1
|
Pyrczak-Felczykowska A, Herman-Antosiewicz A. Modification in Structures of Active Compounds in Anticancer Mitochondria-Targeted Therapy. Int J Mol Sci 2025; 26:1376. [PMID: 39941144 PMCID: PMC11818413 DOI: 10.3390/ijms26031376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer is a multifaceted disease characterised by uncontrolled cellular proliferation and metastasis, resulting in significant global mortality. Current therapeutic strategies, including surgery, chemotherapy, and radiation therapy, face challenges such as systemic toxicity and tumour resistance. Recent advancements have shifted towards targeted therapies that act selectively on molecular structures within cancer cells, reducing off-target effects. Mitochondria have emerged as pivotal targets in this approach, given their roles in metabolic reprogramming, retrograde signalling, and oxidative stress, all of which drive the malignant phenotype. Targeting mitochondria offers a promising strategy to address these mechanisms at their origin. Synthetic derivatives of natural compounds hold particular promise in mitochondrial-targeted therapies. Innovations in drug design, including the use of conjugates and nanotechnology, focus on optimizing these compounds for mitochondrial specificity. Such advancements enhance therapeutic efficacy while minimizing systemic toxicity, presenting a significant step forward in modern anticancer strategies.
Collapse
Affiliation(s)
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland;
| |
Collapse
|
2
|
Zhu Y, Ren S, Huang H, Wu J, You X, Gao J, Ren Y, Wang R, Zhao W, Tan S. Restoration of miR-299-3p promotes efferocytosis and ameliorates atherosclerosis via repressing CD47 in mice. FASEB J 2024; 38:e23857. [PMID: 39114953 DOI: 10.1096/fj.202400639r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/11/2024]
Abstract
Atherosclerotic plaque formation is largely attributed to the impaired efferocytosis, which is known to be associated with the pathologic upregulation of cluster of differentiation 47 (CD47), a key antiphagocytic molecule. By gene expression omnibus (GEO) datasets analysis, we identified that four miRNAs are aberrantly downregulated in atherosclerosis, coronary artery disease, and obesity. Of them, hsa-miR-299-3p (miR-299-3p) was predicted to target the 3'UTR of human CD47 mRNA by bioinformatics analysis. Further, we demonstrated that miR-299-3p negatively regulates CD47 expression by binding to the target sequence "CCCACAU" in the 3'UTR of CD47 mRNA through luciferase reporter assay and site-directed mutagenesis. Additionally, we found that miR-299-3p was downregulated by ~32% in foam cells in response to oxidized low-density lipoprotein (ox-LDL) stimulation, thus upregulating CD47 and contributing to the impaired efferocytosis. Whereas, restoration of miR-299-3p reversed the ox-LDL-induced upregulation of CD47, thereby facilitating efferocytosis. In high-fat diet (HFD) fed ApoE-/- mice, we discovered that miR-299-3p was downregulated thus leading to upregulation of CD47 in abdominal aorta. Conversely, miR-299-3p restoration potently suppressed HFD-induced upregulation of CD47 and promoted phagocytosis of foam cells by macrophages in atherosclerotic plaques, thereby reducing necrotic core, increasing plaque stability, and mitigating atherosclerosis. Conclusively, we identify miR-299-3p as a negative regulator of CD47, and reveal a molecular mechanism whereby the ox-LDL-induced downregulation of miR-299-3p leads to the upregulation of CD47 in foam cells thus contributing to the impaired efferocytosis in atherosclerosis, and propose miR-299-3p can potentially serve as an inhibitor of CD47 to promote efferocytosis and ameliorate atherosclerosis.
Collapse
Affiliation(s)
- Yingli Zhu
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuang Ren
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Haijuan Huang
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Jiale Wu
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Xiangyan You
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Jie Gao
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuzhi Ren
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Ruize Wang
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Wenfeng Zhao
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuhua Tan
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
3
|
Zhang L, Liu Y, Zhou R, He B, Wang W, Zhang B. Cyclophilin D: Guardian or Executioner for Tumor Cells? Front Oncol 2022; 12:939588. [PMID: 35860554 PMCID: PMC9289278 DOI: 10.3389/fonc.2022.939588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclophilin D (CypD) is a peptide-proline cis-trans isomerase (PPIase) distributed in the mitochondrial matrix. CypD regulates the opening of the mitochondrial permeability conversion pore (mPTP) and mitochondrial bioenergetics through PPIase activity or interaction with multiple binding partners in mitochondria. CypD initially attracted attention due to its regulation of mPTP overopening-mediated cell death. However, recent studies on the effects of CypD on tumors have shown conflicting results. Although CypD has been proven to promote the aerobic glycolysis in tumor cells, its regulation of malignant characteristics such as the survival, invasion and drug resistance of tumor cells remains controversial. Here, we elaborate the main biological functions of CypD and its relationships with tumor progression identified in recent years, focusing on the dual role of CypD in tumors.
Collapse
Affiliation(s)
- Ling Zhang
- School of Nursing, Jining Medical University, Jining, China
- *Correspondence: Bin Zhang, ; Ling Zhang,
| | - Yi Liu
- School of Nursing, Jining Medical University, Jining, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Rou Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Wenjun Wang
- School of Nursing, Jining Medical University, Jining, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
- *Correspondence: Bin Zhang, ; Ling Zhang,
| |
Collapse
|
4
|
Laamari Y, Oubella A, Bimoussa A, El Mansouri AE, Ketatni EM, Mentre O, Ait Itto MY, Morjani H, Khouili M, Auhmani A. Design, Hemiysnthesis, crystal structure and anticancer activity of 1, 2, 3-triazoles derivatives of totarol. Bioorg Chem 2021; 115:105165. [PMID: 34298240 DOI: 10.1016/j.bioorg.2021.105165] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/15/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
A new series of diverse triazoles linked to the hydroxyl group of totarol were synthesized using click chemistry approach. The structures of these compounds were elucidated by HRMS, IR and NMR spectroscopy. The structure of compound 3 g was also confirmed by x-ray single crystal diffraction. The cytotoxicity of these compounds was evaluated by the MTT method against four cancer cell lines, including fibrosarcoma HT-1080, lung carcinoma A-549 and breast adenocarcinoma (MDA-MB-231 and MCF-7), and the results indicated that all compounds showed weak to moderate activities against all cancer cell lines with IC50 values ranging from 14.44 to 46.25 μM. On the basis of our research the structure-activity relationships (SAR) of these compounds were discussed. This work provides some important hints for further structural modification of totarol towards developing novel and highly effective anticancer drugs respectively. It is interesting to note that compound 3 g indicated a very significant cytotoxicity against HT-1080 and A-549 cell lines. The molecular docking showed that compound 3 g activated the caspase-3 and inhibited tubulin by forming stable protein-ligand complexes.
Collapse
Affiliation(s)
- Yassine Laamari
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia, Université Cadi-Ayyad, B.P 2390, Marrakech 40001, Morocco
| | - Ali Oubella
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia, Université Cadi-Ayyad, B.P 2390, Marrakech 40001, Morocco
| | - Abdoullah Bimoussa
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia, Université Cadi-Ayyad, B.P 2390, Marrakech 40001, Morocco
| | - Az-Eddine El Mansouri
- Laboratory of Biomolecular and Medicinal Chemistry, Department of Chemistry, Faculty of Science Semlalia, BP 2390, Marrakech 40001, Morocco
| | - El Mostafa Ketatni
- Laboratory of Applied Spectro-Chemistry and the Environment, 10 University Sultan Moulay Slimane, Faculty of Sciences and Technology, PO Box 523, Beni-Mellal, Morocco
| | - Olivier Mentre
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS-Catalysis and Solid Chemistry Unit, F-59000 Lille, France
| | - My Youssef Ait Itto
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia, Université Cadi-Ayyad, B.P 2390, Marrakech 40001, Morocco
| | - Hamid Morjani
- BioSpectroscopieTranslationnelle, BioSpecT - EA7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
| | - Mostafa Khouili
- Laboratory of Applied Spectro-Chemistry and the Environment, 10 University Sultan Moulay Slimane, Faculty of Sciences and Technology, PO Box 523, Beni-Mellal, Morocco
| | - Aziz Auhmani
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia, Université Cadi-Ayyad, B.P 2390, Marrakech 40001, Morocco.
| |
Collapse
|
5
|
VDAC1 as a target in cisplatin anti-tumor activity through promoting mitochondria fusion. Biochem Biophys Res Commun 2021; 560:52-58. [PMID: 33971568 DOI: 10.1016/j.bbrc.2021.04.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/25/2021] [Indexed: 11/24/2022]
Abstract
Cisplatin is one of the most effective anti-cancer drugs, but its efficacy is limited by the development of resistance. Previous studies have shown that mitochondria play critical roles in cisplatin cytotoxicity, however, the exact mechanism of mitochondria involved in cisplatin sensitivity has not been clarified. In this study, cisplatin triggered mitochondrial oxidative stress and the decrease of mitochondria membrane potential in human cervical cancer cells. Then we screened a series of mitochondrial relevant inhibitors, including mitochondrial mPTP inhibitors DIDS and CsA, and mitochondrial respiratory complex inhibitors Rot and TTFA. Among these, only DIDS, as the inhibitor of mitochondrial outer membrane protein VDAC1, showed strong antagonism against cisplatin toxicity. DIDS mitigated cisplatin-induced MFN1-dependent mitochondrial fusion, mitochondrial dysfunction and oxidative damage. These findings demonstrated that VDAC1 may serve as a potential therapeutic target in the increase sensitivity of cisplatin, which provides an attractive pharmacological therapy to improve the effectiveness of chemotherapy.
Collapse
|
6
|
Liu R, Wu L, Feng H, Tang F, Si H, Yao X, He W. The study on the interactions of two 1,2,3-triazoles with several biological macromolecules by multiple spectroscopic methodologies and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118795. [PMID: 32814256 DOI: 10.1016/j.saa.2020.118795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/18/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
1-(4-chlorophenyl)-5-phenyl-1H-1,2,3-triazole (CPTC) and 5-(3-chlorophenyl) -1-phenyl-1H-1,2,3-triazole (PCTA) are two new derivatives of 1,2,3-triazole. Their structural and spectral properties were characterized by density functional theory calculations (DFT). The binding properties of CPTC or PCTA with several typical biomacromolecules such as human serum albumin (HSA), bovine hemoglobin (BHb), human immunoglobulin (HIgG) or DNA were investigated by molecular docking and multiple spectroscopic methodologies. The different parameters including binding constants and thermodynamic parameters for CPTC/PCTA-HSA/BHb/HIgG/DNA systems were obtained based on various fluorescence enhancement or quenching mechanisms. The results of binding constants indicated that there were the strong interactions between two triazoles and four biological macromolecules due to the higher order of magnitude between 103 and 105. The values of thermodynamic parameters revealed that the binding forces for these systems are mainly hydrophobic interactions, electrostatic force, or hydrogen bond, respectively, which are in agreement with the results of molecular docking to a certain extent. Moreover, the information from synchronous, 3D fluorescence and UV-Vis spectroscopies proved that two compounds CPTC and PCTA could affect the microenvironment of amino acids residues of three kinds of proteins. Based on the above experimental results, a comparison of the interaction mechanisms for CPTC/PCTA-proteins/DNA systems have been performed in view of their different molecular structures, which is beneficial for the further research in order to design them as the novel drugs.
Collapse
Affiliation(s)
- Rongqiang Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Luyong Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Huajie Feng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Fengqi Tang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Hongzong Si
- Institute for Computational Science and Engineering, Qingdao University, 266071 Qingdao, China
| | - Xiaojun Yao
- College of Chemical and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| | - Wenying He
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China.
| |
Collapse
|
7
|
Wang C, Liang X, Yu Y, Li Y, Wen X, Liu M. Electroacupuncture pretreatment alleviates myocardial injury through regulating mitochondrial function. Eur J Med Res 2020; 25:29. [PMID: 32738910 PMCID: PMC7395969 DOI: 10.1186/s40001-020-00431-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background Electroacupuncture is well known for its advantageous neuroanalgesic and therapeutic effects on myocardial ischemia–reperfusion injury. The purpose of the present research was to verify whether electroacupuncture can alleviate bupivacaine-induced myocardial injury. Methods Specific pathogen-free Wistar rats were used to establish the bupivacaine-induced myocardial injury model. Western blot, PCR, transmission electron microscope and enzyme-linked immunosorbent (ELISA) methods were used to evaluate bupivacaine-induced structure injury and dysfunction of the mitochondria as well as the alleviating effects of lipid emulsion, acupoint injection, and electroacupuncture pre-treatment of the oxidase stress response. Results Bupivacaine caused structural damage, degradation, and swelling of mitochondria. Furthermore, it reduced adenosine triphosphate (ATP) synthesis and impaired energy metabolism in the mitochondria. Structural and functional impairment of the mitochondria was alleviated via lipid emulsion injection, acupoint injection, and electroacupuncture pre-treatment. Electroacupuncture pre-treatment of PC6 yielded a greater alleviating effect than others approaches. Following electroacupuncture pre-treatment of PC6 point, the number of mitochondria increased; apoptosis was reduced, enzymatic activity of cytochrome C oxidase (COX) and superoxide dismutase and expression of uncoupling protein 2, voltage-dependent anion channel 1, and Bcl 2 were upregulated and SLC25A6, MDA levels were downregulated. Additionally, our findings indicated that electroacupuncture pre-treatment of PC6 point exerted an effect on the mitochondria via the mitochondrial-transcription-factor-A/nuclear-respiratory-factor-1/proliferator-activated-receptor-gamma-coactivator-1 pathway. Conclusion The present study revealed that electroacupuncture pre-treatment of PC6 could effectively alleviate bupivacaine-induced myocardial mitochondrial damage, thereby providing a theoretical basis for clinical studies and applications of this treatment method.
Collapse
Affiliation(s)
- Chunai Wang
- Gansu Provincial Hospital of Traditional Chinese Medicine, No. 424, Guazhou Road, Qilihe District, Lanzhou, 730050, Gansu, China.
| | - Xi Liang
- Gansu Provincial Hospital of Traditional Chinese Medicine, No. 424, Guazhou Road, Qilihe District, Lanzhou, 730050, Gansu, China
| | - Yan Yu
- Gansu Provincial Hospital of Traditional Chinese Medicine, No. 424, Guazhou Road, Qilihe District, Lanzhou, 730050, Gansu, China
| | - Yulan Li
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaohui Wen
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Min Liu
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
8
|
Su N, Liu CL, Chen XP, Fan XX, Ma YC. T-2 toxin cytotoxicity mediated by directly perturbing mitochondria in human gastric epithelium GES-1 cells. J Appl Toxicol 2020; 40:1141-1152. [PMID: 32187393 DOI: 10.1002/jat.3973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/16/2020] [Accepted: 03/02/2020] [Indexed: 02/01/2023]
Abstract
T-2 toxin is one of the most toxic trichothecenes and harmful to human health and animal husbandry. The mechanism underlying its growth suppression remains unclear, especially for mitochondrial damage in human gastric epithelial cells. In the present study, we investigated cell death caused by T-2 toxin in a human gastric epithelial cell line (GES-1) and the possible mechanism of T-2-induced cytotoxicity. T-2 strongly reduced the viability of GES-1 cells in a time- and dose-dependent manner within a small range of concentrations. However, when the concentrations of T-2 were >40 nM, there was no concentration dependence, only time dependence. Moreover, T-2 induced apoptosis, with the activation of caspase-3 in GES-1 and mitochondrial membrane potential (MMP) decrease and cytochrome c release. T-2 also resulted in the accumulation of reactive oxygen species (ROS) and DNA damage with a positive signal of p-H2A.X in GES-1 cells. While T-2 caused a MMP decrease, DNA damage and cell death were not blocked by pretreatment with 3 mM glutathione (GSH), a typical scavenger of ROS. The induction of mitochondrial permeability transition pore (mPTP) regulators voltage-dependent anion channel (VDAC1) and cyclophilin D (CypD) were also observed in T-2-treated cells. Interestingly, cyclosporine A (CsA), a CypD inhibitor, significantly reversed the drop in MMP and the DNA damage, as well as ROS accumulation caused by T-2. Additionally, GES-1 cell death could also be protected to some extent by 4, 4'-diisothiocyanatostilbene-2, 2'-disulfonic acid (DIDS), an inhibitor of VDAC1, especially the combination of CsA and DIDS, and 3 mM GSH could further enhance the effect of CsA + DIDS on cell viability. In conclusion, our present findings indicate that the T-2 induced MMP decrease, DNA damage and cell death, as well as ROS accumulation in GES-1 cells, starts with T-2 directly perturbing the mitochondria triggering ROS generation by acting on CypD and VDAC1. This study presents a new viewpoint for evaluating the toxicity of T-2 toxin.
Collapse
Affiliation(s)
- Nan Su
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Chun-Lei Liu
- College of Health Management, Henan Finance University, Zhengzhou, China
| | - Xiao-Pei Chen
- Faculty of Science, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xia-Xia Fan
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Centeral China Fuwai Hospital, Centeral China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong-Cheng Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Centeral China Fuwai Hospital, Centeral China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|