1
|
Dugbartey GJ, Alornyo KK, Adams I, Adjei S, Amoah D, Obeng-Kyeremeh R. Chemoprotective Mechanism of Sodium Thiosulfate Against Cisplatin-Induced Nephrotoxicity Is via Renal Hydrogen Sulfide, Arginine/cAMP and NO/cGMP Signaling Pathways. Int J Mol Sci 2025; 26:384. [PMID: 39796237 PMCID: PMC11720986 DOI: 10.3390/ijms26010384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Cisplatin is a common and highly effective chemotherapeutic agent whose nephrotoxic side effect is well-characterized. Sodium thiosulfate (STS), an FDA-approved hydrogen sulfide (H2S) donor drug, is emerging as a chemoprotective agent against cisplatin-induced nephrotoxicity (CIN). In this study, we investigated the chemoprotective mechanism of STS in a rat model of CIN. Twenty-five male Sprague Dawley rats were randomly assigned to the following groups: HC: Healthy control (received 10 mL/kg/day of 0.9% saline intraperitoneally (ip), [n = 5]), CIN: Cisplatin (received single dose of 7 mg/kg cisplatin ip [n = 5]); CIN + PAG: Cisplatin and daily ip administration of 40 mg/kg of the H2S inhibitor, DL-propargylglycine (PAG) for 28 days (n = 5); CIN + PAG + STS: Cisplatin and daily PAG and STS (150 µM) ip injection for 28 days; CIN + STS: Cisplatin and daily STS ip administration for 28 days (n = 5). Rats in each group were kept in metabolic cages for 24 h on day 0, 14 and 29 after cisplatin administration for urine collection. Rats were then euthanized, and kidney and blood samples were collected for analysis. Histologically, CIN was characterized by glomerular and tubular injury and significant macrophage influx and tubular apoptosis, as well as markedly increased levels of plasma and renal IL-1β, IL-6 and TNF-α and impaired renal antioxidant status compared to HC rats (p < 0.001). These pathological changes were exacerbated in CIN + PAG rats and were strongly reduced in CIN + PAG + STS rats relative to CIN + PAG rats (p < 0.01), while superior renal protection was observed in CIN + STS rats. Functionally, CIN was evidenced by markedly increased levels of serum creatinine and BUN, and significantly decreased urine creatinine, renal creatinine clearance, as well as electrolyte imbalance and urinary concentrating defect in comparison with HC (p < 0.01). These functional changes worsened significantly in CIN + PAG rats (p < 0.05) but improved in CIN + PAG + STS rats, with further improvement in CIN + STS rats to levels comparable to HC rats. Mechanistically, STS increased renal and plasma levels of H2S, arginine, cAMP, nitric oxide (NO) and cGMP as well as SIRT3 and PGC-1α. We have shown for the first time that STS provides chemoprotection against CIN by activating renal arginine/cAMP and NO/cGMP signaling pathways and their downstream mechanisms through increased renal H2S production.
Collapse
Affiliation(s)
- George J. Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra P.O. Box LG43, Ghana
- Department of Physiology and Pharmacology, Accra College of Medicine, Accra P.O. Box CT9828, Ghana
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada
| | - Karl K. Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra P.O. Box LG43, Ghana
| | - Ismaila Adams
- Department of Medical Pharmacology, University of Ghana Medical School, Accra P.O. Box KB52, Ghana
| | - Samuel Adjei
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana
| | - Daniel Amoah
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana
| | - Richard Obeng-Kyeremeh
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana
| |
Collapse
|
2
|
Kelava L, Pakai E, Ogasawara K, Fekete K, Pozsgai G, Pinter E, Garami A. Effects of Hydrogen Sulfide at Normal Body Temperature and in the Cold on Isolated Tail and Carotid Arteries from Rats and TRPA1 Knockout and Wild-Type Mice. Biomedicines 2024; 12:2874. [PMID: 39767780 PMCID: PMC11673252 DOI: 10.3390/biomedicines12122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Hydrogen sulfide (H2S) is a gasotransmitter that modulates vascular tone, causing either vasodilation or vasoconstriction depending on the vascular bed, species, and experimental conditions. The cold-sensitive transient receptor potential ankyrin-1 (TRPA1) channel mediates H2S-induced effects; however, its contribution to the vasomotor responses of different arteries at different temperatures has remained unclear. Here, we aimed to fill this gap by comparing the effects of sodium sulfide (Na2S), which is a fast-releasing H2S donor, on the isolated carotid and tail skin arteries of rats and mice at cold and normal body temperature with wire myography. Under the same circumstances, we also aimed to compare the effects of the canonical endothelium-dependent and -independent vasodilators, acetylcholine and sodium nitroprusside, respectively. Methods: We isolated the carotid and tail arteries from 32 adult Wistar rats and 64 TRPA1 knockout and wild-type mice, and then we studied their vasomotor responses to increasing doses (10-6-10-3 M) of Na2S as well as to acetylcholine and sodium nitroprusside (10-5 M for both) at 37 °C and in cold (17 or 20 °C). Results: In rat vessels, Na2S caused constriction of the carotids and relaxation of the tail arteries, which were not influenced by temperature. In mouse carotids, Na2S caused vasorelaxation, which was more pronounced in the cold at a lower dose (10-4 M). At a higher dose (10-3 M), the dilation was markedly attenuated in the absence of the TRPA1 channel. In the mouse tail arteries, Na2S caused vasorelaxation at 37 °C and vasocontraction in the cold. The genetic blockade of TRPA1 channels did not influence the vasomotor responses of the mouse tail arteries. Sodium nitroprusside-induced vasorelaxation was not influenced by any of the investigated factors, while acetylcholine-induced dilation decreased in the cold in all vessel types. Conclusions: Our results reveal the function of TRPA1 in the H2S-induced dilation of carotid arteries in mice. We also highlight interspecies differences in the vasomotor responses between rats and mice, as well as the importance of the effect of temperature on vascular responses. The implementation of the identified variables in future research can advance our understanding of cardiovascular physiology, especially in conditions with hypothermia (either accidental or therapeutic).
Collapse
Affiliation(s)
- Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (L.K.); (E.P.); (K.O.); (K.F.)
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (L.K.); (E.P.); (K.O.); (K.F.)
| | - Kazushi Ogasawara
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (L.K.); (E.P.); (K.O.); (K.F.)
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (L.K.); (E.P.); (K.O.); (K.F.)
| | - Gabor Pozsgai
- Department of Pharmacology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary;
| | - Erika Pinter
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (L.K.); (E.P.); (K.O.); (K.F.)
| |
Collapse
|
3
|
Silva-Velasco DL, Hong E, Beltran-Ornelas JH, Sánchez-López A, Huerta de la Cruz S, Tapia-Martínez JA, Gomez CB, Centurión D. Hydrogen sulfide ameliorates hypertension and vascular dysfunction induced by insulin resistance in rats by reducing oxidative stress and activating eNOS. Eur J Pharmacol 2024; 963:176266. [PMID: 38096969 DOI: 10.1016/j.ejphar.2023.176266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter implied in metabolic diseases, insulin resistance, obesity, and type 2 Diabetes Mellitus. This study aimed to determine the effect of chronic administration of sodium hydrosulfide (NaHS; inorganic H2S donor), L-Cysteine (L-Cys; substrate of H2S producing enzymes) and DL-Propargylglycine (DL-PAG; cystathionine-gamma-lyase inhibitor) on the vascular dysfunction induced by insulin resistance in rat thoracic aorta. For this purpose, 72 animals were divided into two main sets that received: 1) tap water (control group; n = 12); and 2) fructose 15% w/v in drinking water [insulin resistance group (IR); n = 60] for 20 weeks. After 16 weeks, the group 2 was divided into five subgroups (n = 12 each), which received daily i. p. injections during 4 weeks of: 1) non-treatment (control); 2) vehicle (phosphate buffer saline; PBS, 1 ml/kg); 3) NaHS (5.6 mg/kg); 4) L-Cys (300 mg/kg); and (5) DL-PAG (10 mg/kg). Hemodynamic variables, metabolic variables, vascular function, ROS levels and the expression of p-eNOS and eNOS were determined. IR induced: 1) hyperinsulinemia; 2) increased HOMA-index; 3) decreased Matsuda index; 4) hypertension, vascular dysfunction, increased ROS levels; 5) increased iNOS, and 6) decreased CSE, p-eNOS and eNOS expression. Furthermore, IR did not affect contractile responses to norepinephrine. Interestingly, NaHS and L-Cys treatment, reversed IR-induced impairments and DL-PAG treatment decreased and increased the HOMA and Matsuda index, respectively. Taken together, these results suggest that NaHS and L-Cys decrease the metabolic and vascular alterations induced by insulin resistance by reducing oxidative stress and activating eNOS. Thus, hydrogen sulfide may have a therapeutic application.
Collapse
Affiliation(s)
- Diana L Silva-Velasco
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de Los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan, C.P. 14330, Ciudad de México, Mexico
| | - Enrique Hong
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de Los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan, C.P. 14330, Ciudad de México, Mexico
| | - Jesus H Beltran-Ornelas
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de Los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan, C.P. 14330, Ciudad de México, Mexico
| | - Araceli Sánchez-López
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de Los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan, C.P. 14330, Ciudad de México, Mexico
| | - Saúl Huerta de la Cruz
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de Los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan, C.P. 14330, Ciudad de México, Mexico
| | - Jorge A Tapia-Martínez
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de Los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan, C.P. 14330, Ciudad de México, Mexico
| | - Carolina B Gomez
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de Los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan, C.P. 14330, Ciudad de México, Mexico
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de Los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan, C.P. 14330, Ciudad de México, Mexico.
| |
Collapse
|
4
|
Peleli M, Lyngso KS, Poulsen FR, Hansen PBL, Papapetropoulos A, Stubbe J. Inhibition of cystathionine-gamma lyase dampens vasoconstriction in mouse and human intracerebral arterioles. Acta Physiol (Oxf) 2023; 239:e14021. [PMID: 37555636 DOI: 10.1111/apha.14021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/11/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023]
Abstract
AIM In extracerebral vascular beds cystathionine-gamma lyase (CSE) activity plays a vasodilatory role but the role of this hydrogen sulfide (H2 S) producing enzyme in the intracerebral arterioles remain poorly understood. We hypothesized a similar function in the intracerebral arterioles. METHODS Intracerebral arterioles were isolated from wild type C57BL/6J mouse (9-12 months old) brains and from human brain biopsies. The function (contractility and secondary dilatation) of the intracerebral arterioles was tested ex vivo by pressure myography using a perfusion set-up. Reverse transcription polymerase chain reaction was used for detecting CSE expression. RESULTS CSE is expressed in human and mouse intracerebral arterioles. CSE inhibition with L-propargylglycine (PAG) significantly dampened the K+ -induced vasoconstriction in intracerebral arterioles of both species (% of maximum contraction: in human control: 45.4 ± 2.7 versus PAG: 27 ± 5.2 and in mouse control: 50 ± 1.5 versus PAG: 33 ± 5.2) but did not affect the secondary dilatation. This effect of PAG was significantly reversed by the H2 S donor sodium hydrosulfide (NaSH) in human (PAG + NaSH: 38.8 ± 7.2) and mouse (PAG + NaSH: 41.7 ± 3.1) arterioles, respectively. The endothelial NO synthase (eNOS) inhibitor, Nω-Nitro-l-arginine methyl ester (L-NAME), and the inhibitor of soluble guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) reversed the effect of PAG on the K+ -induced vasoconstriction in the mouse arterioles and attenuated the K+ -induced secondary dilatation significantly. CONCLUSION CSE contributes to the K+ -induced vasoconstriction via a mechanism involving H2 S, eNOS, and sGC whereas the secondary dilatation is regulated by eNOS and sGC but not by CSE.
Collapse
Affiliation(s)
- Maria Peleli
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Kristina S Lyngso
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark and BRIDGE (Brain Research-Interdisciplinary Guided Excellence), Odense, Denmark
- OPEN - Odense Patient Data Explorative Network, Odense, Denmark
| | - Pernille B L Hansen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
de Morais Campos R, Lima LMALL, da Silva AG, Santiago RO, Paz IA, Cabral PHB, Santos CF, Fonteles MC, do Nascimento NRF. Rutin ameliorates nitrergic and endothelial dysfunction on vessels and corpora cavernosa of diabetic animals. Res Vet Sci 2023; 161:163-172. [PMID: 37406575 DOI: 10.1016/j.rvsc.2023.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Endothelial dysfunction is an early complication of diabetes and it is related to both micro- and macroangiopathies. In addition, >70% of diabetic patients develop autonomic neuropathies. Increased oxidative stress has a major role in the development of both nitrergic and endothelial dysfunction. The aim of this work is to evaluate whether rutin, a potent antioxidant, could ameliorate nitrergic and/or endothelial dysfunction in diabetic animals. Primary and secondary treatment protocols with rutin were investigated on rat aortic rings and the mesenteric arteriolar bed, and on rabbit aortic rings and corpora cavernosa (RbCC) from both euglycemic and alloxan-diabetic animals. Acetylcholine endothelium-dependent and sodium nitroprusside endothelium-independent relaxations were compared in tissues from euglycemic or diabetic animals. Electrical field stimulation (EFS)-induced relaxation was performed only in the RbCC. Endothelial-dependent relaxations were blunted by 40% in vessels and neuronal relaxation was blunted by 50% in RbCC taken from diabetic animals when compared to euglycemic animals. Pre-treatment with rutin restored both neuronal and endothelial dependent relaxations in diabetic animals towards the values achieved in control euglycemic tissues. Rutin was able to ameliorate both endothelial dysfunction and nitrergic neuropathy in animal experimental models. Rutin could be a lead compound in the primary or secondary preventive ancillary treatment of endothelial and nitrergic dysfunction in the course of diabetes.
Collapse
Affiliation(s)
| | | | - Ariana Gomes da Silva
- Superior Institute of Biomedical Sciences, Ceará State University, Fortaleza, Ceará, Brazil
| | | | - Iury Araújo Paz
- Superior Institute of Biomedical Sciences, Ceará State University, Fortaleza, Ceará, Brazil
| | | | | | | | | |
Collapse
|
6
|
Silva-Velasco DL, Beltran-Ornelas JH, Tapia-Martínez J, Sánchez-López A, de la Cruz SH, Cervantes-Pérez LG, Del Valle-Mondragón L, Sánchez-Mendoza A, Centurión D. NaHS restores the vascular alterations in the renin-angiotensin system induced by hyperglycemia in rats. Peptides 2023; 164:171001. [PMID: 36990388 DOI: 10.1016/j.peptides.2023.171001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Hyperglycemia (HG) impairs the renin-angiotensin system (RAS), which may contribute to vascular dysfunction. Besides, hydrogen sulfide (H2S) exerts beneficial cardiovascular effects in metabolic diseases. Therefore, our study aimed to determine the effects of chronic administration of sodium hydrosulfide (NaHS; inorganic H2S donor) and DL-Propargylglycine [DL-PAG; cystathionine-ץ-lyase (CSE) inhibitor] on the RAS-mediated vascular responses impairments observed in thoracic aortas from male diabetic Wistar rats. For that purpose, neonatal rats were divided into two groups that received: 1) citrate buffer (n = 12) or 2) streptozotocin (STZ, 70 mg/kg; n = 48) on the third postnatal day. After 12 weeks, diabetic animals were divided into 4 subgroups (n = 12 each) that received daily i.p. injections during 4 weeks of: 1) non-treatment; 2) vehicle (PBS, 1 mL/kg); 3) NaHS (5.6 mg/kg); and 4) DL-PAG (10 mg/kg). After treatments (16 weeks), blood glucose, angiotensin-(1-7) [Ang-(1-7)], and angiotensin II (Ang II) levels, vascular responses to Ang-(1-7) and Ang II, and the expression of angiotensin AT1, AT2, and Mas receptors, angiotensin converting enzyme (ACE) and ACE type 2 (ACE2) were determined. HG induced: 1) increased blood glucose levels and expression of angiotensin II AT1 receptor; 2) impaired Ang-(1-7) and Ang II mediated vascular responses; 3) decreased angiotensin levels and expression of angiotensin II AT2 and angiotensin-(1-7) Mas receptors, and ACE2; and 4) no changes in ACE expression. Interestingly, NaHS, but not DL-PAG, reversed HG-induced impairments, except for blood glucose level changes. These results suggest that NaHS restores vascular function in streptozotocin-induced HG through RAS modulation.
Collapse
Affiliation(s)
- Diana L Silva-Velasco
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Jesus H Beltran-Ornelas
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Jorge Tapia-Martínez
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Araceli Sánchez-López
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Saúl Huerta de la Cruz
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Luz Graciela Cervantes-Pérez
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Alcaldía Tlalpan C.P. 14080, Mexico
| | - Leonardo Del Valle-Mondragón
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Alcaldía Tlalpan C.P. 14080, Mexico
| | - Alicia Sánchez-Mendoza
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Alcaldía Tlalpan C.P. 14080, Mexico.
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico.
| |
Collapse
|
7
|
Liu XY, Qian LL, Wang RX. Hydrogen Sulfide-Induced Vasodilation: The Involvement of Vascular Potassium Channels. Front Pharmacol 2022; 13:911704. [PMID: 35721210 PMCID: PMC9198332 DOI: 10.3389/fphar.2022.911704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) has been highlighted as an important gasotransmitter in mammals. A growing number of studies have indicated that H2S plays a key role in the pathophysiology of vascular diseases and physiological vascular homeostasis. Alteration in H2S biogenesis has been reported in a variety of vascular diseases and H2S supplementation exerts effects of vasodilation. Accumulating evidence has shown vascular potassium channels activation is involved in H2S-induced vasodilation. This review aimed to summarize and discuss the role of H2S in the regulation of vascular tone, especially by interaction with different vascular potassium channels and the underlying mechanisms.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
8
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
9
|
Li JC, Velagic A, Qin CX, Li M, Leo CH, Kemp-Harper BK, Ritchie RH, Woodman OL. Diabetes Attenuates the Contribution of Endogenous Nitric Oxide but Not Nitroxyl to Endothelium Dependent Relaxation of Rat Carotid Arteries. Front Pharmacol 2021; 11:585740. [PMID: 33716721 PMCID: PMC7944142 DOI: 10.3389/fphar.2020.585740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Endothelial dysfunction is a major risk factor for several of the vascular complications of diabetes, including ischemic stroke. Nitroxyl (HNO), the one electron reduced and protonated form of nitric oxide (NO•), is resistant to scavenging by superoxide, but the role of HNO in diabetes mellitus associated endothelial dysfunction in the carotid artery remains unknown. Aim: To assess how diabetes affects the role of endogenous NO• and HNO in endothelium-dependent relaxation in rat isolated carotid arteries. Methods: Male Sprague Dawley rats were fed a high-fat-diet (HFD) for 2 weeks prior to administration of low dose streptozotocin (STZ; 35 mg/kg i. p./day) for 2 days. The HFD was continued for a further 12 weeks. Sham rats were fed standard chow and administered with citrate vehicle. After 14 weeks total, rats were anesthetized and carotid arteries collected to assess responses to the endothelium-dependent vasodilator, acetylcholine (ACh) by myography. The combination of calcium-activated potassium channel blockers, TRAM-34 (1 μmol/L) and apamin (1 μmol/L) was used to assess the contribution of endothelium-dependent hyperpolarization to relaxation. The corresponding contribution of NOS-derived nitrogen oxide species to relaxation was assessed using the combination of the NO• synthase inhibitor, L-NAME (200 μmol/L) and the soluble guanylate cyclase inhibitor ODQ (10 μmol/L). Lastly, L-cysteine (3 mmol/L), a selective HNO scavenger, and hydroxocobalamin (HXC; 100 μmol/L), a NO• scavenger, were used to distinguish between NO• and HNO-mediated relaxation. Results: At study end, diabetic rats exhibited significantly retarded body weight gain and elevated blood glucose levels compared to sham rats. The sensitivity and the maximal relaxation response to ACh was significantly impaired in carotid arteries from diabetic rats, indicating endothelial dysfunction. The vasorelaxation evoked by ACh was abolished by L-NAME plus ODQ, but not affected by the apamin plus TRAM-34 combination, indicating that NOS-derived nitrogen oxide species are the predominant endothelium-derived vasodilators in sham and diabetic rat carotid arteries. The maximum relaxation to ACh was significantly decreased by L-cysteine in both sham and diabetic rats, whereas HXC attenuated ACh-induced relaxation only in sham rats, suggesting that diabetes impaired the contribution of NO•, whereas HNO-mediated vasorelaxation remained intact. Conclusion: Both NO• and HNO contribute to endothelium-dependent relaxation in carotid arteries. In diabetes, NO•-mediated relaxation is impaired, whereas HNO-mediated relaxation was preserved. The potential for preserved HNO activity under pathological conditions that are associated with oxidative stress indicates that HNO donors may represent a viable therapeutic approach to the treatment of vascular dysfunction.
Collapse
Affiliation(s)
- Jasmin Chendi Li
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Anida Velagic
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Cheng Xue Qin
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Mandy Li
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chen Huei Leo
- Science, Maths and Technology Cluster, Singapore University of Technology & Design, Singapore, Singapore
| | - Barbara K. Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rebecca H. Ritchie
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Owen L. Woodman
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Potential role of hydrogen sulfide in diabetes-impaired angiogenesis and ischemic tissue repair. Redox Biol 2020; 37:101704. [PMID: 32942144 PMCID: PMC7498944 DOI: 10.1016/j.redox.2020.101704] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes is one of the most prevalent metabolic disorders and is estimated to affect 400 million of 4.4% of population worldwide in the next 20 year. In diabetes, risk to develop vascular diseases is two-to four-fold increased. Ischemic tissue injury, such as refractory wounds and critical ischemic limb (CLI) are major ischemic vascular complications in diabetic patients where oxygen supplement is insufficient due to impaired angiogenesis/neovascularization. In spite of intensive studies, the underlying mechanisms of diabetes-impaired ischemic tissue injury remain incompletely understood. Hydrogen sulfide (H2S) has been considered as a third gasotransmitter regulating angiogenesis under physiological and ischemic conditions. Here, the underlying mechanisms of insufficient H2S-impaired angiogenesis and ischemic tissue repair in diabetes are discussed. We will primarily focuses on the signaling pathways of H2S in controlling endothelial function/biology, angiogenesis and ischemic tissue repair in diabetic animal models. We summarized that H2S plays an important role in maintaining endothelial function/biology and angiogenic property in diabetes. We demonstrated that exogenous H2S may be a theraputic agent for endothelial dysfunction and impaired ischemic tissue repair in diabetes.
Collapse
|
11
|
Endothelium-Dependent Hyperpolarization (EDH) in Diabetes: Mechanistic Insights and Therapeutic Implications. Int J Mol Sci 2019; 20:ijms20153737. [PMID: 31370156 PMCID: PMC6695796 DOI: 10.3390/ijms20153737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is one of the major risk factors for cardiovascular disease and is an important health issue worldwide. Long-term diabetes causes endothelial dysfunction, which in turn leads to diabetic vascular complications. Endothelium-derived nitric oxide is a major vasodilator in large-size vessels, and the hyperpolarization of vascular smooth muscle cells mediated by the endothelium plays a central role in agonist-mediated and flow-mediated vasodilation in resistance-size vessels. Although the mechanisms underlying diabetic vascular complications are multifactorial and complex, impairment of endothelium-dependent hyperpolarization (EDH) of vascular smooth muscle cells would contribute at least partly to the initiation and progression of microvascular complications of diabetes. In this review, we present the current knowledge about the pathophysiology and underlying mechanisms of impaired EDH in diabetes in animals and humans. We also discuss potential therapeutic approaches aimed at the prevention and restoration of EDH in diabetes.
Collapse
|