBR was diminished by the inhibition of the AMPK/mTOR/Ulk1 signaling pathway. In vivo study also showed BBR attenuated intervertebral disc degeneration. BBR could attenuate NP cells apoptosis and ECM degradation induced by IL-1β through autophagy by the AMPK/mTOR/Ulk1 pathway. This study suggests BBR might function as an AMPK activator to alleviate IDD progression.
Collapse
Affiliation(s)
- Liaoyuan Huang
- Department of Orthopedics, Ningbo No.6 Hospital, Ningbo City, Zhejiang Province 315040, China
| | - Jianming Chen
- Department of Orthopedics, Ningbo No.6 Hospital, Ningbo City, Zhejiang Province 315040, China
| | - Danhai Wu
- Department of Orthopedics, Ningbo No.6 Hospital, Ningbo City, Zhejiang Province 315040, China
| | - Kan Wang
- Department of Radiology Emergency, Ningbo No.6 Hospital, Ningbo City, Zhejiang Province 315040, China
| | - Weigang Lou
- Department of Orthopedics, Ningbo No.6 Hospital, Ningbo City, Zhejiang Province 315040, China
| | - Jianmin Wu
- Department of Radiology, Ningbo No.6 Hospital, Ningbo City, Zhejiang Province 315040, China
| |
Collapse
|
16
|
Ai G, Wu X, Dou Y, Huang R, Zhong L, Liu Y, Xian Y, Lin Z, Li Y, Su Z, Chen J, Qu C. Oxyberberine, a novel HO-1 agonist, effectively ameliorates oxidative stress and inflammatory response in LPS/D-GalN induced acute liver injury mice via coactivating erythrocyte metabolism and Nrf2 signaling pathway. Food Chem Toxicol 2022; 166:113215. [PMID: 35691465 DOI: 10.1016/j.fct.2022.113215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 01/22/2023]
Abstract
Oxyberberine (OBB), a main gut-mediated metabolite of Phellodendron chinense Cortex (PC), exhibits prominent protective property against acute liver injury (ALI). Heme oxygenase-1 (HO-1) is a vital molecule in attenuating acute and chronic liver injury for its prominent anti-oxidative injury and anti-inflammation properties. The present study was performed to investigate the hepatoprotective role of OBB through HO-1 signaling pathway in lipopolysaccharide/D-galactosamine (LPS/D-GalN) induced ALI. Our results indicated that PC treatment improved survival rate and its metabolite OBB evidently improved histopathological deteriorations and liver function. Additionally, OBB dramatically ameliorated hepatic oxidative stress and inflammation. Besides, OBB exerted remarkable HO-1 agonistic activity, even be comparable to hemin (a HO-1 inducer), as evidenced by increased HO-1 level, carbon monoxide and bilirubin activities, which are the markers of erythrocyte metabolism. Moreover, OBB modulated the parameters of inflammation and oxidative stress through HO-1 dependent pathway. Beyond this, OBB also notably suppressed the translocation of p65, enhanced antioxidation defense genes expressions, promoted the degradation of Kelch-like ECH-associated protein 1 (Keap1) and the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nrf2). In conclusion, OBB could be the principle active metabolite substance of PC and exert excellent hepatoprotective effects via inducing HO-1 through coactivation of erythrocyte metabolism and Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Gaoxiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xiaoyan Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yaoxing Dou
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine/Post-Doctoral Research Station, Guangzhou, 510006, PR China
| | - Ronglei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Linjiang Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yanfang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Zhixiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Chang Qu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510630, PR China.
| |
Collapse
|
17
|
Zhang H, Wu X, Tao Y, Lu G. Berberine attenuates sepsis‑induced cardiac dysfunction by upregulating the Akt/eNOS pathway in mice. Exp Ther Med 2022; 23:371. [PMID: 35495613 PMCID: PMC9019719 DOI: 10.3892/etm.2022.11298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to investigate the cardioprotective role of berberine in sepsis-induced cardiac dysfunction and consider the underlying mechanisms. C57BL/6J mice were randomized into four groups, namely, Control, lipopolysaccharide (LPS), LPS + berberine and LPS + Nω-nitro-L-arginine methyl ester (L-NAME) + berberine. A single dose (10 mg/kg body weight) of LPS was intraperitoneally administered to mice to induce cardiac dysfunction, whereas the Control group was administered with an equivalent volume of saline. In the LPS + berberine and LPS + L-NAME + berberine group, berberine (10 mg/kg body weight) dissolved in hot water was intraperitoneally administered 30 min after the LPS treatment. In the LPS + L-NAME + berberine group, L-NAME (100 mg/kg body weight) dissolved in saline was intraperitoneally administered 30 min before the LPS treatment. Then, ~6 h after the LPS treatment, a significant decrease was observed in the left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS). Meanwhile, the plasma myocardial injury markers, inflammatory factors and oxidative stress levels were significantly increased in the LPS group compared with the Control group. The administration of berberine improved the ventricular function and decreased the plasma myocardial injury markers, inflammatory factors and oxidative stress levels. In addition, it increased the heart total nitric oxide synthase (NOS) activity and upregulated the protein expressions of p-Akt and phosphorylated endothelial (e)NOS, which indicated that the Akt/eNOS pathway was activated by berberine. However, the cardioprotective effects of berberine were counteracted by L-NAME, an NOS inhibitor, which inhibited the eNOS activity. In conclusion, berberine attenuated sepsis-induced cardiac dysfunction by upregulating the Akt/eNOS pathway in mice.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Emergency, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xiaofei Wu
- Department of Emergency, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yanyan Tao
- Department of Emergency, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Guoyu Lu
- Department of Emergency, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
18
|
Signaling pathways of inflammation in myocardial ischemia/reperfusion injury. CARDIOLOGY PLUS 2022. [DOI: 10.1097/cp9.0000000000000008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
19
|
Haftcheshmeh SM, Abedi M, Mashayekhi K, Mousavi MJ, Navashenaq JG, Mohammadi A, Momtazi-Borojeni AA. Berberine as a natural modulator of inflammatory signaling pathways in the immune system: Focus on NF-κB, JAK/STAT, and MAPK signaling pathways. Phytother Res 2022; 36:1216-1230. [PMID: 35142403 DOI: 10.1002/ptr.7407] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
Three main inflammatory signaling pathways include nuclear factor-κB (NF-κB), Janus kinases/Signal transducer and activator of transcriptions (JAKs/STATs), and mitogen-activated protein kinases (MAPKs) play crucial roles in inducing, promoting, and regulating inflammatory responses in the immune system. Importantly, the breakdown of mechanisms that tightly regulate inflammatory signaling pathways can be the underlying cause of uncontrolled inflammatory responses and be associated with the generation and development of several inflammatory diseases. Hence, therapeutic strategies targeting inflammatory signaling pathways and their downstream components may promise to treat inflammatory diseases. Studies over the past two decades have provided important information on the polytrophic pharmacological and biochemical properties of berberine (BBR) as a naturally occurring compound, such as antioxidant, antitumor, antimicrobial, and antiinflammatory activates. Interestingly, the modulatory effects of BBR on inflammatory signaling cascades, which lead to the inhibition of inflammation, have been widely investigated in several in vitro and in vivo studies. For the first time, herein, this comprehensive review attempts to put together these studies and provide important insight into the modulatory effects of BBR on NF-κB, JAKs/STATs, and MAPKs signaling pathways in vitro in various types of immune cells and in vivo in several experimental inflammatory diseases. As the second achievement of this review, we also explore the therapeutic efficacy and antiinflammatory effects of BBR regarding its modulatory action.
Collapse
Affiliation(s)
- Saeed Mohammadian Haftcheshmeh
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Maliheh Abedi
- Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Kazem Mashayekhi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Javad Mousavi
- Department of Immunology and Allergy, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Berberine and its derivatives represent as the promising therapeutic agents for inflammatory disorders. Pharmacol Rep 2022; 74:297-309. [PMID: 35083737 DOI: 10.1007/s43440-021-00348-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Berberine, with the skeleton of quaternary ammonium, has been considered as the well-defined natural product in treating multiple diseases, including inflammation, acute and chronic infection, autoimmune diseases, and diabetes. However, due to the low bioavailability and systemic exposure, broad clinical applications of berberine have been largely impeded. Numerous studies have been conducted to further explore the therapeutic capacities of berberine in preclinical and clinical trials. Over the past, berberine and its derivatives have been shown to possess numerous pharmacological activities, as evidenced in intestinal, pulmonary, skin, and bone inflammatory disorders. In the present review, the pharmacological impact of berberine on inflammatory diseases are fully discussed, with indication that berberine and its potential derivatives represent promising natural therapeutic agents with anti-inflammatory properties.
Collapse
|
21
|
Effects and Mechanism of Oxymatrine Combined with Compound Yinchen Granules on the Apoptosis of Hepatocytes through the Akt/FoxO3a/Bim Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8644356. [PMID: 35036441 PMCID: PMC8758272 DOI: 10.1155/2022/8644356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to investigate the effects and mechanism of oxymatrine (OMT) combined with compound yinchen granules (CYG) on the apoptosis of hepatocytes through the Akt/FoxO3a/Bim pathway in rats with acute liver failure. The rat model of acute liver failure was established using lipopolysaccharide/D-galactosamine (LPS/D-GalN). The expression of proteins in rat liver tissues was detected by western blot analysis. The mRNA expression of FoxO3a, Bim, Bax, Bcl-2, and caspase-3 in rat liver tissues was detected by RT-qPCR. The apoptosis rate of rat hepatocytes was determined by flow cytometry. Western blots showed that when compared with the normal group, the expression of p-Akt and p-FoxO3a in the model group was decreased (
), while the expression of Bim was increased (
). Compared with the model group, the expression of p-Akt and p-FoxO3a in the OMT group and the OMT combined with CYG groups was increased (
or
), while the expression of Bim was decreased (
). The Bax/Bcl-2 ratio and caspase-3 protein expression in the model group were significantly higher than those in the normal group (
). The Bax/Bcl-2 ratio and the expression of caspase-3 protein in the OMT group and the OMT combined with CYG groups were significantly lower than those in the model group (
). The results of RT-qPCR were consistent with those of western blot. The results of flow cytometry showed that the apoptosis rate of hepatocytes in the OMT group and the OMT combined with CYG groups was significantly lower than that in the model group (
or
). We concluded that LPS/D-GalN can induce apoptosis of hepatocytes in rats with acute liver failure through the Akt/FoxO3a/Bim pathway. OMT combined with CYG inhibits apoptosis of hepatocytes in rats with acute liver failure via the Akt/FoxO3a/Bim pathway.
Collapse
|
22
|
Liu M, He J, Zheng S, Zhang K, Ouyang Y, Zhang Y, Li C, Wu D. Human umbilical cord mesenchymal stem cells ameliorate acute liver failure by inhibiting apoptosis, inflammation and pyroptosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1615. [PMID: 34926659 PMCID: PMC8640895 DOI: 10.21037/atm-21-2885] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/05/2021] [Indexed: 12/18/2022]
Abstract
Background Human umbilical cord mesenchymal stem cells (UC-MSCs) are multipotent progenitor cells representing an attractive therapeutic tool for tissue damage and inflammation owing to their unique immunomodulatory properties. This study was designed to determine the protective effects and underlying mechanisms of UC-MSCs on acute liver failure (ALF). Methods ALF was induced in mice by intraperitoneal injection of D-galactosamine (D-GalN) and lipopolysaccharide (LPS). Mice were intravenously injected with 1×106 UC-MSCs one hour before or six hours after D-GalN/LPS injection. Liver function was valued by serum biochemical parameters and hematoxylin-eosin staining. Inflammatory cytokine and chemokine levels were measured by real-time PCR, and inflammatory cells infiltration was observed by immunofluorescence staining. Hepatocyte apoptosis and pyroptosis related proteins were detected by western blot. Murine macrophage Raw264.7 in the presentation of LPS was treated with the UC-MSCs condition medium (UC-MSCs-CM), and then the levels of inflammatory cytokines and NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in Raw264.7 were measured. Results UC-MSCs significantly reduced the mortality, decreased serum alanine aminotransferase and aspartate aminotransferase levels, and improved the pathological damage. Moreover, UC-MSCs inhibited inflammatory cytokine and chemokine levels, especially TNF-α, interleukins-6 (IL-6), IL-1β, monocyte chemoattractant protein (MCP-1), CC-chemokines ligand 2 (CCL2), C-X-C motif ligand 2 (CXCL2), and reduced macrophage, neutrophil and T lymphocyte infiltration into the liver tissue. UC-MSCs also attenuated hepatocyte apoptosis, as evidenced by decreased TUNEL positive cells, increased Bcl-xl/Bax protein ratio and downregulated cleaved caspase 3 levels. NLRP3 inflammasome activation, IL-1β maturation and cleaved caspase1 were suppressed by UC-MSC administration. Furthermore, the UC-MSCs-CM reduced the levels of inflammatory cytokines and the activation of NLRP3 inflammasome in Raw264.7. Conclusions Our results demonstrated that UC-MSCs exerted therapeutic effects on ALF by inhibiting apoptosis, inflammation, and pyroptosis.
Collapse
Affiliation(s)
- Mengting Liu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Shuo Zheng
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Ke Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yu Ouyang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yaqi Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China.,R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
23
|
Berberine-loaded nanostructured lipid carriers mitigate warm hepatic ischemia/reperfusion-induced lesion through modulation of HMGB1/TLR4/NF-κB signaling and autophagy. Biomed Pharmacother 2021; 145:112122. [PMID: 34489150 DOI: 10.1016/j.biopha.2021.112122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Berberine (BBR) is a known alkaloid that has verified its protective effects against ischemia/reperfusion (I/RN) lesion in multiple organs but its poor oral bioavailability limited its use. Despite the previous works, its possible impact on the warm hepatic I/RN-induced lesion is not clear. Accordingly, a nanostructured lipid carrier of BBR (NLC BBR) was developed for enhancing its efficiency and to inspect its protective mechanistic against warm hepatic I/RN. METHODS NLC BBR formula was evaluated pharmaceutically. Wistar rats were orally pre-treated with either BBR or NLC BBR (100 mg/kg) for 2 weeks followed by hepatic I/RN (30 min/24 h). Biochemical, ELISA, qPCR, western blot, histopathological, and immunohistochemical studies were performed. KEY FINDINGS Optimized NLC BBR was prepared with a particle size of 130 ± 8.3 nm. NLC BBR divulged its aptitude to safeguard the hepatic tissues partly due to anti-inflammatory capacity through downsizing the HMGB1/TLR4/NF-κB trajectory with concomitant rebating of TNF-α, iNOS, COX-2, and MPO content. Furthermore, NLC BBR antiapoptotic trait was confirmed by boosting the prosurvival protein (Bcl-2) and cutting down the pro-apoptotic marker (Bax). Moreover, its antioxidant nature was confirmed by TAC uplifting besides MDA subsiding. On the other hand, NLC BBR action embroiled autophagy flux spiking merit exemplified in Beclin-1 and LC3-II enhancement. Finally, NLC BBR administration ascertained its hepatocyte guarding action by recovering the histopathological ailment and diminishing serum transaminases. CONCLUSION NLC BBR purveyed reasonable shielding mechanisms and subsided incidents contemporaneous to warm hepatic I/RN lesion in part, by moderating HMGB1/TLR4/NF-κB inflammatory signaling, autophagy, and apoptosis.
Collapse
|
24
|
Kim YK, Song J. Therapeutic Applications of Resveratrol in Hepatic Encephalopathy through Its Regulation of the Microbiota, Brain Edema, and Inflammation. J Clin Med 2021; 10:jcm10173819. [PMID: 34501267 PMCID: PMC8432232 DOI: 10.3390/jcm10173819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic encephalopathy is a common complication in patients with liver cirrhosis and portosystemic shunting. Patients with hepatic encephalopathy present a variety of clinical features, including neuropsychiatric manifestations, cognitive dysfunction, impaired gut barrier function, hyperammonemia, and chronic neuroinflammation. These pathogeneses have been linked to various factors, including ammonia-induced oxidative stress, neuronal cell death, alterations in the gut microbiome, astrocyte swelling, and blood-brain barrier disruptions. Many researchers have focused on identifying novel therapeutics and prebiotics in the hope of improving the treatment of these conditions. Resveratrol is a natural polyphenic compound and is known to exert several pharmacological effects, including antioxidant, anti-inflammatory, and neuroprotective activities. Recent studies suggest that resveratrol contributes to improving the neuropathogenic effects of liver failure. Here, we review the current evidence describing resveratrol's effects in neuropathogenesis and its impact on the gut-liver axis relating to hepatic encephalopathy. We highlight the hypothesis that resveratrol exerts diverse effects in hepatic encephalopathy and suggest that these effects are likely mediated by changes to the gut microbiota, brain edema, and neuroinflammation.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
- Correspondence: ; Tel.: +82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
25
|
Wang T, Huang S, Wu C, Wang N, Zhang R, Wang M, Mao D. Intestinal Microbiota and Liver Diseases: Insights into Therapeutic Use of Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6682581. [PMID: 33976705 PMCID: PMC8087485 DOI: 10.1155/2021/6682581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 04/10/2021] [Indexed: 11/18/2022]
Abstract
Liver disease is a leading cause of global morbidity and mortality, for which inflammation, alcohol use, lipid metabolic disorders, disturbance to bile acid metabolism, and endotoxins are common risk factors. Traditional Chinese Medicine (TCM) with its "holistic approach" is widely used throughout the world as a complementary, alternative therapy, due to its clinical efficacy and reduced side effects compared with conventional medicines. However, due to a lack of reliable scientific evidence, the role of TCM in the prevention and treatment of liver disease remains unclear. Over recent years, with the rapid development of high-throughput sequencing, 16S rRNA detection, and bioinformatics methodology, it has been gradually recognized that the regulation of intestinal microbiota by TCM can play a substantial role in the treatment of liver disease. To better understand how TCM regulates the intestinal microbiota and suppresses liver disease, we have reviewed and analyzed the results of existing studies and summarized the relationship and risk factors between intestinal microbiota and liver disease. The present review summarizes the related mechanisms by which TCM affects the composition and metabolites of the intestinal microbiome.
Collapse
Affiliation(s)
- Tingshuai Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
- School of Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan, China
| | - Shaodong Huang
- Department of Gastroenterology, Guangxi Orthopedics and Traumatology Hospital, Nanning 530023, Guangxi, China
| | - Cong Wu
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Na Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Rongzhen Zhang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Minggang Wang
- Department of Scientific Research, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Dewen Mao
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| |
Collapse
|
26
|
Wang Z, Li K, Maskey AR, Huang W, Toutov AA, Yang N, Srivastava K, Geliebter J, Tiwari R, Miao M, Li X. A small molecule compound berberine as an orally active therapeutic candidate against COVID-19 and SARS: A computational and mechanistic study. FASEB J 2021; 35:e21360. [PMID: 33749932 PMCID: PMC8250068 DOI: 10.1096/fj.202001792r] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
The novel coronavirus disease, COVID-19, has grown into a global pandemic and a major public health threat since its breakout in December 2019. To date, no specific therapeutic drug or vaccine for treating COVID-19 and SARS has been FDA approved. Previous studies suggest that berberine, an isoquinoline alkaloid, has shown various biological activities that may help against COVID-19 and SARS, including antiviral, anti-allergy and inflammation, hepatoprotection against drug- and infection-induced liver injury, as well as reducing oxidative stress. In particular, berberine has a wide range of antiviral activities such as anti-influenza, anti-hepatitis C, anti-cytomegalovirus, and anti-alphavirus. As an ingredient recommended in guidelines issued by the China National Health Commission for COVID-19 to be combined with other therapy, berberine is a promising orally administered therapeutic candidate against SARS-CoV and SARS-CoV-2. The current study comprehensively evaluates the potential therapeutic mechanisms of berberine in preventing and treating COVID-19 and SARS using computational modeling, including target mining, gene ontology enrichment, pathway analyses, protein-protein interaction analysis, and in silico molecular docking. An orally available immunotherapeutic-berberine nanomedicine, named NIT-X, has been developed by our group and has shown significantly increased oral bioavailability of berberine, increased IFN-γ production by CD8+ T cells, and inhibition of mast cell histamine release in vivo, suggesting a protective immune response. We further validated the inhibition of replication of SARS-CoV-2 in lung epithelial cells line in vitro (Calu3 cells) by berberine. Moreover, the expression of targets including ACE2, TMPRSS2, IL-1α, IL-8, IL-6, and CCL-2 in SARS-CoV-2 infected Calu3 cells were significantly suppressed by NIT-X. By supporting protective immunity while inhibiting pro-inflammatory cytokines; inhibiting viral infection and replication; inducing apoptosis; and protecting against tissue damage, berberine is a promising candidate in preventing and treating COVID-19 and SARS. Given the high oral bioavailability and safety of berberine nanomedicine, the current study may lead to the development of berberine as an orally, active therapeutic against COVID-19 and SARS.
Collapse
Affiliation(s)
- Zhen‐Zhen Wang
- Academy of Chinese Medical ScienceHenan University of Chinese MedicineZhengzhouChina
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
| | - Kun Li
- Department of PediatricsUniversity of IowaIowa CityIAUSA
| | - Anish R. Maskey
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
| | - Weihua Huang
- Department of PathologyNew York Medical CollegeValhallaNYUSA
| | | | - Nan Yang
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- General Nutraceutical TechnologyElmsfordNYUSA
| | - Kamal Srivastava
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- General Nutraceutical TechnologyElmsfordNYUSA
| | - Jan Geliebter
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- Department of OtolaryngologySchool of MedicineNew York Medical CollegeValhallaNYUSA
| | - Raj Tiwari
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- Department of OtolaryngologySchool of MedicineNew York Medical CollegeValhallaNYUSA
| | - Mingsan Miao
- Academy of Chinese Medical ScienceHenan University of Chinese MedicineZhengzhouChina
| | - Xiu‐Min Li
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- Department of OtolaryngologySchool of MedicineNew York Medical CollegeValhallaNYUSA
| |
Collapse
|
27
|
Liu J, Xu Y, Jiang B. Novel Insights Into Pathogenesis and Therapeutic Strategies of Hepatic Encephalopathy, From the Gut Microbiota Perspective. Front Cell Infect Microbiol 2021; 11:586427. [PMID: 33692964 PMCID: PMC7937792 DOI: 10.3389/fcimb.2021.586427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/08/2021] [Indexed: 01/10/2023] Open
Abstract
Since the 1950s, gradual changes in the gut microbiota of patients with hepatic encephalopathy have been observed. Previous research has indicated potential associations between the gut and brain, and the gut microbiota is becoming a hot topic in research on diseases of the nervous system. However, for the past few decades, studies of hepatic encephalopathy have been restricted to controlling the gut microbiota during macroscopic manipulation, such as probiotic intervention, while its clinical use remains controversial, and the cellular mechanisms underlying this condition are still poorly understood. This thesis seeks to comprehensively understand and explain the role of gut microbiota in hepatic encephalopathy as well as analyze the effects of intervention by regulating the gut microbiota. Evidence is presented that shows that dysbiosis of the gut microbiota is the primary pathological driver of hepatic encephalopathy and impacts pathologic progression via complex regulatory networks. As a result, suggestions were identified for future mechanistic research and improvements in therapeutic strategies for hepatic encephalopathy.
Collapse
Affiliation(s)
- Jiachen Liu
- Xiangya Medical College of Central South University, Changsha, China
| | - Yantao Xu
- Xiangya Medical College of Central South University, Changsha, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
28
|
The pharmacological activity of berberine, a review for liver protection. Eur J Pharmacol 2020; 890:173655. [PMID: 33068590 DOI: 10.1016/j.ejphar.2020.173655] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Liver plays an important role in bile synthesis, metabolic function, degradation of toxins, new substances synthesis in body. However, hepatopathy morbidity and mortality are increasing year by year around the world, which become a major public health problem. Traditional Chinese medicine (TCM) has a prominent role in the treatment of liver diseases due to its definite curative effect and small side effects. The hepatoprotective effect of berberine has been extensively studied, so we comprehensively summarize the pharmacological activities of lipid metabolism regulation, bile acid adjustment, anti-inflammation, oxidation resistance, anti-fibrosis and anti-cancer and so on. Besides, the metabolism and toxicity of berberine and its new formulations to improve its effectiveness are expounded, providing a reference for the safe and effective clinical use of berberine.
Collapse
|
29
|
Zhai J, Li Z, Zhang H, Ma L, Ma Z, Zhang Y, Zou J, Li M, Ma L, Wang X, Li X. Berberine protects against diabetic retinopathy by inhibiting cell apoptosis via deactivation of the NF‑κB signaling pathway. Mol Med Rep 2020; 22:4227-4235. [PMID: 33000205 PMCID: PMC7533441 DOI: 10.3892/mmr.2020.11505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/04/2020] [Indexed: 11/28/2022] Open
Abstract
A number of studies have reported that diabetic retinopathy (DR) is the major cause of blindness. Berberine (BBR) is a bioactive constituent that displays effects on blood glucose; however, the mechanism underlying the role of BBR during the development of DR is not completely understood. In the present study, a rat model of DR was successfully established. The eye tissues were removed and subsequently assessed by hematoxylin and eosin staining and the TUNEL assay. The catalase, malondialdehyde, reactive oxygen species, glutathione and superoxide dismutase contents of the eye tissues were measured. Müller cells were chosen for further in vitro experiments. Cell apoptosis was examined by Annexin V-FITC apoptosis detection and Hoechst staining, and the mitochondrial membrane potential was assessed by JC-1 mitochondrial membrane potential detection. BBR decreased ganglion cell layer, cell apoptosis, reduced diabetic-induced oxidative stress and deactivated the NF-κB signaling pathway in the rat model of DR. High glucose enhanced oxidative stress and induced mitochondria-dependent cell apoptosis in Müller cells by activating the NF-κB signaling pathway. BBR reversed the high glucose-induced effects by decreasing the phosphorylation of IκB, inhibiting NF-κB nuclear translocation and deactivating the NF-κB signaling pathway. The results suggested that BBR protected against DR by inhibiting oxidative stress and cell apoptosis via deactivation of the NF-κB signaling pathway; therefore, suggesting that BBR may serve as a promising therapeutic agent for DR.
Collapse
Affiliation(s)
- Jiajia Zhai
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zeping Li
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Huifeng Zhang
- Department of Neurology, Xi'an Electric Power Central Hospital, Xi'an, Shaanxi 710032, P.R. China
| | - Louyan Ma
- Department of Geratology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, P.R. China
| | - Zhengquan Ma
- Department of Geratology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, P.R. China
| | - Yi Zhang
- Department of Endocrinology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, P.R. China
| | - Jian Zou
- Department of Internal Medicine, 522nd Hospital of Chinese People's Liberation Army, Luoyang, Henan 471003, P.R. China
| | - Mo Li
- Department of Geratology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, P.R. China
| | - Li Ma
- Department of Geratology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, P.R. China
| | - Xin Wang
- Department of Geratology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, P.R. China
| | - Xiaomiao Li
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
30
|
Abudureyimu M, Yu W, Cao RY, Zhang Y, Liu H, Zheng H. Berberine Promotes Cardiac Function by Upregulating PINK1/Parkin-Mediated Mitophagy in Heart Failure. Front Physiol 2020; 11:565751. [PMID: 33101051 PMCID: PMC7546405 DOI: 10.3389/fphys.2020.565751] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/08/2020] [Indexed: 01/07/2023] Open
Abstract
Berberine has been verified to protect cardiac function in patients with heart failure (HF). However, the mechanism(s) involved in berberine-mediated cardioprotective effects has not been clearly elucidated. The aim of this study was to further investigate the mechanism(s) involved in the beneficial effects of berberine on transverse aortic contraction (TAC)-induced chronic HF. Mice were randomly divided into four groups. Berberine was administered at a dose of 50 mg/kg/day for 4 weeks via oral gavage. Our findings showed that TAC-induced pressure overload (PO) prompted cardiac dysfunction, cardiac hypertrophy, interstitial fibrosis, cardiomyocyte apoptosis and mitochondrial injury, accompanied with suppressed mitophagy, the effects of which were attenuated by berberine. Furthermore, mitophagy regulators PINK1 and mito-Parkin were downregulated in TAC-induced HF, while berberine upregulated PINK1/Parkin-mediated mitophagy. Notably, knockdown of PINK1 by small interfering RNA significantly suppressed Parkin-mediated mitochondrial ubiquitination and nullified the beneficial actions on HF exerted by berberine. Taken together, our results indicated that berberine plays a critical role in attenuating cardiac hypertrophy and preserving cardiac function from PO induced HF. The potential underlying mechanism is the activation of mitochondrial autophagy via PINK1/Parkin/Ubiquitination pathway.
Collapse
Affiliation(s)
- Miyesaier Abudureyimu
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Wenjun Yu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Richard Yang Cao
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haibo Liu
- Department of Cardiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongchao Zheng
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Wu S, Huang X, Sun W, Chen L, Huang Y, Wang Y, Luo E, Qin A, Zhao W, Gan J. Role of the microRNA‑214/Bax axis in the progression of acute liver failure. Mol Med Rep 2020; 22:117-126. [PMID: 32377732 PMCID: PMC7248488 DOI: 10.3892/mmr.2020.11123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 02/28/2020] [Indexed: 12/25/2022] Open
Abstract
Acute liver failure (ALF) is a fatal liver disease characterized by severe hepatocyte destruction. MicroRNAs (miRNAs/miRs) have been reported to serve a key role in a number of liver diseases. Therefore, the aim of the present study was to investigate the role and underlying mechanism of miR‑214 in ALF. ALF murine and hepatocyte models were established using D‑galactosamine (D‑GalN) and lipopolysaccharide (LPS) or D‑GalN + tumor necrosis factor (TNF)‑α, respectively. The expression levels of miR‑214 and Bax were detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and/or western blotting. Furthermore, an automatic biochemical analyzer was used to measure the levels of aspartate aminotransferase (AST) or alanine aminotransferase (ALT). The levels of TNF‑α and interleukin (IL)‑6 were detected by ELISA and RT‑qPCR. In addition, TUNEL staining and flow cytometry were used to analyze cell apoptosis, and the protein expression of caspase‑3 was determined by western blotting. It was identified that the levels of AST and ALT were increased and that hepatocyte apoptosis was enhanced in the D‑GalN/LPS‑stimulated group compared with the control. Furthermore, higher expression of caspase‑3 was observed in the D‑GalN/LPS‑stimulated group. In addition, it was demonstrated that miR‑214 was downregulated, while Bax was upregulated in D‑GalN/LPS‑stimulated mice and D‑GalN/TNF‑α‑stimulated BNLCL2 cells. Moreover, in D‑GalN/TNF‑α‑stimulated BNLCL2 cells, miR‑214 overexpression suppressed apoptosis and decreased TNF‑α and IL‑6 levels, and these effects were reversed by the Bax plasmid. It was also identified that overexpression of miR‑214 significantly decreased Bax mRNA and protein expression levels in vitro. Collectively, the present results suggested that miR‑214 inhibited hepatocyte apoptosis during ALF development via targeting Bax, thus indicating that miR‑214 may be a potential target for ALF treatment.
Collapse
Affiliation(s)
- Shaohong Wu
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
- Department of Emergency Critical Disease, Shanghai General Hospital, Shanghai 201620, P.R. China
| | - Xiaoping Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Wei Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Li Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Yan Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Yan Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Erping Luo
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Ailan Qin
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Weifeng Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Jianhe Gan
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
32
|
Crespo I, Fernández-Palanca P, San-Miguel B, Álvarez M, González-Gallego J, Tuñón MJ. Melatonin modulates mitophagy, innate immunity and circadian clocks in a model of viral-induced fulminant hepatic failure. J Cell Mol Med 2020; 24:7625-7636. [PMID: 32468679 PMCID: PMC7339179 DOI: 10.1111/jcmm.15398] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
The haemorrhagic disease virus (RHDV) is a non‐cultivable virus that promotes in rabbits an acute disease which accomplishes many characteristics of an animal model of fulminant hepatic failure (FHF). Beneficial effects of melatonin have been reported in RHDV‐infected rabbits. This study investigated whether protection against viral‐derived liver injury by melatonin is associated with modulation of mitophagy, innate immunity and clock signalling. Rabbits were experimentally infected with 2 × 104 haemagglutination units of a RHDV isolate and killed at 18, 24 and 30 hours after infection (hpi). Melatonin (20 mg/kg body weight ip) was administered at 0, 12 and 24 hpi. RHDV infection induced mitophagy, with the presence of a high number of mitophagosomes in hepatocytes and increased expression of mitophagy genes. Greater expression of main innate immune intermediaries and inflammasome components was also found in livers with RHDV‐induced FHF. Both mitophagy and innate immunity activation was significantly hindered by melatonin. FHF induction also elicited an early dysregulation in clock signalling, and melatonin was able to prevent such circadian disruption. Our study discloses novel molecular routes contributing to RHDV‐induced damage progression and supports the potential of melatonin as a promising therapeutic option in human FHF.
Collapse
Affiliation(s)
- Irene Crespo
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.,Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | | | | | | | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - María Jesús Tuñón
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
33
|
Hepatoprotective effect of pyrroloquinoline quinone against alcoholic liver injury through activating Nrf2-mediated antioxidant and inhibiting TLR4-mediated inflammation responses. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Wang H, Wei X, Wei X, Sun X, Huang X, Liang Y, Xu W, Zhu X, Lin X, Lin J. 4-hydroxybenzo[d]oxazol-2(3H)-one ameliorates LPS/D-GalN-induced acute liver injury by inhibiting TLR4/NF-κB and MAPK signaling pathways in mice. Int Immunopharmacol 2020; 83:106445. [PMID: 32272395 DOI: 10.1016/j.intimp.2020.106445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to synthesize 4-hydroxybenzo[d]oxazol-2(3H)-one (HBO) and to investigate its protective effects on lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced acute liver injury. HBO (C7H5O3N) was synthesized based on 2-nitro-resorcinol and identified by physicochemical analysis. In the animal experiment, mice were pretreated with HBO (50, 100, 200 mg/kg) for 10 days. At the end of pretreatment, the animals were injected with LPS (10 µg/kg)/D-GalN (700 mg/kg). The results showed that HBO significantly alleviated liver injury induced by LPS/D-GalN in mice. It remarkably decreased inflammatory response by reducing the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Moreover, HBO notably attenuated hepatocyte apoptosis by inhibiting the release of Cytochrome C (Cyt C) from mitochondria into the cytoplasm and regulating the expression of B-cell lymphoma-2 (Bcl-2) family. Furthermore, the result showed that HBO inhibited the expressions of nuclear factor kappa-B p50 (NF-κBp50), toll-like receptor 4 (TLR4), and myeloid differentiation factor 88 (MyD88), as well as the phosphorylation of inhibitor of nuclear factor kappa-B (IκB), inhibitor of nuclear factor kappa-B kinase-α/β (IKK-α/β), nuclear factor kappa-B p65 (NF-κBp65), suggesting that HBO had a certain influence on the TLR4/NF-κB pathway. In addition, the mitogen-activated protein kinase (MAPK) signaling pathway was also affected by HBO, as evidenced by the decrease in the phosphorylation levels of extracellular regulated protein kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38). In conclusion, our study suggested that HBO could protect against LPS/D-GalN-induced liver injury, moreover, treatment with HBO appeared to be capable of further regulating the TLR4/NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Hongyuan Wang
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China
| | - Xiugui Wei
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China
| | - Xian Wei
- Youjiang Medical University for Nationalities, Youjiang, Guangxi, China
| | - Xuemei Sun
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China
| | - Xiukun Huang
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China
| | - Yingqin Liang
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China
| | - Wanpeng Xu
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China
| | - Xunshuai Zhu
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China
| | - Xing Lin
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China.
| | - Jun Lin
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
35
|
Berberine combined with cyclosporine A alleviates acute graft-versus-host disease in murine models. Int Immunopharmacol 2020; 81:106205. [DOI: 10.1016/j.intimp.2020.106205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/25/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
|
36
|
Tian J, Shi R, Xiao P, Liu T, She R, Wu Q, An J, Hao W, Soomro M. Hepatitis E Virus Induces Brain Injury Probably Associated With Mitochondrial Apoptosis. Front Cell Infect Microbiol 2019; 9:433. [PMID: 31921708 PMCID: PMC6932957 DOI: 10.3389/fcimb.2019.00433] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/04/2019] [Indexed: 01/01/2023] Open
Abstract
Hepatitis E virus (HEV) infection has been associated with extrahepatic manifestations, particularly neurological disorders. Although it has been reported that HEV infection induced hepatocyte apoptosis associated with mitochondria injury, activation of mitochondrial apoptotic pathway in the central nervous system during HEV infection was not clearly understood. In this study, the induction of mitochondrial apoptosis-associated proteins and pro-inflammatory cytokines were detected in HEV infected Mongolian gerbil model and primary human brain microvascular endothelial cells (HBMVECs). Mitochondrial exhibited fragments with loss of cristae and matrix in HEV infected brain tissue by transmission electron microscope (TEM). In vitro studies showed that expression of NADPH oxidase 4 (NOX4) was significantly increased in HEV infected HBMVECs (p < 0.05), while ATP5A1 was significantly decreased (p < 0.01). Expressions of pro-apoptotic proteins were further evaluated. Bax was significantly increased in both HEV infected brain tissues and HBMVECs (p < 0.01). In vivo studies showed that caspase-9 and caspase-3 were activated after HEV inoculation (p < 0.01), associated with PCNA overexpression as response to apoptosis. Cytokines were measured to evaluate tissue inflammatory levels. Results showed that the release of TNFα and IL-1β were significantly increased after HEV infection (p < 0.01), which might be attributed to microglia activation characterized by high level of IBA1 expression (p < 0.01). Taken together, these data support that HEV infection induces high levels of pro-inflammatory cytokines, associated with mitochondria-mediated apoptosis. The results provide new insight into mechanisms of extra-hepatic injury of HEV infection, especially in the central nervous system.
Collapse
Affiliation(s)
- Jijing Tian
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruihan Shi
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Peng Xiao
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tianlong Liu
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruiping She
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiaoxing Wu
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junqing An
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenzhuo Hao
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - MajidHussain Soomro
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
37
|
Yang L, Liu G, Liang X, Wang M, Zhu X, Luo Y, Shang Y, Yang JQ, Zhou P, Gu XL. Effects of berberine on the growth performance, antioxidative capacity and immune response to lipopolysaccharide challenge in broilers. Anim Sci J 2019; 90:1229-1238. [PMID: 31264347 DOI: 10.1111/asj.13255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
This study evaluated the effects of berberine on growth performance, immunity, haematological parameters, antioxidant capacity, and the expression of immune response-related genes in lipopolysaccharide (LPS)-challenged broilers. We assigned 120 one-day-old male broilers (Ross 308) to two treatment groups; each group included two subgroups, each of which included six replicates of five birds per replicate. The experiment used a 2 × 2 factorial arrangement with berberine treatment (0 or 60 mg/kg dietary) and challenge status [injection of saline (9 g/L w/v) or LPS (1.5 mg/kg body weight)] as the main factors. On days 14, 16, 18 and 20, broilers were intraperitoneally injected with LPS or physiological saline. Blood and liver samples were collected on day 21. Dietary berberine supplementation significantly alleviated the compromised average daily gain and average daily feed intake (p < 0.05) caused by LPS. The LPS challenge led to increased lymphocyte and white blood cell (WBC) counts, malondialdehyde (serum and liver) content, and immunoglobulin G and M, tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) expression (p < 0.05) and significantly reduced serum total superoxide dismutase (T-SOD) activity (p < 0.05). Dietary berberine significantly mitigated the LPS-induced decreases in the mRNA expression of nuclear factor-kappa B (NF-κB), TNF-α, IL-1β, inducible nitrite synthase and cyclooxygenase-2 (p < 0.05) in the liver. In conclusion, berberine supplementation has a positive effect on LPS challenge, which may be related to the increase in antioxidant enzyme activity and inhibition of both NF-κB signalling and the expression of inflammatory mediators.
Collapse
Affiliation(s)
- Li Yang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Gang Liu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Xiaorui Liang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Mengmeng Wang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Xiaoqing Zhu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Yan Luo
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Yunxia Shang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Jing-Quan Yang
- Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Ping Zhou
- Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xin-Li Gu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| |
Collapse
|
38
|
Ma Z, Zhang B, Fan Y, Wang M, Kebebe D, Li J, Liu Z. Traditional Chinese medicine combined with hepatic targeted drug delivery systems: A new strategy for the treatment of liver diseases. Biomed Pharmacother 2019; 117:109128. [PMID: 31234023 DOI: 10.1016/j.biopha.2019.109128] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
Liver diseases are clinically common and present a substantial public health issue. Many of the currently available drugs for the treatment of liver diseases suffer from limitations that include low hepatic distribution, lack of target effects, poor in vivo stability and adverse effects on other organs. Consequently, conventional treatment of hepatic diseases is ineffective. TCM is commonly used in the treatment of liver diseases worldwide, particularly in China, and has advantages over conventional therapy. HTDDS can be designed to enhance clinical efficacy in the treatment of liver diseases. We have conducted an extensive review of 335 studies reported since 1964. These included about 166 references involving the treatment of liver diseases with TCM (covering active components of TCM, single TCM and Chinese medicine formulas), 169 reports on HTDDS and background studies on liver-related diseases. Here we review the long history of TCM in the treatment of liver diseases.We have also reviewed the status of studies on active components of TCM using nanotechnology-based targeted delivery systems to provide support for further research and development of TCM-based targeted preparations for the treatment of liver disease.
Collapse
Affiliation(s)
- Zhe Ma
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Bing Zhang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuqi Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Meng Wang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Dereje Kebebe
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Jiawei Li
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
39
|
Zhang X, Dong G, Li H, Chen W, Li J, Feng C, Gu Z, Zhu F, Zhang R, Li M, Tang W, Liu H, Xu Y. Structure-Aided Identification and Optimization of Tetrahydro-isoquinolines as Novel PDE4 Inhibitors Leading to Discovery of an Effective Antipsoriasis Agent. J Med Chem 2019; 62:5579-5593. [DOI: 10.1021/acs.jmedchem.9b00518] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xianglei Zhang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center, Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangyu Dong
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Heng Li
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center, Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wuyan Chen
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center, Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Li
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center, Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunlan Feng
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center, Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhanni Gu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center, Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fenghua Zhu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center, Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rui Zhang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center, Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minjun Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Wei Tang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center, Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center, Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center, Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Cyclosporin A Protected Cardiomyocytes Against Oxidative Stress Injury by Inhibition of NF-κB Signaling Pathway. Cardiovasc Eng Technol 2019; 10:329-343. [PMID: 30725434 DOI: 10.1007/s13239-019-00404-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/30/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE This study aims to investigate the effects and the molecular mechanism of cyclosporin A (CsA) against oxidative stress injury in cultured neonatal rat cardiomyocytes. METHODS Bax/Bcl-2, cl-casp-9/casp-9, cl-casp-3/casp-3, and iNOS/β-actin ratios and p-IκB and IκB levels were analyzed by western blot. IL-1β and TNF-α levels were analyzed by ELISA. RESULTS CsA effectively improved the cell viability and reduced the extracellular lactate dehydrogenase release in cardiomyocytes after H2O2-induced oxidative damage. CsA significantly increased the superoxide dismutase activity, glutathione production, and catalase activity but decreased the malonaldehyde level. CsA treatment considerably reduced the H2O2-induced intracellular generation of reactive oxygen species, mitochondrial dysfunction, and release of cytochrome c. CsA could act against H2O2-induced ATP reduction, TCA cycle enzymes, mitochondrial complex I enzyme, and complex V enzyme in cardiomyocytes. CsA significantly decreased the Bax/Bcl-2 ratio, cl-casp-9/casp-9, and cl-casp-3/casp-3 in a concentration-dependent manner. CsA also remarkably reduced the cleaved PARP level and DNA fragmentation. NF-κB was closely related to oxidative stress injury. CsA inhibited NF-κB activation, thereby preventing the upregulation of IL-1β, TNF-α, iNOS, and intracellular NO release. CONCLUSIONS CsA protected cardiomyocytes against H2O2-induced cell injury. Hence, CsA may be developed as a candidate drug to prevent or treat myocardial ischemia reperfusion injury.
Collapse
|
41
|
Wang H, Chen L, Zhang X, Xu L, Xie B, Shi H, Duan Z, Zhang H, Ren F. Kaempferol protects mice from d-GalN/LPS-induced acute liver failure by regulating the ER stress-Grp78-CHOP signaling pathway. Biomed Pharmacother 2018; 111:468-475. [PMID: 30594786 DOI: 10.1016/j.biopha.2018.12.105] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 12/25/2022] Open
Abstract
Kaempferol is a flavonoid compound that has many functions, such as anti-inflammation and antioxidation. Acute liver failure (ALF) is a life-threatening illness accompanied by serious inflammation and extensive hepatocyte apoptosis. The aim of this study was to examine the therapeutic potential of kaempferol and its mechanism in ALF. In a murine ALF model induced by d-galactosamine (d-GalN, 700 mg/kg) / lipopolysaccharide (LPS, 10 μg/kg), mice were pretreated with kaempferol at 2 h before d-GalN/LPS administration and then sacrificed 6 h after d-GalN/LPS injection. Lethality, liver damage, endoplasmic reticulum(ER) stress, hepatocyte viability and apoptosis were evaluated. Whether pretreatment of kaempferol protected hepatocytes from ER stress-induced apoptosis was detected in vitro. Pretreatment of kaempferol decreased lethality, prolonged the survival time and significantly protected against liver injury, which was indicated by decreased transaminase levels and the well-preserved liver structure. The protective effect of kaempferol on the ALF mouse model was achieved by inhibiting hepatocyte apoptosis. Moreover, pretreatment of kaempferol increased the expression of glucose-regulated/binding immunoglobulin protein 78 (Grp78), decreased the expression of C/EBP-homologous protein (CHOP), and protected hepatocytes from ER stress-induced apoptosis in vitro. Our results showed that pretreatment of Grp78 siRNA partially negated the hepatic protection from kaempferol and reversed the inhibition of CHOP protein expression in d-GalN/LPS-induced ALF mice. In conclusion, kaempferol inhibits hepatocyte apoptosis to protect mice from liver failure by regulating the ER stress-Grp78-CHOP signaling pathway. Therefore, kaempferol may be used to treat ALF.
Collapse
Affiliation(s)
- Huijuan Wang
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Liyan Chen
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Xiangying Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Lin Xu
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Bangxiang Xie
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Hongbo Shi
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Zhongping Duan
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Huanhu Zhang
- Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Feng Ren
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
42
|
Du J, Ding X, Zhang X, Zhao X, Shan H, Wang F. Berberine attenuate staphylococcal enterotoxin B-mediated acute liver injury via regulating HDAC expression. AMB Express 2018; 8:158. [PMID: 30276552 PMCID: PMC6167266 DOI: 10.1186/s13568-018-0684-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/24/2018] [Indexed: 01/16/2023] Open
Abstract
Staphylococcal enterotoxin B (SEB) has been documented to be implicated in the pathogenesis of liver injury in the experimental models of hepatitis. However, the underlying mechanism of SEB-induced acute liver injury (ALI) remains to be further explored. In our study, we explored the therapeutic effectiveness of berberine (BBR), a natural isoquinoline alkaloid, in the SEB-induced ALI. In our study, we found that injection of SEB into d-galactosamine (d-gal)-sensitized mice induced ALI, as demonstrated by an increase of levels of alanine aminotransferase and aspartate aminotransferase, massive infiltration of immune cells into the liver, and pro-inflammatory cytokine release. However, intragastric administration of BBR attenuated SEB-induced ALI in mice. Meanwhile, we discovered that BBR treatment suppressed activation of splenocytes and pro-inflammatory cytokine release in SEB-stimulated splenocytes. Moreover, mechanistic analyses demonstrated that BBR was effective at inhibiting the expression of class I HDAC, but not class II, in SEB-stimulated splenocytes. Furthermore, trichostatin A, a standard HDAC inhibitor, alleviated activation of splenocytes and pro-inflammatory cytokine release in SEB-stimulated splenocytes. Taken together, we inferred from these results that BBR attenuated SEB-mediated ALI through repressing the class I HDAC enzyme, suggesting that BBR may constitute a novel therapeutic modality to prevent SEB-mediated inflammation and ALI.
Collapse
|
43
|
Inhalable multi-compartmental phospholipid enveloped lipid core nanocomposites for localized mTOR inhibitor/herbal combined therapy of lung carcinoma. Eur J Pharm Biopharm 2018; 130:152-164. [DOI: 10.1016/j.ejpb.2018.06.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
|
44
|
Bao Y, Meng X, Liu F, Wang F, Yang J, Wang H, Xie G. Protective effects of osthole against inflammation induced by lipopolysaccharide in BV2 cells. Mol Med Rep 2018; 17:4561-4566. [DOI: 10.3892/mmr.2018.8447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/01/2017] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yuxin Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Xiaolin Meng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Fangning Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Fei Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Jinhui Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Haiyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Guanghong Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| |
Collapse
|