1
|
Famurewa AC, George MY, Ukwubile CA, Kumar S, Kamal MV, Belle VS, Othman EM, Pai SRK. Trace elements and metal nanoparticles: mechanistic approaches to mitigating chemotherapy-induced toxicity-a review of literature evidence. Biometals 2024; 37:1325-1378. [PMID: 39347848 DOI: 10.1007/s10534-024-00637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Anticancer chemotherapy (ACT) remains a cornerstone in cancer treatment, despite significant advances in pharmacology over recent decades. However, its associated side effect toxicity continues to pose a major concern for both oncology clinicians and patients, significantly impacting treatment protocols and patient quality of life. Current clinical strategies to mitigate ACT-induced toxicity have proven largely unsatisfactory, leaving a critical unmet need to block toxicity mechanisms without diminishing ACT's therapeutic efficacy. This review aims to document the molecular mechanisms underlying ACT toxicity and highlight research efforts exploring the protective effects of trace elements (TEs) and their nanoparticles (NPs) against these mechanisms. Our literature review reveals that the primary driver of ACT toxicity is redox imbalance, which triggers oxidative inflammation, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, autophagy, and dysregulation of signaling pathways such as PI3K/mTOR/Akt. Studies suggest that TEs, including zinc, selenium, boron, manganese, and molybdenum, and their NPs, can potentially counteract ACT-induced toxicity by inhibiting oxidative stress-mediated pathways, including NF-κB/TLR4/MAPK/NLRP3, STAT-3/NLRP3, Bcl-2/Bid/p53/caspases, and LC3/Beclin-1/CHOP/ATG6, while also upregulating protective signaling pathways like Sirt1/PPAR-γ/PGC-1α/FOXO-3 and Nrf2/HO-1/ARE. However, evidence regarding the roles of lncRNA and the Wnt/β-catenin pathway in ACT toxicity remains inconsistent, and the impact of TEs and NPs on ACT efficacy is not fully understood. Further research is needed to confirm the protective effects of TEs and their NPs against ACT toxicity in cancer patients. In summary, TEs and their NPs present a promising avenue as adjuvant agents for preventing non-target organ toxicity induced by ACT.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike Ikwo, Abakaliki, Ebonyi, Nigeria.
- Centre for Natural Products Discovery, School of P harmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cletus A Ukwubile
- Department of Pharmacognosy, Faculty of Pharmacy, University of Maiduguri, Bama Road, Maiduguri, Borno, Nigeria
| | - Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mehta V Kamal
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vijetha S Belle
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Eman M Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Cancer Therapy Research Center, Department of Biochemistry-I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Department of Bioinformatics, University of Würzburg, Am Hubland, 97074, BiocenterWürzburg, Germany
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
2
|
Zhang J, Zhang X, Wu J. The correlation between vitamin D and the occurrence of peripheral neuropathy induced by paclitaxel chemotherapy. Front Med (Lausanne) 2024; 11:1466049. [PMID: 39380731 PMCID: PMC11458533 DOI: 10.3389/fmed.2024.1466049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Paclitaxel, a widely used chemotherapeutic agent for various cancers, induces peripheral neuropathy (PIPN) in approximately 80% of patients, severely affecting their quality of life. The role of vitamin D in pain perception has gained attention, but its correlation with PIPN remains unclear. Methods This study included 129 cancer patients who received adjuvant paclitaxel chemotherapy from January to June 2023. Neuropathic pain was assessed using the Douleur Neuropathique 4 Questions (DN4) questionnaire, and serum levels of vitamin D and glutathione (GSH) were measured to explore the correlation between vitamin D levels and neuropathic pain induced by paclitaxel chemotherapy. Results The results showed a negative correlation between vitamin D deficiency and the occurrence of neuropathic pain (Spearman correlation coefficient of -0.324, P < 0.001). The receiver operating characteristic (ROC) curve analysis revealed that the area under the vitamin D curve for neuropathic pain was 0.681. Furthermore, after paclitaxel chemotherapy, there was a significant decrease in GSH levels in the serum of patients, with a more pronounced decline in the vitamin D-deficient group. Discussion The findings of this study indicate that higher levels of vitamin D are negatively associated with the occurrence of paclitaxel-induced neuropathic pain, suggesting that vitamin D might protect against oxidative stress. This discovery is significant for clinical treatment as it may help physicians better understand the mechanisms of pain during paclitaxel therapy and provide new strategies for the prevention and treatment of such pain. It also suggests that modulating vitamin D levels could reduce the neurotoxicity of paclitaxel, thereby improving patients' quality of life and treatment compliance.
Collapse
Affiliation(s)
- Jialei Zhang
- Department of Pain Treatment, Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Xiaoling Zhang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
- Department of Oncology, Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Jie Wu
- Department of Pain Treatment, Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
3
|
Deng J, Hu Y, Zhang Y, Yu F. Ghrelin improves endothelial function and reduces blood pressure in Ang II-induced hypertensive mice: Role of AMPK. Clin Exp Hypertens 2023; 45:2208774. [PMID: 37149883 DOI: 10.1080/10641963.2023.2208774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Endothelial dysfunction is a major pathophysiology observed in hypertension. Ghrelin, a key regulator of metabolism, has been shown to play protective roles in cardiovascular system. However, whether it has the effect of improving endothelial function and lowering blood pressure in Ang II-induced hypertensive mice remains unclear. METHODS In this study, hypertension was induced by continuous infusion of Ang II with a subcutaneous osmotic pumps and ghrelin (30 μg/kg/day) was intraperitoneal injection for 4 weeks. Acetylcholine-induced endothelium-dependent relaxation in aortae was measured on wire myograph and superoxide production in mouse aortae was assessed by fluorescence imaging. RESULTS We found that ghrelin had protective effects on Ang II-induced hypertension by inhibiting oxidative stress, increasing NO production, improving endothelial function, and lowering blood pressure. Furthermore, ghrelin activated AMPK signaling in Ang II-induced hypertension, leading to inhibition of oxidative stress. Compound C, a specific inhibitor of AMPK, reversed the protective effects of ghrelin on the reduction of oxidative stress, the improvement of endothelial function and the reduction of blood pressure. CONCLUSIONS our findings indicated that ghrelin protected against Ang II-induced hypertension by improving endothelial function and lowering blood pressure partly through activating AMPK signaling. Thus, ghrelin may be a valuable therapeutic strategy for hypertension.
Collapse
Affiliation(s)
- Juan Deng
- Department of Endocrinology, People's Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Yuan Hu
- Department of Endocrinology, Songshan General Hospital, Chongqing, China
| | - Yindi Zhang
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fadong Yu
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Wu S, Xiong T, Guo S, Zhu C, He J, Wang S. An up-to-date view of paclitaxel-induced peripheral neuropathy. J Cancer Res Ther 2023; 19:1501-1508. [PMID: 38156915 DOI: 10.4103/jcrt.jcrt_1982_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/12/2023] [Indexed: 01/03/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN),referring to the damage to the peripheral nerves caused by exposure to a neurotoxic chemotherapeutic agent, is a common side effect amongst patients undergoing chemotherapy. Paclitaxel-induced peripheral neuropathy (PIPN) can lead to dose reduction or early cessation of chemotherapy, which is not conducive to patients'survival. Even after treatment is discontinued, PIPN symptoms carried a greater risk of worsening and plagued the patient's life, leading to long-term morbidity in survivors. Here, we summarize the research progress for clinical manifestations, risk factors, pathogenesis, prevention and treatment of PIPN, so as to embark on the path of preventing PIPN with prolongation of patient's life quality on a long-term basis.
Collapse
Affiliation(s)
- Shan Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Pharmacy, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Tu Xiong
- Department of Radiology, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Shenglan Guo
- Department of Pharmacy, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cuiyi Zhu
- Department of Pharmacy, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Jing He
- Department of Pharmacy, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Shurong Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Tian JG, Liu XP, Zhang BQ, Zhang JP, Sun GB, Li M. Mechanism of gastrointestinal injury in COVID-19 and potential use of ghrelin therapy. Shijie Huaren Xiaohua Zazhi 2023; 31:431-437. [DOI: 10.11569/wcjd.v31.i11.431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
In Corona Virus Disease 2019 (COVID-19), the most obvious symptoms occur in the respiratory and digestive systems, posing a serious threat to the health of patients. Decreased appetite is the most common digestive system symptom and is an important predictor of mortality. A large number of patients have decreased appetite after infection and do not show obvious organic disease characteristics. Currently, no drugs can directly alleviate such symptom. In order to reduce the number of severe and critically ill patients and decrease the hospitalization rate, it is very important to understand the pathogenic mechanism of appetite loss caused by COVID-19 and manage such symptom. Ghrelin is a key gastric hormone that has anti-inflammatory, neuroprotective, and antidepressant effects. In this paper, we will review the progress in the understanding of the mechanism of appetite loss associated with COVID-19, and introduce a potential therapeutic drug, ghrelin.
Collapse
|
6
|
Zhai M, Hu H, Zheng Y, Wu B, Sun W. PGC1α: an emerging therapeutic target for chemotherapy-induced peripheral neuropathy. Ther Adv Neurol Disord 2023; 16:17562864231163361. [PMID: 36993941 PMCID: PMC10041632 DOI: 10.1177/17562864231163361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/25/2023] [Indexed: 03/29/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN)-mediated paresthesias are a common complication in cancer patients undergoing chemotherapy. There are currently no treatments available to prevent or reverse CIPN. Therefore, new therapeutic targets are urgently needed to develop more effective analgesics. However, the pathogenesis of CIPN remains unclear, and the prevention and treatment strategies of CIPN are still unresolved issues in medicine. More and more studies have demonstrated that mitochondrial dysfunction has become a major factor in promoting the development and maintenance of CIPN, and peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC1α) plays a significant role in maintaining the mitochondrial function, protecting peripheral nerves, and alleviating CIPN. In this review, we highlight the core role of PGC1α in regulating oxidative stress and maintaining normal mitochondrial function and summarize recent advances in its therapeutic effects and mechanisms in CIPN and other forms of peripheral neuropathy. Emerging studies suggest that PGC1α activation may positively impact CIPN mitigation by modulating oxidative stress, mitochondrial dysfunction, and inflammation. Therefore, novel therapeutic strategies targeting PGC1α could be a potential therapeutic target in CIPN.
Collapse
Affiliation(s)
- Mingzhu Zhai
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
- Yantian Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Haibei Hu
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Yi Zheng
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Benqing Wu
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen 518016, China
| | | |
Collapse
|
7
|
Ghrelin system in Alzheimer's disease. Curr Opin Neurobiol 2023; 78:102655. [PMID: 36527939 PMCID: PMC10395051 DOI: 10.1016/j.conb.2022.102655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in seniors. Current efforts to understand the etiopathogenesis of this neurodegenerative disorder have brought forth questions about systemic factors in the development of AD. Ghrelin is a brain-gut peptide that is activated by ghrelin O-acyltransferase (GOAT) and signals via its receptor, growth hormone secretagogue receptor (GHSR). With increasing recognition of the neurotropic effects of ghrelin, the role of ghrelin system deregulation in the development of AD has been accentuated in recent years. In this review, we summarized recent research progress regarding the mechanisms of ghrelin signaling dysregulation and its contribution to AD brain pathology. In addition, we also discussed the therapeutic potential of strategies targeting ghrelin signaling for the treatment of this neurological disease.
Collapse
|
8
|
Ramachandran M, Subramanian V, Kuppusamy S, Parameswaran S, Chinnakali P, Vairappan B. The Burden of Peripheral Neuropathy in Nondiabetic Chronic Kidney Disease and the Role of Ghrelin Isoforms in its Development. Indian J Nephrol 2022; 32:567-573. [PMID: 36704594 PMCID: PMC9872928 DOI: 10.4103/ijn.ijn_557_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/18/2022] [Accepted: 08/21/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Peripheral neuropathy is one of the most common complications in chronic kidney disease (CKD). The neuroprotective role of ghrelin is being explored recently. Here we aim to determine the burden of neuropathy in nondiabetic CKD and to find the association of peripheral nerve function with plasma ghrelin levels in these patients. METHODS This was a cross-sectional study conducted in nondiabetic CKD patients on conservative management to determine the magnitude of neuropathy. The association of ghrelin isoforms with nerve functions was assessed between three groups, namely CKD with neuropathy, CKD without neuropathy, and healthy volunteers, with 20 participants in each group. RESULTS The proportion of neuropathy in nondiabetic CKD was 78% (n = 78), of which 51% (n = 40) were asymptomatic. Des acyl ghrelin (DAG) and total ghrelin (TG) levels were 1545.5 ± 487.4 and 1567.4 ± 485.3 pg/mL, respectively, in CKD patients with neuropathy and were found to be elevated compared to those without neuropathy, who had 1000.4 ± 264.2 and 1019.7 ± 264.3 pg/mL of DAG and TG, respectively (P < 0.001). Assessment of correlation between nerve conduction parameters and DAG levels showed positive correlation between DAG levels and common peroneal latency (r = 0.69; P < 0.01), median sensory latency (r = 0.45; P < 0.05), and sural latency (r = 0.51; P < 0.05). We found negative correlation between median velocity (r =-0.56; P < 0.05), common peroneal velocity (r = -0.64; P < 0.01), median sensory velocity (r =-0.49; P < 0.05), and sural velocity (r = -0.54; P < 0.05). There was no statistically significant difference in acyl ghrelin levels among the groups. CONCLUSION The prevalence of peripheral neuropathy in CKD is significantly higher with almost half of them being asymptomatic. Impaired renal clearance in CKD leads to the accumulation of DAG, which subsequently inhibits the neuroprotective functions of AG leading to neuropathy in CKD.
Collapse
Affiliation(s)
- Madumathy Ramachandran
- Department of Physiology, All India Institutes of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Velkumary Subramanian
- Department of Physiology, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Saranya Kuppusamy
- Department of Physiology, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Sreejith Parameswaran
- Department of Nephrology, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Palanivel Chinnakali
- Department of Preventive and Social Medicine, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Balasubramaniyan Vairappan
- Department of Biochemistry, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Pondicherry, India
| |
Collapse
|
9
|
Khaled SS, Soliman HA, Abdel-Gabbar M, Ahmed NA, Attia KAHA, Mahran HA, El-Nahass ES, Ahmed OM. The Preventive Effects of Naringin and Naringenin against Paclitaxel-Induced Nephrotoxicity and Cardiotoxicity in Male Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8739815. [PMID: 36212979 PMCID: PMC9546692 DOI: 10.1155/2022/8739815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/14/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022]
Abstract
This study assessed the preventive properties of naringin and naringenin on paclitaxel-induced nephrotoxicity and cardiotoxicity in adult male Wistar rats. Intraperitoneal injection of paclitaxel 2 mg/kg body weight, two days/week on the 2nd and 5th days of each week, with or without oral administration of naringin and/or naringenin 10 mg/kg body weight every other day, was continued for six weeks. Treatment of rats with naringin and/or naringenin significantly reversed elevated serum creatinine, urea, and uric acid levels caused by paclitaxel, reflecting improved kidney function. Similarly, heart dysfunction induced by paclitaxel was alleviated after treatment with naringin and/or naringenin, as evidenced by significant decreases in elevated CK-MB and LDH activities. After drug administration, histopathological findings and lesion scores in the kidneys and heart were markedly decreased by naringin and/or naringenin. Moreover, the treatments reversed renal and cardiac lipid peroxidation and the negative impacts on antioxidant defenses via raising GSH, SOD, and GPx. The preventive effects of naringin and naringenin were associated with suppressing oxidative stress and reestablishing antioxidant defenses. A combination of naringin and naringenin was the most efficacious in rescuing organ function and structure.
Collapse
Affiliation(s)
- Shimaa S. Khaled
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanan A. Soliman
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohammed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Noha A. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Kandil Abdel Hai Ali Attia
- Clinical Nutrition Department, College of Applied Medical Sciences, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Hesham A. Mahran
- Health Informatics Department, College of Public Health & Tropical Medicine, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Hygiene, Zoonosis and Epidemiology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
10
|
Fukunaga N, Ribeiro RVP, Bissoondath V, Billia F, Rao V. Ghrelin May Inhibit Inflammatory Response and Apoptosis During Ischemia-Reperfusion Injury. Transplant Proc 2022; 54:2357-2363. [PMID: 36180256 DOI: 10.1016/j.transproceed.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Ghrelin, a novel growth hormone-releasing peptide, has both anti-inflammatory and anti-apoptotic effects on human endothelial cells. We evaluated the protective effects of ghrelin against ischemia-reperfusion injury (IRI) in a murine heterotopic cervical heart transplantation model. METHODS Donor hearts from C57BL/6J wild-type mice, which were kept in cold saline for 60 minutes, were heterotopically transplanted into C57BL/6J wild-type recipients. A day prior to heterotopic cervical heart transplantation, donor animals received either ghrelin (300 nmol/kg) or saline (0.3 mL) intraperitoneally. Upon reperfusion and postoperative day 1, ghrelin or saline was administered to the recipients. Donor hearts were procured on day 2. RESULTS Ghrelin injection did not result in any adverse effects in donors or recipients. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were significantly decreased in the ghrelin group (0.38% ± 0.21% vs 5.74% ± 3.68%; P < .001). Both cleaved caspase-3 activity and Bcl-2/Bax ratio from the ghrelin group were significantly reduced compared to those in the control. Furthermore, the phosphorylated Akt/Akt ratio was higher in the ghrelin group (0.44 ± 0.21 vs 0.14 ± 0.03; P = .043). Nuclear factor-kappa B p65 nuclear translocation was reduced in the ghrelin hearts compared to the controls (3.17% ± 1.84% vs 19.28% ± 13.14%; P = .009). Vascular cell adhesion molecule-1, intracellular adhesion molecule-1, nuclear factor-kappa B, and tumor necrosis factor alpha levels were also significantly reduced in the ghrelin-treated group. No significant difference was observed in 8-isoprostane production between groups. CONCLUSION Ghrelin inhibits the inflammatory response and apoptosis during transplant-related IRI. This study demonstrates the protective effects of ghrelin against IRI.
Collapse
Affiliation(s)
- Naoto Fukunaga
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Roberto Vanin Pinto Ribeiro
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Ved Bissoondath
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Filio Billia
- Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Vivek Rao
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
11
|
Faheem M, Khan AU, Saleem MW, Shah FA, Ali F, Khan AW, Li S. Neuroprotective Effect of Natural Compounds in Paclitaxel-Induced Chronic Inflammatory Pain. Molecules 2022; 27:molecules27154926. [PMID: 35956877 PMCID: PMC9370169 DOI: 10.3390/molecules27154926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022] Open
Abstract
The current study explored the effects of natural compounds, berbamine, bergapten, and carveol on paclitaxel-associated neuroinflammatory pain. Berbamine, an alkaloid obtained from BerberisamurensisRuprhas been previously researched for anticancer and anti-inflammatory potential. Bergapten is 5-methoxsalenpsoralen previously investigated in cancer, vitiligo, and psoriasis. Carveol obtained from caraway is a component of essential oil. The neuropathic pain model was induced by administering 2 mg/kg of paclitaxel (PTX) every other day for a week. After the final PTX injection, a behavioral analysis was conducted, and subsequently, tissue was collected for molecular analysis. Berbamine, bergapten, and carveol treatment attenuated thermal hypersensitivity, improved latency of falling, normalized the changes in body weight, and increased the threshold for pain sensation. The drugs increased the protective glutathione (GSH) and glutathione S-transferase (GST) levels in the sciatic nerve and spinal cord while lowering inducible nitric oxide synthase (iNOS) and lipid peroxidase (LPO). Hematoxylin and eosin (H and E) and immunohistochemistry (IHC) examinations confirmed that the medication reversed the abnormal alterations. The aforementioned natural substances inhibited cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa B (NF-κb) overexpression, as evidenced by enzyme-linked immunosorbant assay (ELISA) and Western blot and hence provide neuroprotection in chronic constriction damage.
Collapse
Affiliation(s)
- Muhammad Faheem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 45000, Pakistan;
- Correspondence: (M.F.); (A.-u.K.); (S.L.)
| | - Arif-ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 45000, Pakistan;
- Correspondence: (M.F.); (A.-u.K.); (S.L.)
| | | | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 45000, Pakistan;
| | - Fawad Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Abdul Waheed Khan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518000, China
- Correspondence: (M.F.); (A.-u.K.); (S.L.)
| |
Collapse
|
12
|
Perisciatic Nerve Dexmedetomidine Alleviates Spinal Oxidative Stress and Improves Peripheral Mitochondrial Dynamic Equilibrium in a Neuropathic Pain Mouse Model in an AMPK-Dependent Manner. DISEASE MARKERS 2022; 2022:6889676. [PMID: 35769812 PMCID: PMC9236761 DOI: 10.1155/2022/6889676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/20/2022]
Abstract
Neuropathic pain (NPP) is a debilitating clinical condition that presently has few effective treatments. NPP is caused by uncontrolled central oxidative stress and inflammation. Preliminary studies indicate that dexmedetomidine (DEX), an agonist of the alpha-2 adrenergic receptor, is beneficial for treating NPP. In this paper, the effects of administering DEX around injured nerves in a chronic constriction injury- (CCI-) induced neuropathic pain mouse model are investigated. According to the results, the perineural DEX significantly reversed the decline in the mechanical threshold and thermal latency in CCI mice (
). In the peripherally affected ischiadic nerve, the perineuronal DEX upregulated the expressions of pAMPK, OPA1, and SNPH but not Drp1 or KIF5B. The aforementioned effects of administering DEX can be partially reversed by compound C, a selective and reversible inhibitor of AMP-activated protein kinase (AMPK). Furthermore, it was found that perineural DEX significantly inhibited the CCI-induced upregulation of the immediate early gene c-Fos, overexpression of the inflammatory factors tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), attenuation of the NADH dehydrogenase complexes I, II, III, and IV, and the repression of ATP, SOD, and GSH in the dorsal horn of the spinal cord (DHSC) (
). These findings indicate that perineuronal DEX protected the injured ischiadic nerves and attenuated neuropathic pain via AMPK activation to improve energy supply in the peripheral injured nerves, alleviate the inflammatory factor release, and inhibit oxidative stress in the DHSC.
Collapse
|
13
|
Inhibitors of Mitochondrial Human Carbonic Anhydrases VA and VB as a Therapeutic Strategy against Paclitaxel-Induced Neuropathic Pain in Mice. Int J Mol Sci 2022; 23:ijms23116229. [PMID: 35682907 PMCID: PMC9181376 DOI: 10.3390/ijms23116229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathy development is a major dose-limiting side effect of anticancer treatments that significantly reduces patient's quality of life. The inadequate pharmacological approaches for neuropathic pain management warrant the identification of novel therapeutic targets. Mitochondrial dysfunctions that lead to reactive oxygen species (ROS) increase, cytosolic Ca2+ imbalance, and lactate acidosis are implicated in neuropathic pain pathogenesis. It has been observed that in these deregulations, a pivotal role is played by the mitochondrial carbonic anhydrases (CA) VA and VB isoforms. Hence, preclinical studies should be conducted to assess the efficacy of two novel selenides bearing benzenesulfonamide moieties, named 5b and 5d, and able to inhibit CA VA and VB against paclitaxel-induced neurotoxicity in mice. Acute treatment with 5b and 5d (30-100 mg/kg, per os - p.o.) determined a dose-dependent and long-lasting anti-hyperalgesic effect in the Cold plate test. Further, repeated daily treatment for 15 days with 100 mg/kg of both compounds (starting the first day of paclitaxel injection) significantly prevented neuropathic pain development without the onset of tolerance to the anti-hyperalgesic effect. In both experiments, acetazolamide (AAZ, 100 mg/kg, p.o.) used as the reference drug was partially active. Moreover, ex vivo analysis demonstrated the efficacy of 5b and 5d repeated treatments in reducing the maladaptive plasticity that occurs to glia cells in the lumbar portion of the spinal cord and in improving mitochondrial functions in the brain and spinal cord that were strongly impaired by paclitaxel-repeated treatment. In this regard, 5b and 5d ameliorated the metabolic activity, as observed by the increase in citrate synthase activity, and preserved an optimal mitochondrial membrane potential (ΔΨ) value, which appeared depolarized in brains from paclitaxel-treated animals. In conclusion, 5b and 5d have therapeutic and protective effects against paclitaxel-induced neuropathy without tolerance development. Moreover, 5b and 5d reduced glial cell activation and mitochondrial dysfunction in the central nervous system, being a promising candidate for the management of neuropathic pain and neurotoxicity evoked by chemotherapeutic drugs.
Collapse
|
14
|
Ferrer B, Suresh H, Tinkov AA, Santamaria A, Rocha JB, Skalny AV, Bowman AB, Aschner M. Ghrelin attenuates methylmercury-induced oxidative stress in neuronal cells. Mol Neurobiol 2022; 59:2098-2115. [PMID: 35040042 DOI: 10.1007/s12035-022-02726-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022]
Abstract
Methylmercury (MeHg) is a global pollutant, which can cause damage to the central nervous system at both high-acute and chronic-low exposures, especially in vulnerable populations, such as children and pregnant women. Nowadays, acute-high poisoning is rare. However, chronic exposure to low MeHg concentrations via fish consumption remains a health concern. Current therapeutic strategies for MeHg poisoning are based on the use of chelators. However, these therapies have limited efficacy. Ghrelin is a gut hormone with an important role in regulating physiologic processes. It has been reported that ghrelin plays a protective role against the toxicity of several xenobiotics. Here, we explored the role of ghrelin as a putative protector against MeHg-induced oxidative stress. Our data show that ghrelin was able to ameliorate MeHg-induced reactive oxygen species (ROS) production in primary neuronal hypothalamic and hippocampal cultures. An analogous effect was observed in mouse hypothalamic neuronal GT 1-7 cells. Using this model, our novel findings show that antioxidant protection of ghrelin against MeHg is mediated by glutathione upregulation and induction of the NRF2/NQO1 pathway.
Collapse
Affiliation(s)
- Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Harshini Suresh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Alexey A Tinkov
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University, Moscow, Russia.,Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular Y Nanotecnología, Instituto Nacional de Neurología Y Neurocirugía, 14269, Mexico City, Mexico
| | - João Batista Rocha
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Anatoly V Skalny
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.,Department of Bioelementology, KG Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA. .,Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
15
|
Preclinical and Clinical Evidence of Therapeutic Agents for Paclitaxel-Induced Peripheral Neuropathy. Int J Mol Sci 2021; 22:ijms22168733. [PMID: 34445439 PMCID: PMC8396047 DOI: 10.3390/ijms22168733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Paclitaxel is an essential drug in the chemotherapy of ovarian, non-small cell lung, breast, gastric, endometrial, and pancreatic cancers. However, it frequently causes peripheral neuropathy as a dose-limiting factor. Animal models of paclitaxel-induced peripheral neuropathy (PIPN) have been established. The mechanisms of PIPN development have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory PIPN effects. This review summarizes the basic and clinical evidence for therapeutic or prophylactic effects for PIPN. In pre-clinical research, many reports exist of neuropathy inhibitors that target oxidative stress, inflammatory response, ion channels, transient receptor potential (TRP) channels, cannabinoid receptors, and the monoamine nervous system. Alternatively, very few drugs have demonstrated PIPN efficacy in clinical trials. Thus, enhancing translational research to translate pre-clinical research into clinical research is important.
Collapse
|
16
|
Potential Antioxidative, Anti-inflammatory and Immunomodulatory Effects of Ghrelin, an Endogenous Peptide from the Stomach in SARS-CoV2 Infection. Int J Pept Res Ther 2021; 27:1875-1883. [PMID: 33880115 PMCID: PMC8050636 DOI: 10.1007/s10989-021-10217-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 02/08/2023]
Abstract
The current COVID-19 pandemic is one of the most devastating events in recent history. The respiratory effects of this disease include acute respiratory distress syndrome, systemic inflammation, cytokine storm, and pulmonary fibrosis. Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is a peptide hormone secreted mainly by the stomach. Interestingly, ghrelin possesses promising antioxidant, anti-and inflammatory effects, making it an attractive agent to reduce the complications of the SARS-CoV-2. In addition, ghrelin exerts a wide range of immunomodulatory and anti-inflammatory effects and can mitigate the uncontrolled cytokine production responsible for acute lung injury by upregulating PPARγ and down-regulating NF-κB expression. Ghrelin has also been reported to enhance Nrf2 expression in inflammatory conditions which led to the suppression of oxidative stress. The current opinion summarizes the evidence for the possible pharmacological benefits of ghrelin in the therapeutic management of SARS-CoV-2 infection.
Collapse
|
17
|
Riedel J, Calienni MN, Bernabeu E, Calabro V, Lázaro-Martinez JM, Prieto MJ, Gonzalez L, Martinez CS, Alonso SDV, Montanari J, Evelson P, Chiappetta DA, Moretton MA. Paclitaxel and curcumin co-loaded mixed micelles: Improving in vitro efficacy and reducing toxicity against Abraxane®. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Son DB, Choi W, Kim M, Go EJ, Jeong D, Park CK, Kim YH, Lee H, Suh JW. Decursin Alleviates Mechanical Allodynia in a Paclitaxel-Induced Neuropathic Pain Mouse Model. Cells 2021; 10:cells10030547. [PMID: 33806325 PMCID: PMC8001788 DOI: 10.3390/cells10030547] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a severe adverse effect of platinum- and taxane-derived anticancer drugs. The pathophysiology of CINP includes damage to neuronal networks and dysregulation of signal transduction due to abnormal Ca2+ levels. Therefore, methods that aid the recovery of neuronal networks could represent a potential treatment for CINP. We developed a mouse model of paclitaxel-induced peripheral neuropathy, representing CINP, to examine whether intrathecal injection of decursin could be effective in treating CINP. We found that decursin reduced capsaicin-induced intracellular Ca2+ levels in F11 cells and stimulated neurite outgrowth in a concentration-dependent manner. Decursin directly reduced mechanical allodynia, and this improvement was even greater with a higher frequency of injections. Subsequently, we investigated whether decursin interacts with the transient receptor potential vanilloid 1 (TRPV1). The web server SwissTargetPrediction predicted that TRPV1 is one of the target proteins that may enable the effective treatment of CINP. Furthermore, we discovered that decursin acts as a TRPV1 antagonist. Therefore, we demonstrated that decursin may be an important compound for the treatment of paclitaxel-induced neuropathic pain that functions via TRPV1 inhibition and recovery of damaged neuronal networks.
Collapse
Affiliation(s)
- Dang Bao Son
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin 17058, Korea; (D.B.S.); (W.C.); (D.J.)
| | - Woosik Choi
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin 17058, Korea; (D.B.S.); (W.C.); (D.J.)
| | - Mingu Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea; (M.K.); (E.J.G.); (C.-K.P.)
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Eun Jin Go
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea; (M.K.); (E.J.G.); (C.-K.P.)
| | - Dabeen Jeong
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin 17058, Korea; (D.B.S.); (W.C.); (D.J.)
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea; (M.K.); (E.J.G.); (C.-K.P.)
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea; (M.K.); (E.J.G.); (C.-K.P.)
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Correspondence: (Y.H.K.); (H.L.); (J.-W.S.); Tel.: +82-32-899-6115 (Y.H.K.); +82-31-330-6799 (H.L.); +82-31-330-6881 (J.-W.S.)
| | - Hanki Lee
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin 17058, Korea; (D.B.S.); (W.C.); (D.J.)
- Correspondence: (Y.H.K.); (H.L.); (J.-W.S.); Tel.: +82-32-899-6115 (Y.H.K.); +82-31-330-6799 (H.L.); +82-31-330-6881 (J.-W.S.)
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin 17058, Korea; (D.B.S.); (W.C.); (D.J.)
- Correspondence: (Y.H.K.); (H.L.); (J.-W.S.); Tel.: +82-32-899-6115 (Y.H.K.); +82-31-330-6799 (H.L.); +82-31-330-6881 (J.-W.S.)
| |
Collapse
|
19
|
Kihara M, Kaiya H, Hirai Y, Katayama H, Terao A, Nishikawa M. Salmon acyl-ghrelin increases food intake and reduces doxorubicin-induced myocardial apoptosis in rats, likely by anti-oxidative activity. Peptides 2021; 137:170471. [PMID: 33340558 DOI: 10.1016/j.peptides.2020.170471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/26/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
We had reported that orally administered ghrelin-containing salmon stomach extract prevents doxorubicin (DOX)-induced cardiotoxicity. In this study, we investigated the binding affinity of salmon ghrelin to rat ghrelin receptor and the cardioprotective effects of subcutaneous (sc) injected synthetic salmon ghrelin in rats with DOX-induced acute heart failure in order to clarify the potential efficacy of salmon ghrelin. Intracellular calcium mobilization assay was performed on rat GHS-R1a-expressing CHO cells to reveal ghrelin activity. Rats were divided into five groups; the normal control (I), and toxic control (II) groups were given saline (sc, twice daily), and the salmon acyl-ghrelin (sAG) (III), salmon unacylated-ghrelin (sUAG) (IV), and rat acyl-ghrelin (rAG) (V) groups were given corresponding synthetic ghrelins (sc, twice daily), respectively. After seven days of treatment, DOX (20 mg/kg BW) or saline was administered to the corresponding groups by intraperitoneal injection. The toxic control group was the negative control group for the DOX-induced cardiotoxicity groups. While sAG displayed similar affinity to rAG upon application to GHS-R1a-expressing cells, and also decreased DOX-induced apoptosis and increased food intake, sUAG did not. Both sAG and rAG improved DOX-induced deterioration, showing anti-oxidative activity. The anti-oxidative activity of sAG might contribute to the protective effects on cardiomyocytes. The results also suggest that, similar to rAG, sAG is a potent protectant against DOX-induced cardiotoxicity and a potential functional component in orally administered ghrelin-containing salmon stomach extract, which prevented DOX-induced cardiotoxicity in our previous study.
Collapse
Affiliation(s)
- Minoru Kihara
- Department of Marine Biology and Sciences, School of Biological Sciences, Tokai University, 5-1-1-1 Minamisawa, Minami-ku, Sapporo, 005-8601, Japan.
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, 564-8565, Japan
| | - Yumi Hirai
- Department of Marine Biology and Sciences, School of Biological Sciences, Tokai University, 5-1-1-1 Minamisawa, Minami-ku, Sapporo, 005-8601, Japan
| | - Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Akira Terao
- Liberal Arts Education Center, Sapporo Campus, Tokai University, 5-1-1-1 Minamisawa, Minami-ku, Sapporo, 005-8601, Japan
| | - Masazumi Nishikawa
- Department of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, 2-2-1 Hatadate, Taihaku-ku, Sendai, 982-0215, Japan
| |
Collapse
|
20
|
Wang H, Dou S, Zhu J, Shao Z, Wang C, Cheng B. Regulatory effects of ghrelin on endoplasmic reticulum stress, oxidative stress, and autophagy: Therapeutic potential. Neuropeptides 2021; 85:102112. [PMID: 33333485 DOI: 10.1016/j.npep.2020.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Ghrelin is a regulatory peptide that is the endogenous ligand of the growth hormone secretagogue 1a (GHS-R1a) which belongs to the G protein-coupled receptor family. Ghrelin and GHS-R1a are widely expressed in the central and peripheral tissues and play therapeutic potential roles in the cytoprotection of many internal organs. Endoplasmic reticulum stress (ERS), oxidative stress, and autophagy dysfunction, which are involved in various diseases. In recent years, accumulating evidence has suggested that ghrelin exerts protective effects by regulating ERS, oxidative stress, and autophagy in diverse diseases. This review article summarizes information about the roles of the ghrelin system on ERS, oxidative stress, and autophagy in multiple diseases. It is suggested that ghrelin positively affects the treatment of diseases and may be considered as a therapeutic drug in many illnesses.
Collapse
Affiliation(s)
- Huiqing Wang
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Shanshan Dou
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Junge Zhu
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Ziqi Shao
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, 272067 Jining, China.
| |
Collapse
|
21
|
Castorina S, Barresi V, Luca T, Privitera G, De Geronimo V, Lezoche G, Cosentini I, Di Vincenzo A, Barbatelli G, Giordano A, Taus M, Nicolai A, Condorelli DF, Cinti S. Gastric ghrelin cells in obese patients are hyperactive. Int J Obes (Lond) 2021; 45:184-194. [PMID: 33230309 DOI: 10.1038/s41366-020-00711-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 09/07/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND/OBJECTIVES Distribution and activity of ghrelin cells in the stomach of obese subjects are controversial. SUBJECTS/METHODS We examined samples from stomachs removed by sleeve gastrectomy in 49 obese subjects (normoglycemic, hyperglycemic and diabetic) and quantified the density of ghrelin/chromogranin endocrine cells by immunohistochemistry. Data were compared with those from 13 lean subjects evaluated by gastroscopy. In 44 cases (11 controls and 33 obese patients) a gene expression analysis of ghrelin and its activating enzyme ghrelin O-acyl transferase (GOAT) was performed. In 21 cases (4 controls and 17 obese patients) the protein levels of unacylated and acylated-ghrelin were measured by ELISA tests. In 18 cases (4 controls and 14 obese patients) the morphology of ghrelin-producing cells was evaluated by electron microscopy. RESULTS The obese group, either considered as total population or divided into subgroups, did not show any significant difference in ghrelin cell density when compared with control subjects. Inter-glandular smooth muscle fibres were increased in obese patients. In line with a positive trend of the desacylated form found by ELISA, Ghrelin and GOAT mRNA expression in obese patients was significantly increased. The unique ghrelin cell ultrastructure was maintained in all obese groups. In the hyperglycemic obese patients, the higher ghrelin expression matched with ultrastructural signs of endocrine hyperactivity, including expanded rough endoplasmic reticulum and reduced density, size and electron-density of endocrine granules. A positive correlation between ghrelin gene expression and glycemic values, body mass index and GOAT was also found. All obese patients with type 2 diabetes recovered from diabetes at follow-up after 5 months with a 16.5% of weight loss. CONCLUSIONS Given the known inhibitory role on insulin secretion of ghrelin, these results suggest a possible role for gastric ghrelin overproduction in the complex architecture that takes part in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Sergio Castorina
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
- Mediterranean Foundation "G.B. Morgagni", Catania, Italy
| | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Tonia Luca
- Mediterranean Foundation "G.B. Morgagni", Catania, Italy
| | | | | | - Giovanni Lezoche
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Ilaria Cosentini
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Angelica Di Vincenzo
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Giorgio Barbatelli
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Marina Taus
- Dietetic Unit and Clinical Nutrition, United Hospitals of Ancona, Ancona, Italy
| | - Albano Nicolai
- Dietetic Unit and Clinical Nutrition, United Hospitals of Ancona, Ancona, Italy
| | - Daniele Filippo Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Saverio Cinti
- Mediterranean Foundation "G.B. Morgagni", Catania, Italy.
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy.
- Dietetic Unit and Clinical Nutrition, United Hospitals of Ancona, Ancona, Italy.
| |
Collapse
|
22
|
Ferrer B, Prince LM, Tinkov AA, Santamaria A, Bowman AB, Aschner M. Chronic exposure to methylmercury disrupts ghrelin actions in C57BL/6J mice. Food Chem Toxicol 2020; 147:111918. [PMID: 33301842 DOI: 10.1016/j.fct.2020.111918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/06/2023]
Abstract
Methylmercury (MeHg) is a neurotoxic pollutant widely present in the environment. Initial symptoms of MeHg may include loss of body weight. However, the mechanisms by which MeHg induces body weight changes have yet to be fully elucidated. Body weight is regulated by multiple mechanisms. Whereas multiple peripheral peptides lead to food intake cessation, ghrelin is the only recognized peripheral hormone that stimulates food intake. It exerts its action on Neuropeptide Y/Agouti-related peptide neurons in the hypothalamus. To test if MeHg affects ghrelin signaling C57BL/6J mice (males and females) were exposed to 5 ppm MeHg via drinking water during a month. On days 15 and 30 of MeHg exposure ghrelin was administered intraperitoneally and changes in body weight and food intake were recorded. In addition, changes in ghrelin-induced signaling pathways in hypothalamus were also analyzed. Here, we show that in males, MeHg enhanced ghrelin-induced body weight gain by activating the AMP-activated Kinase (AMPK)/Uncoupled protein 2 (UCP2) signaling pathway. In contrast, in females, MeHg inhibited ghrelin-induced mTOR signaling activation and decreased Npy mRNA expression, thus mitigating the ghrelin-induced weight gain. Combined, our novel results demonstrate, for the first time, that MeHg disrupts the physiological functions of ghrelin differently in males and females.
Collapse
Affiliation(s)
- Beatriz Ferrer
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA.
| | - Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia; Yaroslavl State University, Yaroslavl, Russia; Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico.
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.
| | - Michael Aschner
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA; IM Sechenov First Moscow State Medical University, Moscow, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia.
| |
Collapse
|
23
|
Wang Y, Zheng X, Xie X, Qian W, Ren Z, Chen Y, Wu X, Liao K, Ren W. Body fat distribution and circulating adipsin are related to metabolic risks in adult patients with newly diagnosed growth hormone deficiency and improve after treatment. Biomed Pharmacother 2020; 132:110875. [PMID: 33254428 DOI: 10.1016/j.biopha.2020.110875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE The relationships between body fat distribution, the adipokine adipsin and metabolic risks were assessed in patients with adult growth hormone deficiency (AGHD) before and after growth hormone (GH) treatment. METHODS Sixty newly diagnosed AGHD patients were included in our study, 24 of whom were evaluated after at least one year of GH treatment. Anthropometric parameters, glucolipid metabolism and the adipokine adipsin were measured. Visceral adipose tissue (VAT) and body composition were evaluated using a dual-energy X-ray-absorptiometry (DXA) scanner. RESULTS At baseline, the higher VAT group had worse glucolipid metabolism parameters. Basal GH was negatively associated with VAT (r=-0.277, p = 0.045), while minimal correlations were found with fat mass depots, such as limbs and trunk fat (all p > 0.05). Adipsin was correlated with total body fat (r = 0.543, p < 0.001), VAT (r = 0.563, p < 0.001) and insulin resistance (r = 0.353, p = 0.006). The effect of GH administration on fat distribution was mainly reflected in the reduction in VAT. Partial improvements were found in lipid profiles, including increased high-density lipoprotein (HDL) and decreases in triglycerides (TGs) and lipoprotein(a), while glucose metabolism showed little change. The adipsin level also decreased significantly. The best predictors of VAT at baseline were trunk fat and IGF-I, and after treatment, VAT was predicted by decreased adipsin and an increase in lean mass. CONCLUSIONS (1) VAT is an important metabolic risk factor for AGHD patients. (2) GH treatment decreased body fat predominantly in the visceral and central fat depots. (3) The lipid profiles partially improved after treatment, while glucose metabolism showed little change.
Collapse
Affiliation(s)
- Yunting Wang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoya Zheng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Xie
- Department of Endocrinology, Bishan Hospital of Chongqing, Chongqing, China
| | - Wenjie Qian
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziyu Ren
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xun Wu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kun Liao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Ren
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
24
|
Zhu C, Liu N, Tian M, Ma L, Yang J, Lan X, Ma H, Niu J, Yu J. Effects of alkaloids on peripheral neuropathic pain: a review. Chin Med 2020; 15:106. [PMID: 33024448 PMCID: PMC7532100 DOI: 10.1186/s13020-020-00387-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain is a debilitating pathological pain condition with a great therapeutic challenge in clinical practice. Currently used analgesics produce deleterious side effects. Therefore, it is necessary to investigate alternative medicines for neuropathic pain. Chinese herbal medicines have been widely used in treating intractable pain. Compelling evidence revealed that the bioactive alkaloids of Chinese herbal medicines stand out in developing novel drugs for neuropathic pain due to multiple targets and satisfactory efficacy. In this review, we summarize the recent progress in the research of analgesic effects of 20 alkaloids components for peripheral neuropathic pain and highlight the potential underlying molecular mechanisms. We also point out the opportunities and challenges of the current studies and shed light on further in-depth pharmacological and toxicological studies of these bioactive alkaloids. In conclusion, the alkaloids hold broad prospects and have the potentials to be novel drugs for treating neuropathic pain. This review provides a theoretical basis for further applying some alkaloids in clinical trials and developing new drugs of neuropathic pain.
Collapse
Affiliation(s)
- Chunhao Zhu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Miaomiao Tian
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Hanxiang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region, 750004 Ningxia China
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| |
Collapse
|
25
|
da Costa R, Passos GF, Quintão NL, Fernandes ES, Maia JRL, Campos MM, Calixto JB. Taxane-induced neurotoxicity: Pathophysiology and therapeutic perspectives. Br J Pharmacol 2020; 177:3127-3146. [PMID: 32352155 PMCID: PMC7312267 DOI: 10.1111/bph.15086] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 12/28/2022] Open
Abstract
Taxane-derived drugs are antineoplastic agents used for the treatment of highly common malignancies. Paclitaxel and docetaxel are the most commonly used taxanes; however, other drugs and formulations have been used, such as cabazitaxel and nab-paclitaxel. Taxane treatment is associated with neurotoxicity, a well-known and relevant side effect, very prevalent amongst patients undergoing chemotherapy. Painful peripheral neuropathy is the most dose-limiting side effect of taxanes, affecting up to 97% of paclitaxel-treated patients. Central neurotoxicity is an emerging side effect of taxanes and it is characterized by cognitive impairment and encephalopathy. Besides impairing compliance to chemotherapy treatment, taxane-induced neurotoxicity (TIN) can adversely affect the patient's life quality on a long-term basis. Despite the clinical relevance, not many reviews have comprehensively addressed taxane-induced neurotoxicity when they are used therapeutically. This article provides an up-to-date review on the pathophysiology of TIN and the novel potential therapies to prevent or treat this side effect.
Collapse
Affiliation(s)
- Robson da Costa
- Faculdade de FarmáciaUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrazil
| | - Giselle F. Passos
- Faculdade de FarmáciaUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrazil
| | - Nara L.M. Quintão
- Programa de Pós‐graduação em Ciências FarmacêuticasUniversidade do Vale do ItajaíItajaíSCBrazil
| | - Elizabeth S. Fernandes
- Instituto Pelé Pequeno PríncipeCuritibaPRBrazil
- Programa de Pós‐graduação em Biotecnologia Aplicada à Saúde da Criança e do AdolescenteFaculdades Pequeno PríncipeCuritibaPRBrazil
| | | | - Maria Martha Campos
- Escola de Ciências da Saúde e da VidaPontifícia Universidade Católica do Rio Grande do SulPorto AlegreRSBrazil
| | - João B. Calixto
- Centro de Inovação e Ensaios Pré‐clínicos ‐ CIEnPFlorianópolisSCBrazil
| |
Collapse
|
26
|
Liu GB, Pan YM, Liu YS, Hu JH, Zhang XD, Zhang DW, Wang Y, Feng YK, Yu JB, Cheng YX. Ghrelin promotes neural differentiation of adipose tissue-derived mesenchymal stem cell via AKT/mTOR and β-catenin signaling pathways. Kaohsiung J Med Sci 2020; 36:405-416. [PMID: 32003536 DOI: 10.1002/kjm2.12188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/07/2020] [Indexed: 02/04/2023] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) are multipotent cells that can differentiate into various cell types. This study aimed to investigate the effect of ghrelin on the neural differentiation of rat ADSCs and underlying molecular mechanisms. Rat ADSCs were isolated and third-passage ADSCs were used in this study. The isolated ADSCs were characterized by flow cytometry analysis for MSCs' surface expression markers as evidenced by positive for CD90, CD44, and CD29 and negative for CD34, CD45, and CD11b/2f/c. The multilineage differentiation of ADSCs was confirmed by adipogenic, osteogenic, and neural differentiation. After induction of neurogenesis, the differentiated cells were identified by development of neuron-like morphology and expression of neural markers including glial fibrillary acidic protein, Nestin, MAP2, and β-Tubulin III using immunofluorescence and western blot. Ghrelin concentration dependently elevated the proportion of neural-like cells and branching dendrites, as well as upregulated the expression of neural markers. Further, the expression of nuclear β-catenin, p-GSK-3β, p-AKT, and p-mTOR was increased by ghrelin, indicating an activation of β-catenin and AKT/mTOR signaling after the ghrelin treatment. Importantly, inhibition of β-catenin or AKT/mTOR signaling suppressed ghrelin-induced neurogenesis. Therefore, we demonstrate that ghrelin promotes neural differentiation of ADSCs through the activation of β-catenin and AKT/mTOR signaling pathways.
Collapse
Affiliation(s)
- Gui-Bo Liu
- Department of Anatomy, School of Basic Medical Sciences, Mudanjiang Medical College, Mudanjiang, People's Republic of China.,Institute of Neural Tissue Engineering, Mudanjiang Medical College, Mudanjiang, People's Republic of China
| | - Yan-Ming Pan
- Department of Anatomy, School of Basic Medical Sciences, Mudanjiang Medical College, Mudanjiang, People's Republic of China.,Key Laboratory of Cancer Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical College, Mudanjiang, People's Republic of China
| | - Yun-Shuang Liu
- Department of Medical Imaging, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, People's Republic of China
| | - Jia-Hang Hu
- Department of Medical Imaging, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, People's Republic of China
| | - Xiao-Dong Zhang
- Department of Infectious Diseases, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, People's Republic of China
| | - Da-Wei Zhang
- Department of Anatomy, School of Basic Medical Sciences, Mudanjiang Medical College, Mudanjiang, People's Republic of China
| | - Ying Wang
- Department of Anatomy, School of Basic Medical Sciences, Mudanjiang Medical College, Mudanjiang, People's Republic of China.,Institute of Neural Tissue Engineering, Mudanjiang Medical College, Mudanjiang, People's Republic of China
| | - Yu-Kuan Feng
- Department of Anatomy, School of Basic Medical Sciences, Mudanjiang Medical College, Mudanjiang, People's Republic of China
| | - Jian-Bo Yu
- Key Laboratory of Cancer Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical College, Mudanjiang, People's Republic of China.,Pathology Diagnosis Center, The First Clinical Medical School of Mudanjiang Medical College, Mudanjiang, People's Republic of China
| | - Yong-Xia Cheng
- Key Laboratory of Cancer Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical College, Mudanjiang, People's Republic of China.,Pathology Diagnosis Center, The First Clinical Medical School of Mudanjiang Medical College, Mudanjiang, People's Republic of China.,Institute of Stem Cells, Mudanjiang Medical College, Mudanjiang, People's Republic of China
| |
Collapse
|
27
|
Relationships between Ghrelin and Obestatin with MDA, Proinflammatory Cytokines, GSH/GSSG Ratio, Catalase Activity, and Semen Parameters in Infertile Patients with Leukocytospermia and Varicocele. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7261842. [PMID: 31781347 PMCID: PMC6855048 DOI: 10.1155/2019/7261842] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/29/2019] [Accepted: 09/12/2019] [Indexed: 11/18/2022]
Abstract
Ghrelin and obestatin are involved in many biological functions including reproduction. Growing evidences suggest that both peptides could exert protective and antioxidant activities. In this study, the relationships between ghrelin/obestatin, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), reduced glutathione (GSH), oxidized glutathione (GSSG), expressed as the GSH/GSSG ratio, catalase (CAT), and semen parameters in infertile patients with varicocele or leukocytospermia and controls were investigated. Fifty-six infertile patients (32 with leukocytospermia and 24 with varicocele) and 14 controls participated in this study. Semen analysis was performed following the WHO guidelines. Apoptotic and necrotic sperm were scored by annexin V/propidium iodide assay. Seminal plasma samples were used for the following determinations: ghrelin, obestatin, IL-6, and TNF-α were measured by an immunological method, GSH/GSSG by an enzymatic method, and CAT by spectrophotometric determination. With respect to controls, both the leukocytospermia and varicocele groups showed altered sperm parameters, significantly increased sperm apoptosis (P = 0.009 and P = 0.011, respectively), IL-6 (P = 0.0001 and P = 0.004, respectively), and TNF-α levels (P = 0.0001 and P = 0.002, respectively); both groups had significantly decreased levels of ghrelin (P = 0.0001), obestatin (P = 0.0001 and P = 0.006, respectively), and GSH/GSSG ratio (P = 0.003 and P = 0.0001, respectively). The MDA concentration was significantly increased in the leukocytospermia group vs. controls (P = 0.0001), in the varicocele group vs. controls (P = 0.011), and in the leukocytospermia group vs. the varicocele group (P = 0.008). CAT activity was augmented in both the leukocytospermia and varicocele groups (P = 0.0001)vs. controls. The results indicate that both ghrelin and obestatin may play a protective role in human semen and this effect is probably due to their antioxidant properties.
Collapse
|
28
|
The endocannabinoid system: Novel targets for treating cancer induced bone pain. Biomed Pharmacother 2019; 120:109504. [PMID: 31627091 DOI: 10.1016/j.biopha.2019.109504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023] Open
Abstract
Treating Cancer-induced bone pain (CIBP) continues to be a major clinical challenge and underlying mechanisms of CIBP remain unclear. Recently, emerging body of evidence suggested the endocannabinoid system (ECS) may play essential roles in CIBP. Here, we summarized the current understanding of the antinociceptive mechanisms of endocannabinoids in CIBP and discussed the beneficial effects of endocannabinoid for CIBP treatment. Targeting non-selective cannabinoid 1 receptors or selective cannabinoid 2 receptors, and modulation of peripheral AEA and 2-AG, as well as the inhibition the function of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have produced analgesic effects in animal models of CIBP. Management of ECS therefore appears to be a promising way for the treatment of CIBP in terms of efficacy and safety. Further clinical studies are encouraged to confirm the possible translation to humans of the very promising results already obtained in the preclinical studies.
Collapse
|
29
|
Peng Z, Zha L, Yang M, Li Y, Guo X, Feng Z. Effects of ghrelin on pGSK-3β and β-catenin expression when protects against neuropathic pain behavior in rats challenged with chronic constriction injury. Sci Rep 2019; 9:14664. [PMID: 31601982 PMCID: PMC6787073 DOI: 10.1038/s41598-019-51140-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/25/2019] [Indexed: 11/09/2022] Open
Abstract
Ghrelin has been shown to alleviate neuropathic pain by inhibiting the release of proinflammatory cytokines. The purpose of this study was to investigate the role of GSK-3β/β-catenin signaling in mediating the effect of ghrelin on neuropathic pain and to understand the associated mechanisms. Chronic constriction injury (CCI) of the sciatic nerve was used to establish a rat model of neuropathic pain. Hyperalgesia and allodynia were evaluated by observing the mechanical withdrawal threshold and the thermal withdrawal latency. Wnt3a and β-catenin protein expression and GSK-3β phosphorylation were detected by western blotting analysis. The levels of tumor necrosis factor-α and IL-1β were determined using an enzyme-linked immunosorbent assay. In addition, we used immunohistochemical analysis to determine the levels of GSK-3β phosphorylation in the dorsal horn of the spinal cord. Intrathecal delivery of ghrelin effectively ameliorated CCI-induced mechanical allodynia and thermal hyperalgesia at 7 and 14 days and reduced the levels of tumor necrosis factor-α. Ghrelin inhibited CCI-induced GSK-3β activation and β-catenin overexpression in the spinal dorsal horn. Moreover, intrathecal injection of ghrelin suppressed the activation of GSK-3β in the spinal dorsal horn of CCI rats, as assessed by immunohistochemical analysis. Our data indicated that ghrelin could markedly alleviate neuropathic pain by inhibiting the expression of β-catenin, via the suppression of GSK-3β activation, in the spinal cord of CCI rats.
Collapse
Affiliation(s)
- Zhiyou Peng
- Department of Pain Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Leiqiong Zha
- Department of Pain Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meijuan Yang
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunze Li
- Department of Pain Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejiao Guo
- Department of Pain Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Feng
- Department of Pain Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
30
|
Dong D, Xie J, Wang J. Neuroprotective Effects of Brain-Gut Peptides: A Potential Therapy for Parkinson's Disease. Neurosci Bull 2019; 35:1085-1096. [PMID: 31286411 DOI: 10.1007/s12264-019-00407-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is typically associated with progressive motor and non-motor dysfunctions. Currently, dopamine replacement therapy is mainly used to relieve the motor symptoms, while its long-term application can lead to various complications and does not cure the disease. Numerous studies have demonstrated that many brain-gut peptides have neuroprotective effects in vivo and in vitro, and may be a promising treatment for PD. In recent years, some progress has been made in studies on the neuroprotective effects of some newly-discovered brain-gut peptides, such as glucagon-like peptide 1, pituitary adenylate cyclase activating polypeptide, nesfatin-1, and ghrelin. However, there is still no systematic review on the neuroprotective effects common to these peptides. Thus, here we review the neuroprotective effects and the associated mechanisms of these four peptides, as well as other brain-gut peptides related to PD, in the hope of providing new ideas for the treatment of PD and related clinical research.
Collapse
Affiliation(s)
- Dong Dong
- Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China.
| | - Jun Wang
- Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
31
|
Turkson S, Kloster A, Hamilton PJ, Neigh GN. Neuroendocrine drivers of risk and resilience: The influence of metabolism & mitochondria. Front Neuroendocrinol 2019; 54:100770. [PMID: 31288042 PMCID: PMC6886586 DOI: 10.1016/j.yfrne.2019.100770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/20/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
The manifestation of risk versus resilience has been considered from varying perspectives including genetics, epigenetics, early life experiences, and type and intensity of the challenge with which the organism is faced. Although all of these factors are central to determining risk and resilience, the current review focuses on what may be a final common pathway: metabolism. When an organism is faced with a perturbation to the environment, whether internal or external, appropriate energy allocation is essential to resolving the divergence from equilibrium. This review examines the potential role of metabolism in the manifestation of stress-induced neural compromise. In addition, this review details the current state of knowledge on neuroendocrine factors which are poised to set the tone of the metabolic response to a systemic challenge. The goal is to provide an essential framework for understanding stress in a metabolic context and appreciation for key neuroendocrine signals.
Collapse
Affiliation(s)
- Susie Turkson
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Alix Kloster
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Peter J Hamilton
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
32
|
Trecarichi A, Flatters SJL. Mitochondrial dysfunction in the pathogenesis of chemotherapy-induced peripheral neuropathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:83-126. [PMID: 31208528 DOI: 10.1016/bs.irn.2019.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several first-line chemotherapeutic agents, including taxanes, platinum agents and proteasome inhibitors, are associated with the dose-limiting side effect of chemotherapy-induced peripheral neuropathy (CIPN). CIPN predominantly manifests as sensory symptoms, which are likely due to drug accumulation within peripheral nervous tissues rather than the central nervous system. No treatment is currently available to prevent or reverse CIPN. The causal mechanisms underlying CIPN are not yet fully understood. Mitochondrial dysfunction has emerged as a major factor contributing to the development and maintenance of CIPN. This chapter will provide an overview of both clinical and preclinical data supporting this hypothesis. We will review the studies reporting the nature of mitochondrial dysfunction evoked by chemotherapy in terms of changes in mitochondrial morphology, bioenergetics and reactive oxygen species (ROS) generation. Furthermore, we will discuss the in vivo effects of pharmacological interventions that counteract chemotherapy-evoked mitochondrial dysfunction and ameliorate pain-like behavior.
Collapse
Affiliation(s)
- Annalisa Trecarichi
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sarah J L Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
33
|
Cinici E, Dilekmen N, Kutlu Z, Dincer B, Cinici O, Balta H, Calık I. Carvone protects against paclitaxel-induced retinal and optic nerve cytotoxicity: a histopathological study. Cutan Ocul Toxicol 2019; 38:290-293. [PMID: 31010341 DOI: 10.1080/15569527.2019.1608229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Carvone (CVN) is a natural monoterpene found in essential oils of many aromatic plant species. In this study, we investigated the protective effect of CVN against paclitaxel (PTX)-induced retinal and optic nerve cytotoxicity in rats. Methods: Twenty-four male adult Wistar albino rats (250-400 g) were randomized into four equal groups comprising six animals in each. Group 1 (control group) received intraperitoneal (i.p.) saline solution (0.5 mL/200 g) weekly for 4 weeks. Group 2 received i.p. CVN [(S)-(+)- CVN, (5S)-5-Isopropenyl-2-methyl-2-cyclohexen-1-one, C10H14, 25 mg/kg], while Group 3 received i.p. PTX (5 mg/kg) weekly for 4 weeks. Group 4 received i.p. CVN (25 mg/kg) 30 min after i.p. PTX (5 mg/kg) weekly for 4 weeks. At the end of the experimental period, retinal and optic nerve tissues were evaluated histopathologically. Results: All retinal specimens in control and CVN groups were histopathologically normal. In PTX group all eyes (6/6) demonstrated increased retinal vascularity and rosette-like structures in the outer nuclear layer, while in PTX-CVN group all eyes (6/6) demonstrated normal retinal vascularity and absence of rosette-like structures. All optic nerve specimens in control and CVN groups were histopathologically normal. In PTX group all eyes (6/6) demonstrated severe vacuolization and decrease in the number of astrocytes and oligodendrocytes, while 3 eyes (3/6) demonstrated marked single cell necrosis. In PTX-CVN group, 4 eyes (4/6) demonstrated moderate vacuolization while, 2 eyes (2/6) had none. Compared with PTX group, 1 eye (1/6) in PTX-CVN group demonstrated a decrease in numbers of astrocytes and oligodendrocytes while 5 eyes (5/6) were normal. No remarkable single cell necrosis was observed in PTX-CVN group. Conclusions: Our histopathological findings demonstrated the potential protective role of CVN against PTX-induced retinal and optic nerve cytotoxicity. CVN might be a promising molecule in counteracting oxidative stress-based cytotoxicity in the field of retinal and optic nerve disorders.
Collapse
Affiliation(s)
- Emine Cinici
- a Department of Ophthalmology, Faculty of Medicine, Ataturk University , Erzurum , Turkey
| | - Nilay Dilekmen
- b Department of Ophthalmology, Palandoken State Hospital , Erzurum , Turkey
| | - Zerrin Kutlu
- c Department of Biochemistry, Faculty of Pharmacy, Ataturk University , Erzurum , Turkey
| | - Busra Dincer
- d Department of Pharmacology, Faculty of Pharmacy, Ataturk University , Erzurum , Turkey
| | - Ozkan Cinici
- e Department of Internal Medicine, Regional Training and Research Hospital , Erzurum , Turkey
| | - Hilal Balta
- f Department of Pathology, Regional Training and Research Hospital , Erzurum , Turkey
| | - Ilknur Calık
- f Department of Pathology, Regional Training and Research Hospital , Erzurum , Turkey
| |
Collapse
|
34
|
Alphalipoic Acid Prevents Oxidative Stress and Peripheral Neuropathy in Nab-Paclitaxel-Treated Rats through the Nrf2 Signalling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3142732. [PMID: 30881589 PMCID: PMC6387730 DOI: 10.1155/2019/3142732] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 01/13/2023]
Abstract
Peripheral neuropathy is the major dose-limiting side effect of paclitaxel (PTX), affecting both the quality of life and the survival of cancer patients. Nab-paclitaxel (nab-PTX) was developed to provide additional clinical benefits and overcome the safety drawbacks of solvent-based PTX. However, the prevalence of peripheral neuropathy induced by nab-PTX was reported higher than that induced by solvent-based PTX. Upon investigation, oxidative stress plays a major role in the toxicity of nab-PTX. In order to assess if the antioxidant alphalipoic acid (α-LA) could prevent the nab-PTX-induced peripheral neuropathy, Sprague-Dawley (SD) rats were treated with three doses of α-LA (15, 30, and 60 mg/kg in normal saline, i.p., q.d. (days 1-30)) and/or nab-PTX (7.4 mg/kg in normal saline, i.v., q.w. (days 8, 15, and 22)). Body weight and peripheral neuropathy were measured and assessed regularly during the study. The assessment of peripheral neuropathy was performed by the von Frey and acetone tests. A tumor xenograft model of pancreatic cancer was used to assess the impact of α-LA on the antitumor effect of nab-PTX. Results showed that α-LA significantly ameliorated the peripheral neuropathy induced by nab-PTX (p < 0.05) without promoting tumor growth or reducing the chemotherapeutic effect of nab-PTX in a tumor xenograft model. Moreover, α-LA might significantly reverse the superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) levels altered by nab-PTX in the serum and the spinal cord of rats. Furthermore, α-LA could reverse the mRNA and protein expressions of Nrf2 (nuclear factor erythroid 2-related factor 2) and three Nrf2-responsive genes (HO-1, γ-GCLC, and NQO1) altered by nab-PTX in the dorsal root ganglion (DRG) of rats. In conclusion, our study suggests that α-LA could prevent oxidative stress and peripheral neuropathy in nab-PTX-treated rats through the Nrf2 signalling pathway without diminishing chemotherapeutic effect.
Collapse
|
35
|
Wu P, Chen Y. Evodiamine ameliorates paclitaxel-induced neuropathic pain by inhibiting inflammation and maintaining mitochondrial anti-oxidant functions. Hum Cell 2019; 32:251-259. [PMID: 30701373 DOI: 10.1007/s13577-019-00238-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a common and debilitating side effect of cancer treatment. Evodiamine, a major effective compound isolated from Evodia rutaecarpa, has been associated with anti-inflammatory and anti-nociceptive effects, an important therapeutic strategy for the treatment of neuropathic pain. However, the effects of evodiamine on CINP remain unknown. Thus, this study aims to investigate the pharmacological potential of evodiamine in attenuating paclitaxel-induced peripheral neuropathy. The results showed that evodiamine enhanced but not reduced the sensitivity of cancer cells to paclitaxel treatment. In a rat model of paclitaxel-induced peripheral neuropathy, evodiamine significantly ameliorated the development of mechanical and thermal hypersensitivity. Moreover, paclitaxel-induced the loss of intraepidermal nerve fibers was markedly inhibited by evodiamine administration. This inhibitory effect was accompanied with the decrease in inflammatory and chemoattractant cytokines level in dorsal root ganglia (DRG), such as interleukin (IL)-1β, IL-6, tumor necrosis factor-α and monocyte chemoattractant protein-1. In addition, evodiamine administration limited paclitaxel-induced elevation of oxidative stress in DRG tissues. The mitochondrial dysfunction evoked by paclitaxel was also remarkably improved in evodiamine-treated rats, evidenced by restoration of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), uncoupling protein 2 (UCP2), and superoxide dismutase 2 (SOD2) expression. In in vitro studies, we found that evodiamine prevented paclitaxel-induced the loss of mitochondrial membrane potential and PGC-1α, UCP2 and SOD2 expression in DRG cells. In conclusion, our study demonstrates that evodiamine ameliorates paclitaxel-induced neuropathic pain by inhibiting inflammatory response and maintaining mitochondrial anti-oxidant functions, indicating that evodiamine may be a promising therapeutic agent for CINP treatment.
Collapse
Affiliation(s)
- Peipei Wu
- Department of Anesthesiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, NO. 29 Xinglong Road, Changzhou, 213000, Jiangsu, China
| | - Yong Chen
- Department of Anesthesiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, NO. 29 Xinglong Road, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
36
|
Ghrelin agonist HM01 attenuates chemotherapy-induced neurotoxicity in rodent models. Eur J Pharmacol 2018; 840:89-103. [PMID: 30268665 DOI: 10.1016/j.ejphar.2018.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022]
Abstract
Chemotherapy-Induced Peripheral Neurotoxicity (CIPN) is often dose-limiting and impacts life quality and survival of cancer patients. Ghrelin agonists have neuroprotectant effects and may have a role in treating or preventing CIPN. We evaluated the CNS-penetrant ghrelin agonist HM01 in three experimental models of CIPN at doses of 3-30 mg/kg p.o. daily monitoring orexigenic properties, nerve conduction, mechanical allodynia, and intra-epidermal nerve fiber density (IENFD). In a cisplatin-based study, rats were dosed daily for 3 days (0.5 mg/kg i.p.) + HM01. Cisplatin treatment induced mechanical hypersensitivity which was significantly reduced by HM01. In a second study, oxaliplatin was administered to mice (6 mg/kg i.p. 3 times/week for 4 weeks) resulting in significant digital nerve conduction velocity (NCV) deficits and reduction of IENFD. Concurrent HM01 dose dependently prevented the decline in NCV and attenuated the reduction in IENFD. Pharmacokinetic studies showed HM01 accumulation in the dorsal root ganglia and sciatic nerves which reached concentrations > 10 fold that of plasma. In a third model, HM01 was tested in preventive and therapeutic paradigms in a bortezomib-based rat model (0.2 mg/kg i.v., 3 times/week for 8 weeks). In the preventive setting, HM01 blocked bortezomib-induced hyperalgesia and IENFD reduction at all doses tested. In the therapeutic setting, significant effect was observed, but only at the highest dose. Altogether, the robust peripheral nervous system penetration of HM01 and its ability to improve multiple oxaliplatin-, cisplatin-, and bortezomib-induced neurotoxicities suggest that HM01 may be a useful neuroprotective adjuvant for CIPN.
Collapse
|
37
|
Farokhnia M, Lee MR, Farinelli LA, Ramchandani VA, Akhlaghi F, Leggio L. Pharmacological manipulation of the ghrelin system and alcohol hangover symptoms in heavy drinking individuals: Is there a link? Pharmacol Biochem Behav 2018; 172:39-49. [PMID: 30030128 DOI: 10.1016/j.pbb.2018.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/23/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022]
Abstract
Ghrelin, an orexigenic peptide synthesized in the stomach, is a key player in the gut-brain axis. In addition to its role in regulating food intake and energy homeostasis, ghrelin has been shown to modulate alcohol-related behaviors. Alcohol consumption frequently results in hangover, an underexplored phenomenon with considerable medical, psychological, and socioeconomic consequences. While the pathophysiology of hangover is not clear, contributions of mechanisms such as alcohol-induced metabolic/endocrine changes, inflammatory/immune response, oxidative stress, and gut dysbiosis have been reported. Interestingly, these mechanisms considerably overlap with ghrelin's physiological functions. Here, we investigated whether pharmacological manipulation of the ghrelin system may affect alcohol hangover symptoms. Data were obtained from two placebo-controlled laboratory studies. The first study tested the effects of intravenous (IV) ghrelin and consisted of two experiments: a progressive-ratio IV alcohol self-administration (IV-ASA) and a fixed-dose IV alcohol clamp. The second study tested the effects of an oral ghrelin receptor inverse agonist (PF-5190457) and included a fixed-dose oral alcohol administration experiment. Alcohol hangover data were collected the morning after each alcohol administration experiment using the Acute Hangover Scale (AHS). IV ghrelin, compared to placebo, significantly reduced alcohol hangover after IV-ASA (p = 0.04) and alcohol clamp (p = 0.04); PF-5190457 had no significant effect on AHS scores. Females reported significantly higher hangover symptoms than males following the IV-ASA experiment (p = 0.04), but no gender × drug condition (ghrelin vs. placebo) effect was found. AHS total scores were positively correlated with peak subjective responses, including 'stimulation' (p = 0.08), 'sedation' (p = 0.009), 'feel high' (p = 0.05), and 'feel intoxicated' (p = 0.03) during the IV-ASA. IV ghrelin blunted the positive association between alcohol sedation and hangover as shown by trend-level drug × sedation effect (p = 0.08). This is the first study showing that exogenous ghrelin administration, but not ghrelin receptor inverse agonism, affects hangover symptoms. Future research should investigate the potential mechanism(s) underlying this effect.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Mary R Lee
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Lisa A Farinelli
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Vijay A Ramchandani
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|