1
|
Thakur MR, Tupe RS. l-Arginine: A multifaceted regulator of diabetic cardiomyopathy. Biochem Biophys Res Commun 2025; 761:151720. [PMID: 40186920 DOI: 10.1016/j.bbrc.2025.151720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
In diabetes mellitus, dysregulated glucose and lipid metabolism lead to diabetic cardiomyopathy (DCM) by imparting pathological myocardial remodeling and cellular injury. Accelerated glycation, oxidative stress, and activated inflammatory pathways culminate in cardiac fibrosis and hypertrophy in DCM. The regulatory effects of l-Arginine (L-Arg) have been elucidated in the pathological changes of DCM, including myocardial fibrosis, hypertrophy, and apoptosis, by inhibiting glycation and oxidative stress-induced inflammation. Disturbed L-Arg metabolism and decreased intracellular L-Arg pool are correlated with the progression of DCM; therefore, L-Arg supplementation has been prescribed for various cardiovascular dysfunctions. This review expands the therapeutic potential of L-Arg supplementation in DCM by elucidating its molecular mechanism of action and exploring potential clinical outcomes.
Collapse
Affiliation(s)
- Muskan R Thakur
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
2
|
Guo X, Jin W, Xing Y. Levels of asymmetric dimethylarginine in plasma and aqueous humor: a key risk factor for the severity of fibrovascular proliferation in proliferative diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1364609. [PMID: 38933824 PMCID: PMC11200173 DOI: 10.3389/fendo.2024.1364609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Proliferative diabetic retinopathy (PDR) is a common diabetes complication, significantly impacting vision and quality of life. Previous studies have suggested a potential link between arginine pathway metabolites and diabetic retinopathy (DR). Connective tissue growth factor (CTGF) plays a role in the occurrence and development of fibrovascular proliferation (FVP) in PDR patients. However, the relationship between arginine pathway metabolites and FVP in PDR remains undefined. This study aimed to explore the correlation between four arginine pathway metabolites (arginine, asymmetric dimethylarginine[ADMA], ornithine, and citrulline) and the severity of FVP in PDR patients. Methods In this study, plasma and aqueous humor samples were respectively collected from 30 patients with age-related cataracts without diabetes mellitus (DM) and from 85 PDR patients. The PDR patients were categorized as mild-to-moderate or severe based on the severity of fundal FVP. The study used Kruskal-Wallis test to compare arginine, ADMA, ornithine, and citrulline levels across three groups. Binary logistic regression identified risk factors for severe PDR. Spearman correlation analysis assessed associations between plasma and aqueous humor metabolite levels, and between ADMA and CTGF levels in aqueous humor among PDR patients. Results ADMA levels in the aqueous humor were significantly greater in patients with severe PDR than in those with mild-to-moderate PDR(P=0.0004). However, the plasma and aqueous humor levels of arginine, ornithine, and citrulline did not significantly differ between mild-to-moderate PDR patients and severe PDR patients (P>0.05). Binary logistic regression analysis indicated that the plasma (P=0.01) and aqueous humor (P=0.006) ADMA levels in PDR patients were risk factors for severe PDR. Furthermore, significant correlations were found between plasma and aqueous humor ADMA levels (r=0.263, P=0.015) and between aqueous humor ADMA and CTGF levels (r=0.837, P<0.001). Conclusion Elevated ADMA levels in plasma and aqueous humor positively correlate with the severity of FVP in PDR, indicating ADMA as a risk factor for severe PDR.
Collapse
Affiliation(s)
| | - Wei Jin
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Efremova I, Maslennikov R, Poluektova E, Medvedev O, Kudryavtseva A, Krasnov G, Fedorova M, Romanikhin F, Bakhitov V, Aliev S, Sedova N, Kuropatkina T, Ivanova A, Zharkova M, Pervushova E, Ivashkin V. Gut Microbiota and Biomarkers of Endothelial Dysfunction in Cirrhosis. Int J Mol Sci 2024; 25:1988. [PMID: 38396668 PMCID: PMC10888218 DOI: 10.3390/ijms25041988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Our aim was to study the association of endothelial dysfunction biomarkers with cirrhosis manifestations, bacterial translocation, and gut microbiota taxa. The fecal microbiome was assessed using 16S rRNA gene sequencing. Plasma levels of nitrite, big endothelin-1, asymmetric dimethylarginine (ADMA), presepsin, and claudin were measured as biomarkers of endothelial dysfunction, bacterial translocation, and intestinal barrier dysfunction. An echocardiography with simultaneous determination of blood pressure and heart rate was performed to evaluate hemodynamic parameters. Presepsin, claudin 3, nitrite, and ADMA levels were higher in cirrhosis patients than in controls. Elevated nitrite levels were associated with high levels of presepsin and claudin 3, the development of hemodynamic circulation, hypoalbuminemia, grade 2-3 ascites, overt hepatic encephalopathy, high mean pulmonary artery pressure, increased abundance of Proteobacteria and Erysipelatoclostridium, and decreased abundance of Oscillospiraceae, Subdoligranulum, Rikenellaceae, Acidaminococcaceae, Christensenellaceae, and Anaerovoracaceae. Elevated ADMA levels were associated with higher Child-Pugh scores, lower serum sodium levels, hypoalbuminemia, grade 2-3 ascites, milder esophageal varices, overt hepatic encephalopathy, lower mean pulmonary artery pressure, and low abundance of Erysipelotrichia and Erysipelatoclostridiaceae. High big endothelin-1 levels were associated with high levels of presepsin and sodium, low levels of fibrinogen and cholesterol, hypocoagulation, increased Bilophila and Coprobacillus abundances, and decreased Alloprevotella abundance.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str. 1-1, 119435 Moscow, Russia; (I.E.); (E.P.)
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str. 1-1, 119435 Moscow, Russia; (I.E.); (E.P.)
- Scientific Community for the Promotion of the Clinical Study of the Human Microbiome, Pogodinskaya Str. 1-1, 119435 Moscow, Russia
- Consultative and Diagnostic Center 2 of the Moscow Health Department, Millionnaya Str. 6, 107564 Moscow, Russia (N.S.)
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str. 1-1, 119435 Moscow, Russia; (I.E.); (E.P.)
- Scientific Community for the Promotion of the Clinical Study of the Human Microbiome, Pogodinskaya Str. 1-1, 119435 Moscow, Russia
| | - Oleg Medvedev
- Pharmacology Department, Lomonosov Moscow State University, Leninskie Gori 1, 119991 Moscow, Russia; (O.M.)
| | - Anna Kudryavtseva
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| | - George Krasnov
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| | - Maria Fedorova
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| | - Filipp Romanikhin
- Pharmacology Department, Lomonosov Moscow State University, Leninskie Gori 1, 119991 Moscow, Russia; (O.M.)
| | - Vyacheslav Bakhitov
- Consultative and Diagnostic Center 2 of the Moscow Health Department, Millionnaya Str. 6, 107564 Moscow, Russia (N.S.)
| | - Salekh Aliev
- Consultative and Diagnostic Center 2 of the Moscow Health Department, Millionnaya Str. 6, 107564 Moscow, Russia (N.S.)
- First Hospital Surgery Department, Pirogov Russian National Research Medical University, Ostrovityanova Str. 1-7, 117997 Moscow, Russia
| | - Natalia Sedova
- Consultative and Diagnostic Center 2 of the Moscow Health Department, Millionnaya Str. 6, 107564 Moscow, Russia (N.S.)
- Department of Clinical Laboratory Diagnostics, FGBOU DPO “Russian Medical Academy of Continuing Professional Education of the Ministry of Health of the Russian Federation”, Barricadnaya Str. 2/1-2, 125993 Moscow, Russia
| | - Tatiana Kuropatkina
- Pharmacology Department, Lomonosov Moscow State University, Leninskie Gori 1, 119991 Moscow, Russia; (O.M.)
| | - Anastasia Ivanova
- Pharmacology Department, Lomonosov Moscow State University, Leninskie Gori 1, 119991 Moscow, Russia; (O.M.)
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str. 1-1, 119435 Moscow, Russia; (I.E.); (E.P.)
| | - Ekaterina Pervushova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str. 1-1, 119435 Moscow, Russia; (I.E.); (E.P.)
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str. 1-1, 119435 Moscow, Russia; (I.E.); (E.P.)
- Scientific Community for the Promotion of the Clinical Study of the Human Microbiome, Pogodinskaya Str. 1-1, 119435 Moscow, Russia
| |
Collapse
|
4
|
Wójcicka G, Pradiuch A, Fornal E, Stachniuk A, Korolczuk A, Marzec-Kotarska B, Nikolaichuk H, Czechowska G, Kozub A, Trzpil A, Góralczyk A, Bełtowski J. The effect of exenatide (a GLP-1 analogue) and sitagliptin (a DPP-4 inhibitor) on asymmetric dimethylarginine (ADMA) metabolism and selected biomarkers of cardiac fibrosis in rats with fructose-induced metabolic syndrome. Biochem Pharmacol 2023; 214:115637. [PMID: 37290595 DOI: 10.1016/j.bcp.2023.115637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis, is a risk factor for endothelial dysfunction, a common pathophysiological denominator for both atherogenesis and cardiac fibrosis. We aimed to investigate whether the cardioprotective and antifibrotic effects of incretin drugs, exenatide and sitagliptin, may be associated with their ability to affect circulating and cardiac ADMA metabolism. Normal and fructose-fed rats were treated with sitagliptin (5.0/10 mg/kg) or exenatide (5/10 µg/kg) for 4 weeks. The following methods were used: LC-MS/MS, ELISA, Real-Time-PCR, colorimetry, IHC and H&E staining, PCA and OPLS-DA projections. Eight-week fructose feeding resulted in an increase in plasma ADMA and a decrease in NO concentration. Exenatide administration into fructose-fed rats reduced the plasma ADMA level and increased NO level. In the heart of these animals exenatide administration increased NO and PRMT1 level, reduced TGF-ß1, α-SMA levels and COL1A1 expression. In the exenatide treated rats renal DDAH activity positively correlated with plasma NO level and negatively with plasma ADMA level and cardiac α-SMA concentration. Sitagliptin treatment of fructose-fed rats increased plasma NO concentration, reduced circulating SDMA level, increased renal DDAH activity and reduced myocardial DDAH activity. Both drugs attenuated the myocardial immunoexpression of Smad2/3/P and perivascular fibrosis. In the metabolic syndrome condition both sitagliptin and exenatide positively modulated cardiac fibrotic remodeling and circulating level of endogenous NOS inhibitors but had no effects on ADMA levels in the myocardium.
Collapse
Affiliation(s)
- G Wójcicka
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Pradiuch
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - E Fornal
- Department of Bioanalytic, Medical University of Lublin ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Stachniuk
- Department of Bioanalytic, Medical University of Lublin ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Korolczuk
- Department of Clinical Pathology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - B Marzec-Kotarska
- Department of Clinical Pathology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - H Nikolaichuk
- Department of Bioanalytic, Medical University of Lublin ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - G Czechowska
- Department of Pharmacology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Kozub
- Department of Bioanalytic, Medical University of Lublin ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Trzpil
- Department of Bioanalytic, Medical University of Lublin ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Góralczyk
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - J Bełtowski
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| |
Collapse
|
5
|
Gama-Almeida MC, Pinto GDA, Teixeira L, Hottz ED, Ivens P, Ribeiro H, Garrett R, Torres AG, Carneiro TIA, Barbalho BDO, Ludwig C, Struchiner CJ, Assunção-Miranda I, Valente APC, Bozza FA, Bozza PT, Dos Santos GC, El-Bacha T. Integrated NMR and MS Analysis of the Plasma Metabolome Reveals Major Changes in One-Carbon, Lipid, and Amino Acid Metabolism in Severe and Fatal Cases of COVID-19. Metabolites 2023; 13:879. [PMID: 37512587 PMCID: PMC10384698 DOI: 10.3390/metabo13070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Brazil has the second-highest COVID-19 death rate worldwide, and Rio de Janeiro is among the states with the highest rate in the country. Although vaccine coverage has been achieved, it is anticipated that COVID-19 will transition into an endemic disease. It is concerning that the molecular mechanisms underlying clinical evolution from mild to severe disease, as well as the mechanisms leading to long COVID-19, are not yet fully understood. NMR and MS-based metabolomics were used to identify metabolites associated with COVID-19 pathophysiology and disease outcome. Severe COVID-19 cases (n = 35) were enrolled in two reference centers in Rio de Janeiro within 72 h of ICU admission, alongside 12 non-infected control subjects. COVID-19 patients were grouped into survivors (n = 18) and non-survivors (n = 17). Choline-related metabolites, serine, glycine, and betaine, were reduced in severe COVID-19, indicating dysregulation in methyl donors. Non-survivors had higher levels of creatine/creatinine, 4-hydroxyproline, gluconic acid, and N-acetylserine, indicating liver and kidney dysfunction. Several changes were greater in women; thus, patients' sex should be considered in pandemic surveillance to achieve better disease stratification and improve outcomes. These metabolic alterations may be useful to monitor organ (dys) function and to understand the pathophysiology of acute and possibly post-acute COVID-19 syndromes.
Collapse
Affiliation(s)
- Marcos C Gama-Almeida
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gabriela D A Pinto
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lívia Teixeira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil
| | - Eugenio D Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora 36936-900, Brazil
| | - Paula Ivens
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Hygor Ribeiro
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Rafael Garrett
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Alexandre G Torres
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Talita I A Carneiro
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Bianca de O Barbalho
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2SQ, UK
| | - Claudio J Struchiner
- School of Applied Mathematics, Fundação Getúlio Vargas, Rio de Janeiro 22231-080, Brazil
- Institute of Social Medicine, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil
| | - Iranaia Assunção-Miranda
- LaRIV, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ana Paula C Valente
- National Center for Nuclear Magnetic Resonance-Jiri Jonas, Institute of Medical Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Fernando A Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil
| | - Gilson C Dos Santos
- LabMet-Laboratory of Metabolomics, Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Department of Genetics, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Tatiana El-Bacha
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| |
Collapse
|
6
|
Zhao N, Wang Y, Ma Y, Liang X, Zhang X, Gao Y, Dong Y, Bai D, Hu J. Jia-Wei-Si-Miao-Yong-An decoction modulates intestinal flora and metabolites in acute coronary syndrome model. Front Cardiovasc Med 2023; 9:1038273. [PMID: 36684592 PMCID: PMC9845626 DOI: 10.3389/fcvm.2022.1038273] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Aims We assessed the efficacy of the traditional Chinese medicine formulation Jia-Wei-Si-Miao-Yong-An decoction (HJ11) in the treatment of acute coronary syndrome and evaluated its impact on the intestinal microbiota and their metabolites. Methods An acute coronary syndrome model was established in rats, which were randomly assigned to the model, HJ11 treatment, and atorvastatin treatment groups. Rats were then administered saline solution (model and sham operation control groups) or drugs by oral gavage for 28 d. Echocardiography was performed and serum creatine kinase-MB and cardiac troponin I levels were monitored to examine the cardiac function. Inflammation was evaluated using hematoxylin and eosin staining of heart tissue, and serum interleukin-2, interleukin-6, tumor necrosis factor alpha, and high-sensitivity C-reactive protein measurements. Gut microbiota composition was analyzed via 16S rRNA gene sequencing. Metabolomics was used to determine fecal metabolites and elucidate the modes of action of HJ11 in acute coronary syndrome treatment. Results HJ11 improved cardiac function and attenuated inflammation in rats with acute coronary syndrome. Relative to the untreated model group, the HJ11-treated group presented normalized Firmicutes/Bacteroidetes ratio and reduced abundances of the bacterial genera norank_f__Ruminococcaceae, Desulfovibrio, Clostridium_sensu_stricto_1, Adlercreutzia, Staphylococcus, Bacteroides, Prevotella, Rikenellaceae_RC9_gut_group, unclassified_o__Bacteroidales, and Ruminococcus_gauvreauii_group. We found 23 differentially expressed intestinal metabolites, and the enriched metabolic pathways were mainly related to amino acid metabolism. We also discovered that asymmetric dimethylarginine levels were strongly associated with cardiovascular disease. Correlation analyses revealed strong associations among intestinal microflora, their metabolites, proinflammatory factors, and cardiac function. Hence, the therapeutic effects of HJ11 on acute coronary syndrome are related to specific alterations in gut microbiota and their metabolites. Conclusion This work demonstrated that HJ11 effectively treats acute coronary syndrome. HJ11 seems to increase the abundance of beneficial bacterial taxa (Bacteroides and Rikenellaceae_RC9_gut_group), mitigate the risk factors associated with cardiovascular disease, alter bacterial metabolites, lower asymmetric dimethylarginine levels, and effectively treat acute coronary syndrome.
Collapse
Affiliation(s)
- Ning Zhao
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Pharmacy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Wang
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Ma
- Department of Pathophysiology and Allergy Research, Vienna General Hospital, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Xiaoxue Liang
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xi Zhang
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Gao
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Dong
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dong Bai
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingqing Hu
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Guo X, Xing Y, Jin W. Role of ADMA in the pathogenesis of microvascular complications in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1183586. [PMID: 37152974 PMCID: PMC10160678 DOI: 10.3389/fendo.2023.1183586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic microangiopathy is a typical and severe problem in diabetics, including diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, and diabetic cardiomyopathy. Patients with type 2 diabetes and diabetic microvascular complications have significantly elevated levels of Asymmetric dimethylarginine (ADMA), which is an endogenous inhibitor of nitric oxide synthase (NOS). ADMA facilitates the occurrence and progression of microvascular complications in type 2 diabetes through its effects on endothelial cell function, oxidative stress damage, inflammation, and fibrosis. This paper reviews the association between ADMA and microvascular complications of diabetes and elucidates the underlying mechanisms by which ADMA contributes to these complications. It provides a new idea and method for the prevention and treatment of microvascular complications in type 2 diabetes.
Collapse
Affiliation(s)
| | | | - Wei Jin
- *Correspondence: Yiqiao Xing, ; Wei Jin,
| |
Collapse
|
8
|
Pérez-López C, Rodríguez-Mozaz S, Serra-Compte A, Alvarez-Muñoz D, Ginebreda A, Barceló D, Tauler R. Effects of sulfamethoxazole exposure on mussels (Mytilus galloprovincialis) metabolome using retrospective non-target high-resolution mass spectrometry and chemometric tools. Talanta 2022; 252:123804. [DOI: 10.1016/j.talanta.2022.123804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
|
9
|
Ni GH, Cheng JF, Li YJ, Xie QY, Yang TL, Chen MF. Effect of profilin-1 on the asymmetric dimethylarginine-induced vascular lesion-associated hypertension. Kaohsiung J Med Sci 2021; 38:149-156. [PMID: 34741409 DOI: 10.1002/kjm2.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/07/2022] Open
Abstract
Previous studies have demonstrated that the levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis, are strongly associated with hypertension, diabetes, and cardiovascular diseases. Profilin-1, an actin-binding protein, has been documented to be involved in endothelial injury and in the proliferation of vascular smooth muscle cells resulting from hypertension. However, the role of profilin-1 in ADMA-induced vascular injury in hypertension remains largely unknown. Forty healthy subjects and forty-two matched patients with essential hypertension were enrolled, and the related indexes of vascular injury in plasma were detected. Rat aortic smooth muscle cells (RASMCs) were treated with different concentrations of ADMA for different periods of time and transfected with profilin-1 small hairpin RNA to interrupt the expression of profilin-1. To determine the role of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway, RASMCs were pretreated with AG490 or rapamycin. The expression of profilin-1 was tested using real-time polymerase chain reaction (PCR) and western blot analysis. Cell proliferation was measured by flow cytometry and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazoliumbromide assays. Compared with healthy subjects, the levels of ADMA and profilin-1 were markedly elevated in hypertensive individuals, while the levels of NO were significantly decreased (p < 0.05). In vitro, studies showed ADMA-induced profilin-1 expression in a concentration- and time-dependent manner in RASMCs (p < 0.05), concomitantly with promoting the proliferation of RASMCs. Furthermore, ADMA-mediated proliferation of RASMCs and upregulation expression of profilin-1 were inhibited by blockade of the JAK2/STAT3 pathway or knockdown of profilin-1. Profilin-1 implicated in the ADMA-mediated vascular lesions in hypertension.
Collapse
Affiliation(s)
- Guo-Hua Ni
- Health Management Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital (Chengdu Jinjiang Sohome Comprehensive Outpatient Clinic), Chengdu, China
| | - Jin-Fang Cheng
- Department of Cardiology, Shanxi Baiqiuen Hospital, Taiyuan, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qi-Ying Xie
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tian-Lun Yang
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mei-Fang Chen
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Acacetin improves endothelial dysfunction and aortic fibrosis in insulin-resistant SHR rats by estrogen receptors. Mol Biol Rep 2020; 47:6899-6918. [PMID: 32892299 PMCID: PMC7561596 DOI: 10.1007/s11033-020-05746-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Abstract
The aim of the work was to investigate the effects of acacetin on endothelial dysfunction and aortic fibrosis in insulin-resistant SHR rats and explore its mechanism. Seven-week-old male spontaneously hypertensive rats (SHR) were selected to establish a rat model of hypertension with insulin resistance induced by 10% fructose. The nuclear factor kappa B p65 (NF-κB p65) and Collagen I were observed by Immunohistochemistry. Immunofluorescence was used to observe estrogen receptor-alpha (ERα), estrogen receptor-beta (ERβ), and G protein-coupled receptor 30 (GPR30). Western blotting was used to detect interleukin (IL-1β), Arginase 2 (ARG2), Nostrin, endothelial nitric oxide synthase (eNOS), TGF-β, Smad3, ERK pathway proteins such as p-c-Raf, p-MEK1/2, p-ERK, ERK, p-P90RSK and p-MSK1. We found that acacetin did have an improvement on endothelial dysfunction and fibrosis. Meanwhile, it was also found to have a significant effect on the level of estrogen in this model by accident. Then, the experiment of uterine weight gain in mice confirmed that acacetin had a certain estrogen-like effect in vivo and played its role through the estrogen receptors pathway. In vitro experience HUVEC cells were stimulated with 30 mM/L glucose and 100 mM/L NaCl for 24 h to establish the endothelial cell injury model. HUVEC cells were treated with 1 μM/L estrogen receptors antagonist (ICI 182780) for 30 min before administration. Cell experiments showed that acacetin could reduce the apoptosis of HUVEC cells, the levels of inflammatory cytokines and the expression of TGF-β, Collagen I and Smad3 in endothelial cell injury model. After treatment with ICI 182780, the improvement of acacetin was significantly reversed. The results showed that acacetin relieved endothelial dysfunction and reduced the aortic fibrosis in insulin-resistant SHR rats by reducing the release of inflammatory factors and improving vasodilatory function through estrogen signaling pathway.
Collapse
|
11
|
da Silva RP, Eudy BJ, Deminice R. One-Carbon Metabolism in Fatty Liver Disease and Fibrosis: One-Carbon to Rule Them All. J Nutr 2020; 150:994-1003. [PMID: 32119738 DOI: 10.1093/jn/nxaa032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/14/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a term used to characterize a range of disease states that involve the accumulation of fat in the liver but are not associated with excessive alcohol consumption. NAFLD is a prevalent disease that can progress to organ damage like liver cirrhosis and hepatocellular carcinoma. Many animal models have demonstrated that one-carbon metabolism is strongly associated with NAFLD. Phosphatidylcholine is an important phospholipid that affects hepatic lipid homeostasis and de novo synthesis of this phospholipid is associated with NAFLD. However, one-carbon metabolism serves to support all cellular methylation reactions and catabolism of methionine, serine, glycine, choline, betaine, tryptophan, and histidine. Several different pathways within one-carbon metabolism that play important roles in regulating energy metabolism and immune function have received less attention in the study of fatty liver disease and fibrosis. This review examines what we have learned about hepatic lipid metabolism and liver damage from the study of one-carbon metabolism thus far and highlights unexplored opportunities for future research.
Collapse
Affiliation(s)
- Robin P da Silva
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Brandon J Eudy
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Rafael Deminice
- Department of Physical Education, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|