1
|
Flammia R, Huang B, Pagare PP, M St Onge C, Abebayehu A, Gillespie JC, Mendez RE, Selley DE, Dewey WL, Zhang Y. Blocking potential metabolic sites on NAT to improve its safety profile while retaining the pharmacological profile. Bioorg Chem 2024; 148:107489. [PMID: 38797065 PMCID: PMC11190787 DOI: 10.1016/j.bioorg.2024.107489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
The number of opioid-related overdose deaths and individuals that have suffered from opioid use disorders have significantly increased over the last 30 years. FDA approved maintenance therapies to treat opioid use disorder may successfully curb drug craving and prevent relapse but harbor adverse effects that reduce patient compliance. This has created a need for new chemical entities with improved patient experience. Previously our group reported a novel lead compound, NAT, a mu-opioid receptor antagonist that potently antagonized the antinociception of morphine and showed significant blood-brain barrier permeability. However, NAT belongs to thiophene containing compounds which are known structural alerts for potential oxidative metabolism. To overcome this, 15 NAT derivatives with various substituents at the 5'-position of the thiophene ring were designed and their structure-activity relationships were studied. These derivatives were characterized for their binding affinity, selectivity, and functional activity at the mu opioid receptor and assessed for their ability to antagonize the antinociceptive effects of morphine in vivo. Compound 12 showed retention of the basic pharmacological attributes of NAT while improving the withdrawal effects that were experienced in opioid-dependent mice. Further studies will be conducted to fully characterize compound 12 to examine whether it would serve as a new lead for opioid use disorder treatment and management.
Collapse
Affiliation(s)
- Rachael Flammia
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Boshi Huang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Celsey M St Onge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Abeje Abebayehu
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - James C Gillespie
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - Rolando E Mendez
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - William L Dewey
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States; Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, 203 East Cary Street, Richmond, VA 23298-0059.
| |
Collapse
|
2
|
St. Onge C, Pagare PP, Zheng Y, Arriaga M, Stevens DL, Mendez RE, Poklis JL, Halquist MS, Selley DE, Dewey WL, Banks ML, Zhang Y. Systematic Structure-Activity Relationship Study of Nalfurafine Analogues toward Development of Potentially Nonaddictive Pain Management Treatments. J Med Chem 2024; 67:9552-9574. [PMID: 38814086 PMCID: PMC11181328 DOI: 10.1021/acs.jmedchem.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Despite the availability of numerous pain medications, the current array of Food and Drug Administration-approved options falls short in adequately addressing pain states for numerous patients and consequently worsens the opioid crisis. Thus, it is imperative for basic research to develop novel and nonaddictive pain medications. Toward addressing this clinical goal, nalfurafine (NLF) was chosen as a lead and its structure-activity relationship (SAR) systematically studied through design, syntheses, and in vivo characterization of 24 analogues. Two analogues, 21 and 23, showed longer durations of action than NLF in a warm-water tail immersion assay, produced in vivo effects primarily mediated by KOR and DOR, penetrated the blood-brain barrier, and did not function as reinforcers. Additionally, 21 produced fewer sedative effects than NLF. Taken together, these results aid the understanding of NLF SAR and provide insights for future endeavors in developing novel nonaddictive therapeutics to treat pain.
Collapse
Affiliation(s)
- Celsey
M. St. Onge
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, 800 E. Leigh
Street, Richmond, Virginia 23219, United States
| | - Piyusha P. Pagare
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, 800 E. Leigh
Street, Richmond, Virginia 23219, United States
| | - Yi Zheng
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, 800 E. Leigh
Street, Richmond, Virginia 23219, United States
| | - Michelle Arriaga
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - David L. Stevens
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Rolando E. Mendez
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Justin L. Poklis
- Department
of Pharmaceutics, Virginia Commonwealth
University, 410 North
12th Street, Richmond, Virginia 23298, United States
| | - Matthew S. Halquist
- Department
of Pharmaceutics, Virginia Commonwealth
University, 410 North
12th Street, Richmond, Virginia 23298, United States
| | - Dana E. Selley
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - William L. Dewey
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Matthew L. Banks
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, 800 E. Leigh
Street, Richmond, Virginia 23219, United States
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
- Institute
for Drug and Alcohol Studies, 203 East Cary Street, Richmond, Virginia 23298, United States
| |
Collapse
|
3
|
Pagare PP, Flammia R, Zhang Y. IUPHAR review: Recent progress in the development of Mu opioid receptor modulators to treat opioid use disorders. Pharmacol Res 2024; 199:107023. [PMID: 38081336 DOI: 10.1016/j.phrs.2023.107023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
Opioid Use Disorder (OUD) can be described as intense preoccupation with using or obtaining opioids despite the negative consequences associated with their use. As the number of OUD cases in the U.S. increase, so do the number of opioid-related overdose deaths. In 2022, opioid-related overdose became the No. 1 cause of death for individuals in the U.S. between the ages of 25 and 64 years of age. Because of the introduction of highly potent synthetic opioids (e.g. fentanyl) to the illicit drug market, there is an urgent need for therapeutics that successfully reduce the number of overdoses and can help OUD patients maintain sobriety. Most abused opioids stimulate the mu-opioid receptor (MOR) and activation of this receptor can lead to positive (e.g., euphoria) consequences. However, the negative side effects of MOR stimulation can be fatal (e.g., sedation, respiratory depression). Therefore, the MOR is an attractive target for developing medications to treat OUD. Current FDA drugs include MOR agonists that aid in detoxification and relapse prevention, and MOR antagonists that also serve as maintenance therapies or reverse overdose. These medications are limited by their abuse potential, adverse effects, or pharmacological profiles which leaves ample room for research into designing new chemical entities with optimal physiological effects. These includes, orthosteric ligands that target the primary binding site of the MOR, allosteric ligands that positively, negatively, or "silently" modulate receptor function, and lastly, bitopic ligands target both the orthosteric and allosteric sites simultaneously.
Collapse
Affiliation(s)
- Piyusha P Pagare
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23219, United States
| | - Rachael Flammia
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23219, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23219, United States; Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, 203 East Cary Street, Richmond, VA 23298, United States.
| |
Collapse
|
4
|
Kellogg GE, Cen Y, Dukat M, Ellis KC, Guo Y, Li J, May AE, Safo MK, Zhang S, Zhang Y, Desai UR. Merging cultures and disciplines to create a drug discovery ecosystem at Virginia commonwealth university: Medicinal chemistry, structural biology, molecular and behavioral pharmacology and computational chemistry. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:255-269. [PMID: 36863508 PMCID: PMC10619687 DOI: 10.1016/j.slasd.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
The Department of Medicinal Chemistry, together with the Institute for Structural Biology, Drug Discovery and Development, at Virginia Commonwealth University (VCU) has evolved, organically with quite a bit of bootstrapping, into a unique drug discovery ecosystem in response to the environment and culture of the university and the wider research enterprise. Each faculty member that joined the department and/or institute added a layer of expertise, technology and most importantly, innovation, that fertilized numerous collaborations within the University and with outside partners. Despite moderate institutional support with respect to a typical drug discovery enterprise, the VCU drug discovery ecosystem has built and maintained an impressive array of facilities and instrumentation for drug synthesis, drug characterization, biomolecular structural analysis and biophysical analysis, and pharmacological studies. Altogether, this ecosystem has had major impacts on numerous therapeutic areas, such as neurology, psychiatry, drugs of abuse, cancer, sickle cell disease, coagulopathy, inflammation, aging disorders and others. Novel tools and strategies for drug discovery, design and development have been developed at VCU in the last five decades; e.g., fundamental rational structure-activity relationship (SAR)-based drug design, structure-based drug design, orthosteric and allosteric drug design, design of multi-functional agents towards polypharmacy outcomes, principles on designing glycosaminoglycans as drugs, and computational tools and algorithms for quantitative SAR (QSAR) and understanding the roles of water and the hydrophobic effect.
Collapse
Affiliation(s)
- Glen E Kellogg
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA.
| | - Yana Cen
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Malgorzata Dukat
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Keith C Ellis
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Aaron E May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA.
| |
Collapse
|
5
|
Ma H, Pagare PP, Li M, Neel LT, Mendez RE, Gillespie JC, Stevens DL, Dewey WL, Selley DE, Zhang Y. Structural Alterations of the "Address" Moiety of NAN Leading to the Discovery of a Novel Opioid Receptor Modulator with Reduced hERG Toxicity. J Med Chem 2023; 66:577-595. [PMID: 36538027 PMCID: PMC10546487 DOI: 10.1021/acs.jmedchem.2c01499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The search for selective opioid ligands with desired pharmacological potency and improved safety profile has always been an area of interest. Our previous effort yielded a potent opioid modulator, NAN, a 6α-N-7'-indolyl-substituted naltrexamine derivative, which exhibited promising pharmacological activities both in vitro and in vivo. However, significant human ether-a-go-go-related gene (hERG) liability limited its further development. Therefore, a systematic structural modification on NAN was conducted in order to alleviate hERG toxicity while preserving pharmacological properties, which led to the discovery of 2'-methylindolyl derivative compound 21. Compared to NAN, compound 21 manifested overall improved pharmacological profiles. Follow-up hERG channel inhibition evaluation revealed a seven-fold decreased potency of compound 21 compared to NAN. Furthermore, several fundamental drug-like property evaluations suggested a reasonable ADME profile of 21. Collectively, compound 21 appeared to be a promising opioid modulator for further development as a novel therapeutic agent toward opioid use disorder treatments.
Collapse
Affiliation(s)
- Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Logan T Neel
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Rolando E Mendez
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - James C Gillespie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - David L Stevens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - William L Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
- Institute for Drug and Alcohol Studies, 203 East Cary Street, Richmond, Virginia23298-0059, United States
| |
Collapse
|
6
|
Pagare P, Obeng S, Huang B, Marcus MM, Nicholson KL, Townsend AE, Banks ML, Zhang Y. Preclinical Characterization and Development on NAQ as a Mu Opioid Receptor Partial Agonist for Opioid Use Disorder Treatment. ACS Pharmacol Transl Sci 2022; 5:1197-1209. [PMID: 36407950 PMCID: PMC9667545 DOI: 10.1021/acsptsci.2c00178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/06/2022]
Abstract
Mu opioid receptor (MOR) selective antagonists and partial agonists have clinical utility for the treatment of opioid use disorders (OUDs). However, the development of many has suffered due to their poor pharmacokinetic properties and/or rapid metabolism. Our recent efforts to identify MOR modulators have provided 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3-carboxamido)morphinan (NAQ), a low-efficacy partial agonist, that showed sub-nanomolar binding affinity to the MOR (K i 0.6 nM) with selectivity over the delta opioid receptor (δ/μ 241) and the kappa opioid receptor (κ/μ 48). Its potent inhibition of the analgesic effect of morphine (AD50 0.46 mg/kg) and precipitation of significantly less withdrawal symptoms even at 100-fold greater dose than naloxone represents a promising molecule for further development as a novel OUD therapeutic agent. Therefore, further in vitro and in vivo characterization of its pharmacokinetics and pharmacodynamics properties was conducted to fully understand its pharmaceutical profile. NAQ showed favorable in vitro ADMET properties and no off-target binding to several classes of GPCRs, enzymes, and ion channels. Following intravenous administration, 1 mg/kg dose of NAQ showed a similar in vivo pharmacokinetic profile to naloxone; however, orally administered 10 mg/kg NAQ demonstrated significantly improved oral bioavailability over both naloxone and naltrexone. Abuse liability assessment of NAQ in rats demonstrated that NAQ functioned as a less potent reinforcer than heroin. Chronic 5 day NAQ pretreatment decreased heroin self-administration in a heroin-vs-food choice procedure similar to the clinically used MOR partial agonist buprenorphine. Taken together, these studies provide evidence supporting NAQ as a promising lead to develop novel OUD therapeutics.
Collapse
Affiliation(s)
- Piyusha
P. Pagare
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia23298-0540, United States
| | - Samuel Obeng
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia23298-0540, United States
| | - Boshi Huang
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia23298-0540, United States
| | - Madison M. Marcus
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University School of Medicine, Richmond, Virginia23298-0613, United States
| | - Katherine L. Nicholson
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University School of Medicine, Richmond, Virginia23298-0613, United States
| | - Andrew E. Townsend
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University School of Medicine, Richmond, Virginia23298-0613, United States
| | - Matthew L. Banks
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University School of Medicine, Richmond, Virginia23298-0613, United States
| | - Yan Zhang
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia23298-0540, United States
| |
Collapse
|
7
|
Santos EJ, Banks ML, Negus SS. Role of Efficacy as a Determinant of Locomotor Activation by Mu Opioid Receptor Ligands in Female and Male Mice. J Pharmacol Exp Ther 2022; 382:44-53. [PMID: 35489781 PMCID: PMC9341253 DOI: 10.1124/jpet.121.001045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
Mu opioid receptor (MOR) agonists produce locomotor hyperactivity in mice as one sign of opioid-induced motor disruption. The goal of this study was to evaluate the degree of MOR efficacy required to produce this hyperactivity. Full dose-effect curves were determined for locomotor activation produced in male and female Institute of Cancer Research (ICR) mice by (1) eight different single-molecule opioids with high to low MOR efficacy and (2) a series of fixed-proportion fentanyl/naltrexone mixtures with high to low fentanyl proportions. Data from the mixtures were used to quantify the efficacy requirement for MOR agonist-induced hyperactivity relative to efficacy requirements determined previously for other MOR agonist effects. Specifically, efficacy requirement was quantified as the EP50 value, which is the "Effective Proportion" of fentanyl in a fentanyl/naltrexone mixture that produces a maximal effect equal to 50% of the maximal effect of fentanyl alone. Maximal hyperactivity produced by each drug and mixture in the present study correlated with previously published data for maximal stimulation of GTPɣS binding in MOR-expressing Chinese hamster ovary cells as an in vitro measure of relative efficacy. Additionally, the EP50 value for hyperactivity induced by fentanyl/naltrexone mixtures indicated that opioid-induced hyperactivity in mice has a relatively high efficacy requirement in comparison with some other MOR agonist effects, and in particular is higher than the efficacy requirement for thermal antinociception in mice or fentanyl discrimination in rats. Taken together, these data show that MOR agonist-induced hyperactivity in mice is efficacy dependent and requires relatively high levels of MOR agonist efficacy for its full expression. SIGNIFICANCE STATEMENT: Mu opioid receptor (MOR) agonist-induced hyperlocomotion in mice is dependent on the MOR efficacy of the agonist and requires a relatively high degree of efficacy for its full expression.
Collapse
Affiliation(s)
- Edna J Santos
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
8
|
Drakopoulos A, Moianos D, Prifti GM, Zoidis G, Decker M. Opioid ligands addressing unconventional binding sites and more than one opioid receptor subtype. ChemMedChem 2022; 17:e202200169. [PMID: 35560796 DOI: 10.1002/cmdc.202200169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Indexed: 11/10/2022]
Abstract
Opioid receptors (ORs) represent one of the most significant groups of G-protein coupled receptor (GPCR) drug targets and also act as prototypical models for GPCR function. In a constant effort to develop drugs with less side effects, and tools to explore the ORs nature and function, various (poly)pharmacological ligand design approaches have been performed. That is, besides classical ligands, a great number of bivalent ligands (i.e. aiming on two distinct OR subtypes), univalent heteromer-selective ligands and bitopic and allosteric ligands have been synthesized for the ORs. The scope of our review is to present the most important of the aforementioned ligands, highlight their properties and exhibit the current state-of-the-art pallet of promising drug candidates or useful molecular tools for the ORs.
Collapse
Affiliation(s)
- Antonios Drakopoulos
- University of Gothenburg: Goteborgs Universitet, Department of Chemistry and Molecular Biology, Kemigåden 4, 431 45, Göteborg, SWEDEN
| | - Dimitrios Moianos
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Georgia-Myrto Prifti
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Grigoris Zoidis
- National and Kapodistrian University of Athens, Department of Pharmaceutical Chemistry, Panepistimioupolis-Zografou, 15771, Athens, GREECE
| | - Michael Decker
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, GERMANY
| |
Collapse
|
9
|
Antipruritic Effect of Nalbuphine, a Kappa Opioid Receptor Agonist, in Mice: A Pan Antipruritic. Molecules 2021; 26:molecules26185517. [PMID: 34576988 PMCID: PMC8466557 DOI: 10.3390/molecules26185517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Antipruritic effects of kappa opioid receptor (KOR) agonists have been shown in rodent models of acute and chronic scratching (itchlike behavior). Three KOR agonists, nalfurafine, difelikefalin, and nalbuphine, are in clinical studies for antipruritic effects in chronic itch of systemic and skin diseases. Nalfurafine (in Japan) and difelikefalin (in the USA) were approved to be used in the treatment of chronic itch in hemodialysis patients. The FDA-approved nalbuphine has been used in clinic for over 40 years, and it is the only narcotic agonist that is not scheduled. We aimed to study (a) antiscratch activity of nalbuphine against TAT-HIV-1 protein (controls HIV transcription)-, deoxycholic acid (DCA, bile acid)-, and chloroquine (CQ)-induced scratching in a mouse model of acute itch; and (b) whether the effect of nalbuphine is produced via KORs. First, dose-responses were developed for pruritogens. Mice were pretreated with nalbuphine (0.3-10 mg/kg) and then a submaximal dose of pruritogens were administered and the number of scratching bouts was counted. To study if the antiscratch effect of nalbuphine is produced via KOR, we used KOR knock out mice and pharmacologic inhibition of KORs using nor-binaltorphimine, a KOR antagonist. For this aim, we used CQ as a pruritogen. We found that: (a) TAT-HIV-1 protein elicits scratching in a dose-dependent manner; (b) nalbuphine inhibits scratching induced by TAT-HIV-1, DCA, and CQ dose-dependently; and (c) nalbuphine inhibits scratching induced by CQ through KORs. In conclusion, nalbuphine inhibits scratching elicited by multiple pruritogens.
Collapse
|
10
|
Huang B, Wang H, Zheng Y, Li M, Kang G, Barreto-de-Souza V, Nassehi N, Knapp PE, Selley DE, Hauser KF, Zhang Y. Structure-Based Design and Development of Chemical Probes Targeting Putative MOR-CCR5 Heterodimers to Inhibit Opioid Exacerbated HIV-1 Infectivity. J Med Chem 2021; 64:7702-7723. [PMID: 34027668 PMCID: PMC10548452 DOI: 10.1021/acs.jmedchem.1c00408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Crystal structures of ligand-bound G-protein-coupled receptors provide tangible templates for rationally designing molecular probes. Herein, we report the structure-based design, chemical synthesis, and biological investigations of bivalent ligands targeting putative mu opioid receptor C-C motif chemokine ligand 5 (MOR-CCR5) heterodimers. The bivalent ligand VZMC013 possessed nanomolar level binding affinities for both the MOR and CCR5, inhibited CCL5-stimulated calcium mobilization, and remarkably improved anti-HIV-1BaL activity over previously reported bivalent ligands. VZMC013 inhibited viral infection in TZM-bl cells coexpressing CCR5 and MOR to a greater degree than cells expressing CCR5 alone. Furthermore, VZMC013 blocked human immunodeficiency virus (HIV)-1 entry in peripheral blood mononuclear cells (PBMC) cells in a concentration-dependent manner and inhibited opioid-accelerated HIV-1 entry more effectively in phytohemagglutinin-stimulated PBMC cells than in the absence of opioids. A three-dimensional molecular model of VZMC013 binding to the MOR-CCR5 heterodimer complex is constructed to elucidate its mechanism of action. VZMC013 is a potent chemical probe targeting MOR-CCR5 heterodimers and may serve as a pharmacological agent to inhibit opioid-exacerbated HIV-1 entry.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Anti-HIV Agents/chemistry
- Anti-HIV Agents/metabolism
- Anti-HIV Agents/pharmacology
- Binding Sites
- Dimerization
- Drug Design
- HIV-1/drug effects
- HIV-1/physiology
- Humans
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- Ligands
- Maraviroc/chemistry
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Naltrexone/chemistry
- Phytohemagglutinins/pharmacology
- Protein Binding
- Receptors, CCR5/chemistry
- Receptors, CCR5/metabolism
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Boshi Huang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| | - Yi Zheng
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| | - Guifeng Kang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| | - Victor Barreto-de-Souza
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia 23298, United States
| | - Nima Nassehi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia 23298, United States
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia 23298, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, Virginia 23298, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia 23298, United States
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia 23298, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| |
Collapse
|
11
|
Huang B, Gunta R, Wang H, Li M, Cao D, Mendez RE, Gillespie JC, Chen C, Huang LHM, Liu-Chen LY, Selley DE, Zhang Y. Verifying the role of 3-hydroxy of 17-cyclopropylmethyl-4,5α-epoxy-3,14β-dihydroxy-6β-[(4'-pyridyl) carboxamido]morphinan derivatives via their binding affinity and selectivity profiles on opioid receptors. Bioorg Chem 2021; 109:104702. [PMID: 33631465 DOI: 10.1016/j.bioorg.2021.104702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 01/28/2021] [Indexed: 12/23/2022]
Abstract
In the present study, the role of 3-hydroxy group of a series of epoxymorphinan derivatives in their binding affinity and selectivity profiles toward the opioid receptors (ORs) has been investigated. It was found that the 3-hydroxy group was crucial for the binding affinity of these derivatives for all three ORs due to the fact that all the analogues 1a-e exhibited significantly higher binding affinities compared to their counterpart 3-dehydroxy ones 6a-e. Meanwhile most compounds carrying the 3-hydroxy group possessed similar selectivity profiles for the kappa opioid receptor over the mu opioid receptor as their corresponding 3-dehydroxy derivatives. [35S]-GTPγS functional assay results indicated that the 3-hydroxy group of these epoxymorphinan derivatives was important for maintaining their potency on the ORs with various effects. Further molecular modeling studies helped comprehend the remarkably different binding affinity and functional profiles between compound 1c (NCP) and its 3-dehydroxy analogue 6c.
Collapse
Affiliation(s)
- Boshi Huang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Rama Gunta
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Danni Cao
- Center for Substance Abuse Research and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB 851, Philadelphia, PA 19140, United States; Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Rolando E Mendez
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - James C Gillespie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - Chongguang Chen
- Center for Substance Abuse Research and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB 851, Philadelphia, PA 19140, United States
| | - Lan-Hsuan M Huang
- Center for Substance Abuse Research and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB 851, Philadelphia, PA 19140, United States
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB 851, Philadelphia, PA 19140, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States.
| |
Collapse
|
12
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
13
|
Wang H, Reinecke BA, Zhang Y. Computational insights into the molecular mechanisms of differentiated allosteric modulation at the mu opioid receptor by structurally similar bitopic modulators. J Comput Aided Mol Des 2020; 34:879-895. [PMID: 32193867 DOI: 10.1007/s10822-020-00309-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 03/14/2020] [Indexed: 11/27/2022]
Abstract
Targeting the mu opioid receptor (MOR) by applying orthosteric ligands is the most frequently employed method to treat opioid use disorder (OUD). Unfortunately, most of MOR orthosteric ligands produce severe side effects, mainly due to their low selectivity over other opioid receptors. In contrast, some G protein-coupled receptor allosteric modulators have been reported to exhibit high subtype selectivity and can effectively modulate the potency and/or efficacy of orthosteric ligands. Recently, NAQ and its analog NCQ were identified as novel MOR bitopic modulators. Interestingly, NAQ and NCQ were similar in structure but exhibited different efficacy profiles to the MOR. NAQ exhibited an antagonism activity to the MOR while NCQ showed a partial agonism activity to the MOR. In the present study, molecular modeling methods were applied to explore the putative molecular mechanisms of their different functional profiles to the MOR. When NAQ binding with the inactive MOR, the 'address' portion of NAQ interacted with the MOR allosteric site but showed no significant allosteric modulation of the efficacy of the 'message' portion of NAQ. However, when NCQ binding with the inactive and active MOR, the 'address' portion of NCQ seemed to be able to positively modulate the efficacy of the 'message' portion of NCQ at varying levels. Evidentially, the substituents at the 1'- and 4'-positions of the isoquinoline ring of NCQ seemed to play a critical role in the modulatory function of the 'address' portion of NCQ. These findings will be invaluable to develop our next generation of MOR bitopic modulators with high affinity and subtype selectivity to potentially treat OUD.
Collapse
Affiliation(s)
- Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA, 23298, USA
| | - Bethany A Reinecke
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA, 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA, 23298, USA.
| |
Collapse
|
14
|
Zheng Y, Obeng S, Reinecke BA, Chen C, Phansalkar PS, Walentiny DM, Gerk PM, Liu-Chen LY, Selley DE, Beardsley PM, Zhang Y. Pharmacological characterization of 17-cyclopropylmethyl-3,14-dihydroxy-4,5-epoxy-6-[(3'-fluoro-4'-pyridyl)acetamido]morphinan (NFP) as a dual selective MOR/KOR ligand with potential applications in treating opioid use disorder. Eur J Pharmacol 2019; 865:172812. [PMID: 31743739 PMCID: PMC6914219 DOI: 10.1016/j.ejphar.2019.172812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 01/16/2023]
Abstract
For thousands of years opioids have been the first-line treatment option for pain management. However, the tolerance and addiction potential of opioids limit their applications in clinic. NFP, a MOR/KOR dual-selective opioid antagonist, was identified as a ligand that significantly antagonized the antinociceptive effects of morphine with lesser withdrawal effects than naloxone at similar doses. To validate the potential application of NFP in opioid addiction treatment, a series of in vitro and in vivo assays were conducted to further characterize its pharmacological profile. In calcium mobilization assays and MOR internalization studies, NFP showed the apparent capacity to antagonize DAMGO-induced calcium flux and etorphine-induced MOR internalization. In contrast to the opioid agonists DAMGO and morphine, cells pretreated with NFP did not show apparent desensitization and down regulation of the MOR. Though in vitro bidirectional transport studies showed that NFP might be a P-gp substrate, in warm-water tail-withdrawal assays it was able to antagonize the antinociceptive effects of morphine indicating its potential central nervous system activity. Overall these results suggest that NFP is a promising dual selective opioid antagonist that may have the potential to be used therapeutically in opioid use disorder treatment.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Biological Transport
- CHO Cells
- Caco-2 Cells
- Calcium/metabolism
- Cell Line, Tumor
- Cricetulus
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Humans
- Ligands
- Male
- Mice, Inbred C57BL
- Morphinans/pharmacology
- Narcotic Antagonists/pharmacology
- Opioid-Related Disorders/drug therapy
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Yi Zheng
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA, 23298, United States
| | - Samuel Obeng
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA, 23298, United States
| | - Bethany A Reinecke
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA, 23298, United States
| | - Chongguang Chen
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - Palak S Phansalkar
- Department of Pharmaceutics, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA, 23298, United States
| | - David M Walentiny
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA, 23298, United States
| | - Phillip M Gerk
- Department of Pharmaceutics, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA, 23298, United States
| | - Lee-Yuan Liu-Chen
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA, 23298, United States
| | - Patrick M Beardsley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA, 23298, United States; Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA, 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA, 23298, United States.
| |
Collapse
|
15
|
Ma H, Obeng S, Wang H, Zheng Y, Li M, Jali AM, Stevens DL, Dewey WL, Selley DE, Zhang Y. Application of Bivalent Bioisostere Concept on Design and Discovery of Potent Opioid Receptor Modulators. J Med Chem 2019; 62:11399-11415. [PMID: 31782922 DOI: 10.1021/acs.jmedchem.9b01767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Here, we described the structural modification of previously identified μ opioid receptor (MOR) antagonist NAN, a 6α-N-7'-indolyl substituted naltrexamine derivative, and its 6β-N-2'-indolyl substituted analogue INTA by adopting the concept of "bivalent bioisostere". Three newly prepared opioid ligands, 25 (NBF), 31, and 38, were identified as potent MOR antagonists both in vitro and in vivo. Moreover, these three compounds significantly antagonized DAMGO-induced intracellular calcium flux and displayed varying degrees of inhibition on cAMP production. Furthermore, NBF produced much less significant withdrawal effects than naloxone in morphine-pelleted mice. Molecular modeling studies revealed that these bivalent bioisosteres may adopt similar binding modes in the MOR and the "address" portions of them may have negative or positive allosteric modulation effects on the function of their "message" portions compared with NAN and INTA. Collectively, our successful application of the "bivalent bioisostere concept" identified a promising lead to develop novel therapeutic agents toward opioid use disorder treatments.
Collapse
Affiliation(s)
- Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| | - Samuel Obeng
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| | - Yi Zheng
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| | - Abdulmajeed M Jali
- Department of Pharmacology and Toxicology , Virginia Commonwealth University , 410 North 12th Street , Richmond , Virginia 23298 , United States
| | - David L Stevens
- Department of Pharmacology and Toxicology , Virginia Commonwealth University , 410 North 12th Street , Richmond , Virginia 23298 , United States
| | - William L Dewey
- Department of Pharmacology and Toxicology , Virginia Commonwealth University , 410 North 12th Street , Richmond , Virginia 23298 , United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology , Virginia Commonwealth University , 410 North 12th Street , Richmond , Virginia 23298 , United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| |
Collapse
|
16
|
Obeng S, Jali A, Zheng Y, Wang H, Schwienteck KL, Chen C, Stevens DL, Akbarali HI, Dewey WL, Banks ML, Liu-Chen LY, Selley DE, Zhang Y. Characterization of 17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(indole-7-carboxamido)morphinan (NAN) as a Novel Opioid Receptor Modulator for Opioid Use Disorder Treatment. ACS Chem Neurosci 2019; 10:2518-2532. [PMID: 30758946 PMCID: PMC6520168 DOI: 10.1021/acschemneuro.9b00038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The opioid crisis is a significant public health issue with more than 115 people dying from opioid overdose per day in the United States. The aim of the present study was to characterize the in vitro and in vivo pharmacological effects of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(indole-7-carboxamido)morphinan (NAN), a μ opioid receptor (MOR) ligand that may be a potential candidate for opioid use disorder treatment that produces less withdrawal signs than naltrexone. The efficacy of NAN was compared to varying efficacy ligands at the MOR, and determined at the δ opioid receptor (DOR) and κ opioid receptor (KOR). NAN was identified as a low efficacy partial agonist for G-protein activation at the MOR and DOR, but had relatively high efficacy at the KOR. In contrast to high efficacy MOR agonists, NAN did not induce MOR internalization, downregulation, or desensitization, but it antagonized agonist-induced MOR internalization and stimulation of intracellular Ca2+ release. Opioid withdrawal studies conducted using morphine-pelleted mice demonstrated that NAN precipitated significantly less withdrawal signs than naltrexone at similar doses. Furthermore, NAN failed to produce fentanyl-like discriminative stimulus effects in rats up to doses that produced dose- and time-dependent antagonism of fentanyl. Overall, these results provide converging lines of evidence that NAN functions mainly as a MOR antagonist and support further consideration of NAN as a candidate medication for opioid use disorder treatment.
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Abdulmajeed Jali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Yi Zheng
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Kathryn L. Schwienteck
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Chongguang Chen
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - David L. Stevens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - William L. Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Mathew L. Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Lee-Yuan Liu-Chen
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Dana E. Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| |
Collapse
|
17
|
Obeng S, Wang H, Jali A, Stevens DL, Akbarali HI, Dewey WL, Selley DE, Zhang Y. Structure-Activity Relationship Studies of 6α- and 6β-Indolylacetamidonaltrexamine Derivatives as Bitopic Mu Opioid Receptor Modulators and Elaboration of the "Message-Address Concept" To Comprehend Their Functional Conversion. ACS Chem Neurosci 2019; 10:1075-1090. [PMID: 30156823 PMCID: PMC6405326 DOI: 10.1021/acschemneuro.8b00349] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Structure-activity relationship (SAR) studies of numerous opioid ligands have shown that introduction of a methyl or ethyl group on the tertiary amino group at position 17 of the epoxymorphinan skeleton generally results in a mu opioid receptor (MOR) agonist while introduction of a cyclopropylmethyl group typically leads to an antagonist. Furthermore, it has been shown that introduction of heterocyclic ring systems at position 6 can favor antagonism. However, it was reported that 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(2'-indolyl)acetamido]morphinan (INTA), which bears a cyclopropylmethyl group at position 17 and an indole ring at position 6, acted as a MOR agonist. We herein report a SAR study on INTA with a series of its complementary derivatives to understand how introduction of an indole moiety with α or β linkage at position 6 of the epoxymorphinan skeleton may influence ligand function. Interestingly, one of INTA derivatives, compound 15 (NAN) was identified as a MOR antagonist both in vitro and in vivo. Molecular modeling studies revealed that INTA and NAN may interact with different domains of the MOR allosteric binding site. In addition, INTA may interact with W293 and N150 residues found in the orthosteric site to stabilize MOR activation conformation while NAN does not. These results suggest that INTA and NAN may be bitopic ligands and the type of allosteric interactions with the MOR influence their functional activity. These insights along with our enriched comprehension of the "message-address" concept will to benefit future ligand design.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Allosteric Regulation/physiology
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- CHO Cells
- Cricetinae
- Cricetulus
- Dose-Response Relationship, Drug
- Male
- Mice
- Narcotic Antagonists/chemistry
- Narcotic Antagonists/pharmacology
- Protein Binding/drug effects
- Protein Binding/physiology
- Protein Structure, Secondary
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Abdulmajeed Jali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - David L. Stevens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - William L. Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Dana E. Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| |
Collapse
|