1
|
Wang Y, Wang J, Lv W, Chen H, Zhang Y, Yang Q, Ma X, Guo R, Zhang Q. Influence of Zhigancao decoction on chronic heart failure combined with depression. Front Cardiovasc Med 2025; 12:1538940. [PMID: 40297161 PMCID: PMC12034621 DOI: 10.3389/fcvm.2025.1538940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Chronic heart failure (CHF) combined with depression represents a significant clinical challenge due to the mutual exacerbation of physical and psychological symptoms. This study investigated the therapeutic effects of Zhigancao decoction, a traditional Chinese medicine, in combination with conventional Western treatments in patients with CHF and depression. A total of 122 patients were enrolled and divided into two groups: a control group receiving standard Western treatment, and an observation group receiving Zhigancao decoction in addition to conventional therapy. Outcomes were assessed by evaluating the clinical efficacy, cardiac function, inflammatory markers, depressive symptoms, and quality of life. The Zhigancao decoction group exhibited significantly higher efficacy rates, improved left ventricular ejection fraction (LVEF), reduced levels of inflammatory markers [N-terminal pro-brain natriuretic peptide (NT-proBNP), matrix metalloproteinase-9 (MMP-9), and high-sensitivity C-reactive protein (hs-CRP)], and lower scores on depression scales, compared to the control group. Furthermore, the quality of life significantly improved in the Zhigancao decoction group. These findings underscore the potential of Zhigancao decoction as an effective adjunct to conventional treatments for managing CHF combined with depression, offering a holistic approach that integrates physical and mental health improvements.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chinese Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Jun Wang
- Department of Office of Academic Research, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Wang Lv
- Department of Chinese Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Hu Chen
- Department of Chinese Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yang Zhang
- Department of Chinese Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qian Yang
- Department of Chinese Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaoli Ma
- Department of Fifth Cardiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Run Guo
- Department of Fifth Cardiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qianyu Zhang
- Department of Fifth Cardiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
2
|
Liu D, Wang J, Zhang S, Jiang H, Wu Y, Wang C, Chen W. The potential of ARL4C and its-mediated genes in atherosclerosis and agent development. Front Pharmacol 2025; 16:1513340. [PMID: 40176913 PMCID: PMC11961928 DOI: 10.3389/fphar.2025.1513340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Foam cells are the risk factors for atherosclerosis. Recently, ARL4C, a member of the ADP-ribosylation factor family of GTP-binding proteins, was found to promote cholesterol efflux to decrease foam cell formation, suggesting that ARL4C may be a new promising target for the treatment of atherosclerosis. In fact, ARL4C regulated the expression of multiple atherosis-related genes, including ABCA1, ALDH1A3, ARF6, ENHO, FLNA, LRP6, OSBPL5, Snail2, and SOX2. Many agents, including ABCA1 agonists (CS-6253, IMM-H007, RG7273, and R3R-01), FLNA antagonist sumifilam, LRP6 inhibitor BI-905677 and agonist SZN-1326, and SOX2 inhibitor STEMVAC, were investigated in clinical trials. Targeting these genes could improve the success rate of drug development in clinical trials. Indeed, many agents could regulate ARL4C expression, including LXR/RXR agonists, Ac-LDL, sucrose, T9-t11-CLA, and miR-26. Downregulation of ARL4C with siRNA and anti-sense oligonucleotide (ASO), such as ASO-1316, is developing in preclinical research for the treatment of lung adenocarcinoma, liver cancer, and colorectal cancer. Thus, ARL4C and its regulated genes may be a potential target for drug development. Thus, we focus on the role of ARL4C and its-mediated genes in atherosclerosis and agent development, which provide insights for the identification, research, and drug development of novel targets.
Collapse
Affiliation(s)
- Dan Liu
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
| | - Jie Wang
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Shuangshuang Zhang
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Hongfei Jiang
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Yudong Wu
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Chao Wang
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Wujun Chen
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Strang J, Astridge DD, Nguyen VT, Reigan P. Small Molecule Modulators of AMP-Activated Protein Kinase (AMPK) Activity and Their Potential in Cancer Therapy. J Med Chem 2025; 68:2238-2254. [PMID: 39879193 PMCID: PMC11831681 DOI: 10.1021/acs.jmedchem.4c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/02/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
AMP-activated protein kinase (AMPK) is a central mediator of cellular metabolism and is activated in direct response to low ATP levels. Activated AMPK inhibits anabolic pathways and promotes catabolic activities that generate ATP through the phosphorylation of multiple target substrates. AMPK is a therapeutic target for activation in several chronic metabolic diseases, and there is increasing interest in targeting AMPK activity in cancer where it can act as a tumor suppressor or conversely it can support cancer cell survival. Small molecule AMPK activators and inhibitors have demonstrated some success in suppressing cancer growth, survival, and drug resistance in preclinical cancer models. In this perspective, we summarize the role of AMPK in cancer and drug resistance, the influence of the tumor microenvironment on AMPK activity, and AMPK activator and inhibitor development. In addition, we discuss the potential importance of isoform-selective targeting of AMPK and approaches for selective AMPK targeting in cancer.
Collapse
Affiliation(s)
- Juliet
E. Strang
- Department
of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of Colorado Anschutz
Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | - Daniel D. Astridge
- Department
of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of Colorado Anschutz
Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | - Vu T. Nguyen
- Department
of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of Colorado Anschutz
Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | - Philip Reigan
- Department
of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of Colorado Anschutz
Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| |
Collapse
|
4
|
Chang TC, Lin CF, Lu YJ, Liang SM, Wei JY, Chin CH, Shyue SK, Kuo CC, Liou JY. The effects of acetylated cordycepin derivatives on promoting vascular angiogenesis and attenuating myocardial ischemic injury. Heliyon 2024; 10:e40026. [PMID: 39553596 PMCID: PMC11567033 DOI: 10.1016/j.heliyon.2024.e40026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Background Enhanced angiogenesis following myocardial infarction (MI) is beneficial to preserve cardiac function. The present study aimed to investigate whether acetylated derivatives of cordycepin altered its original antitumor properties and exerted cardioprotective effects by promoting angiogenesis in vitro and in vivo. Methods Cordycepin and its derivatives with single (DA), double (DAA), and triple acetyl groups (DAAA) were assessed. The cell viability of leukemia U937 cells, malignant hepatoma Huh-7 cells, and human umbilical vascular endothelial cells (HUVECs) treated with cordycepin, DA, DAA, and DAAA were determined. The expression of β-catenin in U937 cells, as well as the expression of p65, p38 and other related signal regulators in HUVECs elicited by lipopolysaccharides (LPS) were also observed. Angiogenesis was determined by tube formation in HUVECs and Matrigel plug assay in mice. Cardiac function following administration of DAAA was evaluated in mice MI model simulated by coronary artery ligation. Results The inhibitory effects of cordycepin and its acetylated derivatives on U937 cells, Huh-7 cells, HUVECs, and the expression of β-catenin in U937 cells were mitigated with increasing acetylation. Intriguingly, DAAA preserved the cell viability of HUVECs compared to other acetylated derivatives. Although DAAA had a significantly diminished antitumor effect compared to cordycepin, it promoted angiogenesis in mice and tube formation in HUVECs and attenuated LPS-induced phosphorylation of p65 and p38. Additionally, administration of DAAA improved cardiac function following coronary artery ligation in mice. Conclusion DAAA could be considered a promising adjunctive therapy to prevent post-MI heart failure through promoting angiogenesis.
Collapse
Affiliation(s)
- Tzu-Ching Chang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chao-Feng Lin
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Jhu Lu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shu-Man Liang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Jia-Yi Wei
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Hui Chin
- Cardiovascular Center, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Wang SX, Feng YN, Feng S, Wu JM, Zhang M, Xu WL, Zhang YY, Zhu HB, Xiao H, Dong ED. IMM-H007 attenuates isoprenaline-induced cardiac fibrosis through targeting TGFβ1 signaling pathway. Acta Pharmacol Sin 2022; 43:2542-2549. [PMID: 35354962 PMCID: PMC9525664 DOI: 10.1038/s41401-022-00899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 11/08/2022]
Abstract
Upon chronic stress, β-adrenergic receptor activation induces cardiac fibrosis and leads to heart failure. The small molecule compound IMM-H007 has demonstrated protective effects in cardiovascular diseases via activation of AMP-activated protein kinase (AMPK). This study aimed to investigate IMM-H007 effects on cardiac fibrosis induced by β-adrenergic receptor activation. Because adenosine analogs also exert AMPK-independent effects, we assessed AMPK-dependent and -independent IMM-H007 effects in murine models of cardiac fibrosis. Continual subcutaneous injection of isoprenaline for 7 days caused cardiac fibrosis and cardiac dysfunction in mice in vivo. IMM-H007 attenuated isoprenaline-induced cardiac fibrosis, diastolic dysfunction, α-smooth muscle actin expression, and collagen I deposition in both wild-type and AMPKα2-/- mice. Moreover, IMM-H007 inhibited transforming growth factor β1 (TGFβ1) expression in wild-type, but not AMPKα2-/- mice. By contrast, IMM-H007 inhibited Smad2/3 signaling downstream of TGFβ1 in both wild-type and AMPKα2-/- mice. Surface plasmon resonance and molecular docking experiments showed that IMM-H007 directly interacts with TGFβ1, inhibits its binding to TGFβ type II receptors, and downregulates the Smad2/3 signaling pathway downstream of TGFβ1. These findings suggest that IMM-H007 inhibits isoprenaline-induced cardiac fibrosis via both AMPKα2-dependent and -independent mechanisms. IMM-H007 may be useful as a novel TGFβ1 antagonist.
Collapse
Affiliation(s)
- Shuai-Xing Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Ye-Nan Feng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Shan Feng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Ji-Min Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Mi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Wen-Li Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - You-Yi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Hai-Bo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| | - Er-Dan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| |
Collapse
|
6
|
Ge W, Hou C, Zhang W, Guo X, Gao P, Song X, Gao R, Liu Y, Guo W, Li B, Zhao H, Wang J. Mep1a contributes to Ang II-induced cardiac remodeling by promoting cardiac hypertrophy, fibrosis and inflammation. J Mol Cell Cardiol 2020; 152:52-68. [PMID: 33301800 DOI: 10.1016/j.yjmcc.2020.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 01/12/2023]
Abstract
Pathological cardiac remodeling, characterized by excessive deposition of extracellular matrix proteins and cardiac hypertrophy, leads to the development of heart failure. Meprin α (Mep1a), a zinc metalloprotease, previously reported to participate in the regulation of inflammatory response and fibrosis, may also contribute to cardiac remodeling, although whether and how it participates in this process remains unknown. Here, in this work, we investigated the role of Mep1a in pathological cardiac remodeling, as well as the effects of the Mep1a inhibitor actinonin on cardiac remodeling-associated phenotypes. We found that Mep1a deficiency or chemical inhibition both significantly alleviated TAC- and Ang II-induced cardiac remodeling and dysfunction. Mep1a deletion and blocking both attenuated TAC- and Ang II-induced heart enlargement and increases in the thickness of the left ventricle anterior and posterior walls, and reduced expression of pro-hypertrophic markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and myosin heavy chain beta (β-MHC). In addition, Mep1a deletion and blocking significantly inhibited TAC- and Ang II-induced cardiac fibroblast activation and production of extracellular matrix (ECM). Moreover, in Mep1a-/- mice and treatment with actinonin significantly reduced Ang II-induced infiltration of macrophages and proinflammatory cytokines. Notably, we found that in vitro, Mep1a is expressed in cardiac myocytes and fibroblasts and that Mep1a deletion or chemical inhibition both markedly suppressed Ang II-induced hypertrophy of rat or mouse cardiac myocytes and activation of rat or mouse cardiac fibroblasts. In addition, blocking Mep1a in macrophages reduced Ang II-induced expression of interleukin (IL)-6 and IL-1β, strongly suggesting that Mep1a participates in cardiac remodeling processes through regulation of inflammatory cytokine expression. Mechanism studies revealed that Mep1a mediated ERK1/2 activation in cardiac myocytes, fibroblasts and macrophages and contributed to cardiac remodeling. In light of our findings that blocking Mep1a can ameliorate cardiac remodeling via inhibition of cardiac hypertrophy, fibrosis, and inflammation, Mep1a may therefore serve as a strong potential candidate for therapeutic targeting to prevent cardiac remodeling.
Collapse
Affiliation(s)
- Weipeng Ge
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Cuiliu Hou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Xiaoxiao Guo
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Pan Gao
- Department of Geriatrics, Southwest Hospital, The First Affiliate Hospital to Army Medical University, Chongqing, China
| | - Xiaomin Song
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Ran Gao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Ying Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Physiology, Peking Union Medical College, Beijing, China
| | - Wenjun Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Bolun Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China.
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Li D, Mao C, Zhou E, You J, Gao E, Han Z, Fan Y, He Q, Wang C. MicroRNA-21 Mediates a Positive Feedback on Angiotensin II-Induced Myofibroblast Transformation. J Inflamm Res 2020; 13:1007-1020. [PMID: 33273841 PMCID: PMC7708310 DOI: 10.2147/jir.s285714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/13/2020] [Indexed: 01/10/2023] Open
Abstract
Objective Post myocardial infarction (MI) fibrosis has been identified as an important factor in the progression of heart failure. Previous studies have revealed that microRNA-21 (miR-21) plays an important role in the pathogenesis of fibrosis. The purpose of this study was to explore the role of miR-21 in post-MI cardiac fibrosis. Material and Methods MI was established in wild-type (WT) and miR-21 knockout (KO) mice. Primary mice cardiac fibroblasts (CFs) were isolated from WT and miR-21 KO mice and were treated with angiotensin II (Ang II) or Sprouty1 (Spry1) siRNA. Histological analysis and echocardiography were used to determine the extent of fibrosis and cardiac function. Results Compared with WT mice, miR-21 KO mice displayed smaller fibrotic areas and decreased expression of fibrotic markers and inflammatory cytokines. In parallel, Ang II-induced myofibroblasts transformation was partially inhibited upon miR-21 KO in primary CFs. Mechanistically, we found that the expression of Spry1, a previously reported target of miR-21, was markedly increased in miR-21 KO mice post MI, further inhibiting ERK1/2 activation. In vitro studies showed that Ang II activated ERK1/2/TGF-β/Smad2/3 pathway. Phosphorylated Smad2/3 further enhanced the expression of α-SMA and FAP and may promote the maturation of miR-21, thereby downregulating Spry1. Additionally, these effects of miR-21 KO on fibrosis were reversed by siRNA-mediated knockdown of Spry1. Conclusion Our findings suggest that miR-21 promotes post-MI fibrosis by targeting Spry1. Furthermore, it mediates a positive feedback on Ang II, thereby inducing the ERK/TGF-β/Smad pathway. Therefore, targeting the miR-21–Spry1 axis may be a promising therapeutic option for ameliorating post-MI cardiac fibrosis.
Collapse
Affiliation(s)
- Dongjiu Li
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Chengyu Mao
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - En Zhou
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Jiayin You
- Department of Emergency, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Erhe Gao
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Zhihua Han
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Yuqi Fan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Qing He
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| |
Collapse
|
8
|
Abstract
Doxorubicin is a commonly used chemotherapeutic agent for the treatment of a range of cancers, but despite its success in improving cancer survival rates, doxorubicin is cardiotoxic and can lead to congestive heart failure. Therapeutic options for this patient group are limited to standard heart failure medications with the only drug specific for doxorubicin cardiotoxicity to reach FDA approval being dexrazoxane, an iron-chelating agent targeting oxidative stress. However, dexrazoxane has failed to live up to its expectations from preclinical studies while also bringing up concerns about its safety. Despite decades of research, the molecular mechanisms of doxorubicin cardiotoxicity are still poorly understood and oxidative stress is no longer considered to be the sole evil. Mitochondrial impairment, increased apoptosis, dysregulated autophagy and increased fibrosis have also been shown to be crucial players in doxorubicin cardiotoxicity. These cellular processes are all linked by one highly conserved intracellular kinase: adenosine monophosphate-activated protein kinase (AMPK). AMPK regulates mitochondrial biogenesis via PGC1α signalling, increases oxidative mitochondrial metabolism, decreases apoptosis through inhibition of mTOR signalling, increases autophagy through ULK1 and decreases fibrosis through inhibition of TGFβ signalling. AMPK therefore sits at the control point of many mechanisms shown to be involved in doxorubicin cardiotoxicity and cardiac AMPK signalling itself has been shown to be impaired by doxorubicin. In this review, we introduce different agents known to activate AMPK (metformin, statins, resveratrol, thiazolidinediones, AICAR, specific AMPK activators) as well as exercise and dietary restriction, and we discuss the existing evidence for their potential role in cardioprotection from doxorubicin cardiotoxicity.
Collapse
Affiliation(s)
- Kerstin N Timm
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Damian J Tyler
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| |
Collapse
|