1
|
Ciraci V, Santoni L, Tongiorgi E. Selective Noradrenergic Activation of BDNF Translation by Mirtazapine. Mol Neurobiol 2025; 62:5452-5465. [PMID: 39557799 DOI: 10.1007/s12035-024-04619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
Antidepressants are known for their neurotrophic effects, particularly through the regulation of brain-derived neurotrophic factor (BDNF) expression. Mirtazapine, a tetracyclic noradrenergic and specific serotonergic antidepressant (NaSSA) has been observed to upregulate BDNF, though its underlying mechanism remains unclear. In this study, we used the human neuroblastoma SH-SY5Y cell line to investigate whether mirtazapine could enhance BDNF translation by modulating serotonin and/or norepinephrine and their receptors. A 1-h stimulation with 1 or 10 µM mirtazapine led to downregulation of serotonergic receptors 5HT1A, while increasing ADRA2A and ADRB2 receptors. Mirtazapine at 10 µM upregulated endogenous BDNF after 3h, but not 1h stimulation. To investigate the translation of major BDNF transcripts, we used chimeric BDNF-luciferase constructs with the untranslated 5'UTR exons I, IIc, IV, or VI, and the long version of the 3'UTR. Luciferase assays and Western blotting revealed that mirtazapine selectively enhanced exon-IIc-BDNF-long3'UTR-Luciferase translation. This increase was associated with norepinephrine release and was inhibited by blocking ADRA2A or ADRB2 adrenoceptors for the exon-IIc-BDNF-long3'UTR-Luciferase, and ADR2B for endogenous BDNF. These findings provide a new perspective on the critical role of the noradrenergic system in mediating mirtazapine's effects on BDNF translation. We propose a novel mechanism of action in which mirtazapine promotes norepinephrine release and noradrenergic responses by upregulating ADRA2A and ADRB2 while downregulating serotonergic receptors.
Collapse
Affiliation(s)
- Viviana Ciraci
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5 (Q Building), 34127, Trieste, Italy.
| | - Letizia Santoni
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5 (Q Building), 34127, Trieste, Italy
| | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5 (Q Building), 34127, Trieste, Italy
| |
Collapse
|
2
|
Correia AS, Torrado M, Costa-Coelho T, Carvalho ED, Inteiro-Oliveira S, Diógenes MJ, Pêgo AP, Santos SD, Sebastião AM, Vale N. Brain-derived neurotrophic factor modulation in response to oxidative stress and corticosterone: role of scopolamine and mirtazapine. Life Sci 2024; 358:123133. [PMID: 39413901 DOI: 10.1016/j.lfs.2024.123133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Major Depressive Disorder (MDD) is a very complex disease, challenging to study and manage. The complexities of MDD require extensive research of its mechanisms to develop more effective therapeutic approaches. Crucial in the context of this disease is the role of brain-derived neurotrophic factor (BDNF) signaling pathway. AIM This manuscript aims to explore the complex relationship between MDD and BDNF signaling pathway, focusing on how BDNF is modulated in response to oxidative stress and corticosterone, known to be altered in MDD and contributing to the pathology of the disorder, when treated with scopolamine and mirtazapine. METHODS To assess BDNF levels after the different treatment conditions, rat hippocampal slices and mice primary hippocampus and cortical cell culture were analyzed by immunofluorescence and Western blot. KEY FINDINGS Both mirtazapine and scopolamine under stress conditions induced by hydrogen peroxide (H2O2) and corticosterone, had a significant impact on BDNF levels, and this was distinct in different neuronal models. Mirtazapine, especially when combined with H2O2, altered BDNF expression. Scopolamine when combined with both stressors also altered BDNF levels. However, its effects varied depending on the specific neuronal model and stress condition. In accordance with BDNF results, phosphorylated tropomyosin receptor kinase B (pTrkB) presented increased activation when neuronal cells subjected to stress were treated with mirtazapine or scopolamine. SIGNIFICANCE Collectively, this study highlights the complex connection between these compounds, stress conditions, and BDNF/TrkB modulation, supporting the potential therapeutic effects of scopolamine and mirtazapine in modulating BDNF levels, even in stressful conditions.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Marília Torrado
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Tiago Costa-Coelho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Eva Daniela Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; FEUP-Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Sara Inteiro-Oliveira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Paula Pêgo
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sofia Duque Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal.
| |
Collapse
|
3
|
Barbosa-Méndez S, Salazar-Juárez A. Evaluation of multitarget drugs on the expression of cocaine-induced locomotor sensitization in male rats: A comparative study. Heliyon 2024; 10:e29979. [PMID: 38726128 PMCID: PMC11079035 DOI: 10.1016/j.heliyon.2024.e29979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Purpose - Cocaine use disorder (CUD) is a complex disease. Several studies have shown the efficacy of multitarget drugs used to treat CUD. Here we compare the efficacy of mirtazapine (MIR), pindolol (PIN), fluoxetine (FLX), risperidone (RIS), trazodone (TRZ), ziprasidone (ZPR), ondansetron (OND), yohimbine (YOH), or prazosin (PRZ), to reduce long-term cocaine-induced locomotor activity and the expression of cocaine-induced locomotor sensitization in rats. Methods - The study consists of four experiments, which were divided into four experimental phases. Induction (10 days), cocaine withdrawal (30 days), expression (10 days), and post-expression phase (10 days). Male Wistar rats were daily dosed with cocaine (10 mg/kg; i.p.) during the induction and post-expression phases. During drug withdrawal, the MIR, PIN, FLX, RIS, TRZ, ZPR, OND, YOH, or PRZ were administered 30 min before saline. In the expression, the multitarget drugs were administered 30 min before cocaine. After each administration, locomotor activity for each animal was recorded for 30 min.During the agonism phase, in experiment four, 8-OH-DPAT, DOI, CP-809-101, SR-57227A, or clonidine (CLO) was administered 30 min before MIR and 60 min before cocaine. After each administration, locomotor activity for each animal was recorded for 30 min. Results -MIR, FLX, RIS, ZPR, OND, or PRZ attenuated the cocaine-induced locomotor activity and cocaine locomotor sensitization. PIN, TRZ, and YOH failed to decrease cocaine locomotor sensitization. At the optimal doses used, PIN, FLX, RIS, TRZ, ZPR, OND, YOH, or PRZ failed to attenuate long-term cocaine locomotor activation. MIR generated a decrease in cocaine-induced locomotor activity of greater magnitude and duration than the other multitarget drugs evaluated. Conclusion - At the optimal doses of multitarget drugs evaluated, MIR was the multitarget drug that showed the greatest long-term cocaine-induced behavior effects compared to other multitarget drugs.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas. Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental. Instituto Nacional de Psiquiatría. Ciudad de México, 14370, Mexico
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas. Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental. Instituto Nacional de Psiquiatría. Ciudad de México, 14370, Mexico
| |
Collapse
|
4
|
Lv XJ, Lv SS, Wang GH, Chang Y, Cai YQ, Liu HZ, Xu GZ, Xu WD, Zhang YQ. Glia-derived adenosine in the ventral hippocampus drives pain-related anxiodepression in a mouse model resembling trigeminal neuralgia. Brain Behav Immun 2024; 117:224-241. [PMID: 38244946 DOI: 10.1016/j.bbi.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/11/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024] Open
Abstract
Glial activation and dysregulation of adenosine triphosphate (ATP)/adenosine are involved in the neuropathology of several neuropsychiatric illnesses. The ventral hippocampus (vHPC) has attracted considerable attention in relation to its role in emotional regulation. However, it is not yet clear how vHPC glia and their derived adenosine regulate the anxiodepressive-like consequences of chronic pain. Here, we report that chronic cheek pain elevates vHPC extracellular ATP/adenosine in a mouse model resembling trigeminal neuralgia (rTN), which mediates pain-related anxiodepression, through a mechanism that involves synergistic effects of astrocytes and microglia. We found that rTN resulted in robust activation of astrocytes and microglia in the CA1 area of the vHPC (vCA1). Genetic or pharmacological inhibition of astrocytes and connexin 43, a hemichannel mainly distributed in astrocytes, completely attenuated rTN-induced extracellular ATP/adenosine elevation and anxiodepressive-like behaviors. Moreover, inhibiting microglia and CD39, an enzyme primarily expressed in microglia that degrades ATP into adenosine, significantly suppressed the increase in extracellular adenosine and anxiodepressive-like behaviors. Blockade of the adenosine A2A receptor (A2AR) alleviated rTN-induced anxiodepressive-like behaviors. Furthermore, interleukin (IL)-17A, a pro-inflammatory cytokine probably released by activated microglia, markedly increased intracellular calcium in vCA1 astrocytes and triggered ATP/adenosine release. The astrocytic metabolic inhibitor fluorocitrate and the CD39 inhibitor ARL 67156, attenuated IL-17A-induced increases in extracellular ATP and adenosine, respectively. In addition, astrocytes, microglia, CD39, and A2AR inhibitors all reversed rTN-induced hyperexcitability of pyramidal neurons in the vCA1. Taken together, these findings suggest that activation of astrocytes and microglia in the vCA1 increases extracellular adenosine, which leads to pain-related anxiodepression via A2AR activation. Approaches targeting astrocytes, microglia, and adenosine signaling may serve as novel therapies for pain-related anxiety and depression.
Collapse
Affiliation(s)
- Xue-Jing Lv
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Su-Su Lv
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Guo-Hong Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yue Chang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ya-Qi Cai
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hui-Zhu Liu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Guang-Zhou Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, China.
| | - Wen-Dong Xu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yu-Qiu Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Lavigne JE, Hur K, Gibbons JB, Pigeon WR. Associations between insomnia medications and risk of death by suicide. Sleep Med 2023; 111:199-206. [PMID: 37801864 DOI: 10.1016/j.sleep.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/20/2023] [Accepted: 08/17/2023] [Indexed: 10/08/2023]
Abstract
PURPOSE Insomnia is a modifiable risk factor for suicide often treated with medications. However, little is known about the associations between insomnia medications and risk of death by suicide. The purpose of this study is to model the comparative risk of suicide by each insomnia medication compared to zolpidem, a sedative-hypnotic approved for insomnia. METHODS First prescription fills of medications commonly used to treat insomnia were identified in electronic medical records. Date and cause of death were identified in death certificates. Cox proportional hazards models were used to analyze time from insomnia prescription to suicide. RESULTS More than 2 million patients filled a new insomnia prescription between 2005 and 2015, and 518 of them died by suicide within 12 months. Compared to zolpidem, the tricyclic antidepressants (amitriptyline, doxepin) were associated with a 64% lower risk of suicide (HR 0.36 (95% CI 0.22-0.66) and the sedating antihistamines (hydroxyzine, diphenhydramine) a 40% lower risk of suicide (HR 0.60 (0.41-0.89)). In contrast, the tetracyclic antidepressant (mirtazapine) was associated with a 62% higher risk of suicide (HR 1.62 (95% CI 1.10-2.38) compared to zolpidem. CONCLUSION Insomnia is a modifiable risk factor for suicide, yet many medications used to treat insomnia have never been tested for the indication in clinical trials. To define efficacy in the prevention of suicide, trials are warranted.
Collapse
Affiliation(s)
- Jill E Lavigne
- Wegmans School of Pharmacy, St John Fisher University, 3690 East Avenue, Rochester, New York, 14618, USA; Center of Excellence for Suicide Prevention, Department of Veterans Affairs, Canandaigua, NY, USA.
| | - Kwan Hur
- Center for Health Statistics, University of Chicago, Chicago, IL, USA
| | - Jason B Gibbons
- Center of Excellence for Suicide Prevention, Department of Veterans Affairs, Canandaigua, NY, USA; Department of Health Systems, Management and Policy, Colorado School of Public Health, University of Colorado, CO, USA
| | - Wilfred R Pigeon
- Center of Excellence for Suicide Prevention, Department of Veterans Affairs, Canandaigua, NY, USA; Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
6
|
Duperron MG, Knol MJ, Le Grand Q, Evans TE, Mishra A, Tsuchida A, Roshchupkin G, Konuma T, Trégouët DA, Romero JR, Frenzel S, Luciano M, Hofer E, Bourgey M, Dueker ND, Delgado P, Hilal S, Tankard RM, Dubost F, Shin J, Saba Y, Armstrong NJ, Bordes C, Bastin ME, Beiser A, Brodaty H, Bülow R, Carrera C, Chen C, Cheng CY, Deary IJ, Gampawar PG, Himali JJ, Jiang J, Kawaguchi T, Li S, Macalli M, Marquis P, Morris Z, Muñoz Maniega S, Miyamoto S, Okawa M, Paradise M, Parva P, Rundek T, Sargurupremraj M, Schilling S, Setoh K, Soukarieh O, Tabara Y, Teumer A, Thalamuthu A, Trollor JN, Valdés Hernández MC, Vernooij MW, Völker U, Wittfeld K, Wong TY, Wright MJ, Zhang J, Zhao W, Zhu YC, Schmidt H, Sachdev PS, Wen W, Yoshida K, Joutel A, Satizabal CL, Sacco RL, Bourque G, Lathrop M, Paus T, Fernandez-Cadenas I, Yang Q, Mazoyer B, Boutinaud P, Okada Y, Grabe HJ, Mather KA, Schmidt R, Joliot M, Ikram MA, Matsuda F, Tzourio C, Wardlaw JM, Seshadri S, Adams HHH, Debette S. Genomics of perivascular space burden unravels early mechanisms of cerebral small vessel disease. Nat Med 2023; 29:950-962. [PMID: 37069360 PMCID: PMC10115645 DOI: 10.1038/s41591-023-02268-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/15/2023] [Indexed: 04/19/2023]
Abstract
Perivascular space (PVS) burden is an emerging, poorly understood, magnetic resonance imaging marker of cerebral small vessel disease, a leading cause of stroke and dementia. Genome-wide association studies in up to 40,095 participants (18 population-based cohorts, 66.3 ± 8.6 yr, 96.9% European ancestry) revealed 24 genome-wide significant PVS risk loci, mainly in the white matter. These were associated with white matter PVS already in young adults (N = 1,748; 22.1 ± 2.3 yr) and were enriched in early-onset leukodystrophy genes and genes expressed in fetal brain endothelial cells, suggesting early-life mechanisms. In total, 53% of white matter PVS risk loci showed nominally significant associations (27% after multiple-testing correction) in a Japanese population-based cohort (N = 2,862; 68.3 ± 5.3 yr). Mendelian randomization supported causal associations of high blood pressure with basal ganglia and hippocampal PVS, and of basal ganglia PVS and hippocampal PVS with stroke, accounting for blood pressure. Our findings provide insight into the biology of PVS and cerebral small vessel disease, pointing to pathways involving extracellular matrix, membrane transport and developmental processes, and the potential for genetically informed prioritization of drug targets.
Collapse
Affiliation(s)
- Marie-Gabrielle Duperron
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France
- Department of Neurology, Institute of Neurodegenerative Diseases, Bordeaux University Hospital, Bordeaux, France
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Quentin Le Grand
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France
| | - Tavia E Evans
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Aniket Mishra
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France
| | - Ami Tsuchida
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France
- Groupe d'Imagerie Neurofonctionelle - Institut des maladies neurodégénératives (GIN-IMN), UMR 5293, University of Bordeaux, CNRS, CEA, Bordeaux, France
| | - Gennady Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Takahiro Konuma
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - David-Alexandre Trégouët
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France
| | - Jose Rafael Romero
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | | | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Mathieu Bourgey
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Quebec, Canada
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
| | - Nicole D Dueker
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Pilar Delgado
- Institut de Recerca Vall d'hebron, Neurovascular Research Lab, Universitat Autònoma de Barcelona, Barcelona, Spain
- Hospital Universitari Vall d'Hebron, Neurology Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Saima Hilal
- Memory Aging and Cognition Center, National University Health System, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Rick M Tankard
- Department of Mathematics and Statistics, Curtin University, Perth, Western Australia, Australia
| | - Florian Dubost
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Medical Informatics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Yasaman Saba
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France
- Institute for Molecular Biology & Biochemistry, Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Medical University of Graz, Graz, Austria
| | - Nicola J Armstrong
- Department of Mathematics and Statistics, Curtin University, Perth, Western Australia, Australia
| | - Constance Bordes
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Alexa Beiser
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry & Mental Health, University of New South Wales, Sydney, New South Wales, Australia
- Dementia Collaborative Research Centre Assessment and Better Care, UNSW, Sydney, New South Wales, Australia
| | - Robin Bülow
- Institute for Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Caty Carrera
- Stroke Pharmacogenomics and Genetics Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Christopher Chen
- Memory Aging and Cognition Center, National University Health System, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Center for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Ian J Deary
- School of Psychology, University of Edinburgh, Edinburgh, UK
| | - Piyush G Gampawar
- Institute for Molecular Biology & Biochemistry, Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Medical University of Graz, Graz, Austria
| | - Jayandra J Himali
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry & Mental Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuo Li
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Melissa Macalli
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France
| | - Pascale Marquis
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Quebec, Canada
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
| | - Zoe Morris
- Neuroimaging, Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Susana Muñoz Maniega
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh, UK
| | | | - Masakazu Okawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Matthew Paradise
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry & Mental Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Pedram Parva
- The Framingham Heart Study, Framingham, MA, USA
- Radiology Department, Boston University School of Medicine, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Evelyn F. McKnight Brain Institute, Department of Neurology, University of Miami, Miami, FL, USA
| | | | - Sabrina Schilling
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France
| | - Kazuya Setoh
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Omar Soukarieh
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry & Mental Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Julian N Trollor
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry & Mental Health, University of New South Wales, Sydney, New South Wales, Australia
- Department of Developmental Disability Neuropsychiatry, UNSW, Sydney, New South Wales, Australia
| | - Maria C Valdés Hernández
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Row Fogo Centre for Research into Ageing and the Brain, University of Edinburgh, Edinburgh, UK
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Junyi Zhang
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Wanting Zhao
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- The Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| | - Yi-Cheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Helena Schmidt
- Institute for Molecular Biology & Biochemistry, Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Medical University of Graz, Graz, Austria
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry & Mental Health, University of New South Wales, Sydney, New South Wales, Australia
- Neuropsychiatric Institute, the Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry & Mental Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Anne Joutel
- Institut de Psychiatrie et Neurosciences de Paris, Université Paris Cité, Inserm, France
| | - Claudia L Satizabal
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Ralph L Sacco
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Evelyn F. McKnight Brain Institute, Department of Neurology, University of Miami, Miami, FL, USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Quebec, Canada
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
| | - Mark Lathrop
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Quebec, Canada
| | - Tomas Paus
- University of Montreal, Faculty of Medicine, Departments of Psychiatry and Neuroscience, Montreal, Quebec, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Centre Hospitalier Universitaire Sainte Justine, Montreal, Quebec, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Israel Fernandez-Cadenas
- Stroke Pharmacogenomics and Genetics Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Stroke Pharmacogenomics and Genetics Group, Fundació per la Docència i la Recerca Mutua Terrassa, Terrassa, Spain
| | - Qiong Yang
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Bernard Mazoyer
- Groupe d'Imagerie Neurofonctionelle - Institut des maladies neurodégénératives (GIN-IMN), UMR 5293, University of Bordeaux, CNRS, CEA, Bordeaux, France
- Bordeaux University Hospital, Bordeaux, France
| | | | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Karen A Mather
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry & Mental Health, University of New South Wales, Sydney, New South Wales, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Marc Joliot
- Groupe d'Imagerie Neurofonctionelle - Institut des maladies neurodégénératives (GIN-IMN), UMR 5293, University of Bordeaux, CNRS, CEA, Bordeaux, France
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Christophe Tzourio
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France
- Department of Medical Informatics, Bordeaux University Hospital, Bordeaux, France
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh, UK
- Row Fogo Centre for Research into Ageing and the Brain, University of Edinburgh, Edinburgh, UK
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Hieab H H Adams
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
| | - Stéphanie Debette
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France.
- Department of Neurology, Institute of Neurodegenerative Diseases, Bordeaux University Hospital, Bordeaux, France.
| |
Collapse
|
7
|
Abstract
Mirtazapine has often been prescribed as add-on treatment for schizophrenia in patients with suboptimal response to conventional treatments. In this review, we evaluate the existing evidence for efficacy and effectiveness of add-on mirtazapine in schizophrenia and reappraise the practical and theoretical aspects of mirtazapine-antipsychotic combinations. In randomized controlled trials (RCTs), mirtazapine demonstrated favourable effects on negative and cognitive (although plausibly not depressive) symptoms, with no risk of psychotic exacerbation. Mirtazapine also may have a desirable effect on antipsychotic-induced sexual dysfunction, but seems not to alleviate extrapyramidal symptoms, at least if combined with second-generation antipsychotics. It is noteworthy that all published RCTs have been underpowered and relatively short in duration. In the only large pragmatic effectiveness study that provided analyses by add-on antidepressant, only mirtazapine was associated with both decreased rate of hospital admissions and number of in-patient days. Mirtazapine hardly affects the pharmacokinetics of antipsychotics. However, possible pharmacodynamic interactions (sedation and metabolic offence) should be borne in mind. The observed desired clinical effects of mirtazapine may be due to its specific receptor-blocking properties. Alternative theoretical explanations include its possible neuroprotective effect. Further well-designed RCTs and real-world effectiveness studies are needed to determine whether add-on mirtazapine should be recommended for difficult-to-treat schizophrenia.
Collapse
|
8
|
Rana T, Behl T, Shamsuzzaman M, Singh S, Sharma N, Sehgal A, Alshahrani AM, Aldahish A, Chidambaram K, Dailah HG, Bhatia S, Bungau S. Exploring the role of astrocytic dysfunction and AQP4 in depression. Cell Signal 2022; 96:110359. [PMID: 35597427 DOI: 10.1016/j.cellsig.2022.110359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022]
Abstract
Aquaporin-4 (AQP4) is the water regulating channel found in the terminal processes of astrocytes in the brain and is implicated in regulating the astrocyte functions, whereas in neuropathologies, AQP4 performs an important role in astrocytosis and release of proinflammatory cytokines. However, several findings have revealed the modulation of the AQP4 water channel in the etiopathogenesis of various neuropsychiatric diseases. In the current article, we have summarized the recent studies and highlighted the implication of astrocytic dysfunction and AQP4 in the etiopathogenesis of depressive disorder. Most of the studies have measured the AQP4 gene or protein expression in the brain regions, particularly the locus coeruleus, choroid plexus, prefrontal cortex, and hippocampus, and found that in these brain regions, AQP4 gene expression decreased on exposure to chronic mild stress. Few studies also measured the peripheral AQP4 mRNA expression in the blood and AQP4 autoantibodies in the blood serum and revealed no change in the depressed patients in comparison with normal individuals.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Md Shamsuzzaman
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Saudi Arabia
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Afaf Aldahish
- Department of Pharmacology, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
9
|
Tokunaga N, Takimoto T, Nakamura Y, Hisaoka-Nakashima K, Morioka N. Downregulation of connexin 43 potentiates amitriptyline-induced brain-derived neurotrophic factor expression in primary astrocytes through lysophosphatidic acid receptor 1/3, Src, and extracellular signal-regulated kinase. Eur J Pharmacol 2022; 925:174986. [PMID: 35490723 DOI: 10.1016/j.ejphar.2022.174986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023]
Abstract
Connexin 43 (Cx43) expression is decreased in the prefrontal cortex of patients with depression, but its significance is still unknown. Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), are involved in the effects of antidepressant. However, the relationship between Cx43 expression and induction of brain-derived neurotrophic factor production by antidepressants is unknown. On the basis of our previous study, which showed that adrenergic receptors stimulation results in potentiation of BDNF expression in astrocytes with downregulated Cx43 expression, we investigated the induction of BDNF expression by amitriptyline, a tricyclic antidepressant, in Cx43-knockdown astrocytes. Amitriptyline treatment potentiated BDNF expression in Cx43-knockdown astrocytes compared with those treated with non-targeting small interfering RNA (siRNA). Using a pharmacological approach, we revealed that the potentiating effect of amitriptyline on BDNF expression was mediated by lysophosphatidic acid (LPA) receptor1/3 (LPA1/3) stimulation and subsequent activation of Src-extracellular signal-regulated kinase (ERK) signaling. These findings suggest that downregulation of Cx43 in patients with depression might contribute to the therapeutic efficacy of antidepressants rather than the pathogenesis of depression.
Collapse
Affiliation(s)
- Nozomi Tokunaga
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Tomoyo Takimoto
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
10
|
Wang J, Li X, Wang C, Li Y, Wang J, Fang R, Wang J, Chen J, Dong J. Exposure to di-(2-ethylhexyl) phthalate reduces secretion of GDNF via interfering with estrogen pathway and downregulating ERK/c-fos signaling pathway in astrocytes. Food Chem Toxicol 2021; 158:112592. [PMID: 34624416 DOI: 10.1016/j.fct.2021.112592] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a typical endocrine-disrupting chemical (EDC) that can increase the risk of central nervous system disease. This study aimed to investigate the in vitro and in vivo effects of DEHP exposure on GDNF secretion and the underlying mechanisms. Pregnant Wistar rats were randomly assigned into four groups and administered 0, 30, 300, or 750 mg/kg DEHP daily by oral gavage. In addition, primary astrocytes were exposed to mono-(2-ethylhexyl) phthalate (MEHP), the main metabolite of DEHP. Our results showed that DEHP exposure reduced GDNF levels and downregulated the ERK/c-fos signaling pathway in the cerebral cortex of male, but not female, offspring. Moreover, exogenous estrogen could overcome the decreased GDNF levels in astrocytes caused by MEHP exposure. MEHP also decreased p300 levels and downregulated the ERK/c-fos signaling pathway in primary astrocytes. Honokiol restored GDNF levels following MEHP exposure by activating the ERK/c-fos signaling pathway, while the inhibitor U0126 further reduced the GDNF levels. These results suggested that DEHP exposure could interfere with the normal effects of estrogen in the brain and downregulate the ERK/c-fos signaling pathway to decrease the GDNF secretion from astrocytes in the cerebral cortex.
Collapse
Affiliation(s)
- Jianan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Xudong Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Chaonan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Yan Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Jinmiao Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Rui Fang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Jingsi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China.
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China.
| |
Collapse
|
11
|
Morioka N, Kondo S, Harada N, Takimoto T, Tokunaga N, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. Downregulation of connexin43 potentiates noradrenaline-induced expression of brain-derived neurotrophic factor in primary cultured cortical astrocytes. J Cell Physiol 2021; 236:6777-6792. [PMID: 33665818 DOI: 10.1002/jcp.30353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Decreased expression of brain-derived neurotrophic factor (BDNF) is involved in the pathology of depressive disorders. Astrocytes produce BDNF following antidepressant treatment or stimulation of adrenergic receptors. Connexin43 (Cx43) is mainly expressed in central nervous system astrocytes and its expression is downregulated in patients with major depression. How changes in Cx43 expression affect astrocyte function, including BDNF production, is poorly understood. The current study examined the effect of Cx43 knockdown on BDNF expression in cultured cortical astrocytes after stimulation of adrenergic receptors. The expression of Cx43 in rat primary cultured cortical astrocytes was downregulated with RNA interference. Levels of messenger RNAs (mRNAs) or proteins were measured by real-time PCR and western blotting, respectively. Knockdown of Cx43 potentiated noradrenaline (NA)-induced expression of BDNF mRNA in cultured astrocytes. NA treatment induced proBDNF protein expression in astrocytes transfected with small interfering RNA (siRNA) targeting Cx43, but not with control siRNA. This potentiation was mediated by the Src tyrosine kinase-extracellular signal-regulated kinase (ERK) pathway through stimulation of adrenergic α1 and β receptors. Furthermore, the Gq/11 protein-Src-ERK pathway and the G-protein coupled receptor kinase 2-Src-ERK pathway were involved in α1 and β adrenergic receptor-mediated potentiation of BDNF mRNA expression, respectively. The current studies demonstrate a novel mechanism of BDNF expression in cortical astrocytes mediated by Cx43, in which downregulation of Cx43 increases, through adrenergic receptors, the expression of BDNF. The current findings indicate a potentially novel mechanism of action of antidepressants, via regulation of astrocytic Cx43 expression and subsequent BDNF expression.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/drug effects
- Astrocytes/metabolism
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Connexin 43/genetics
- Connexin 43/metabolism
- Down-Regulation
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Gene Knockdown Techniques
- Male
- Norepinephrine/pharmacology
- Primary Cell Culture
- RNA Interference
- Rats, Wistar
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Signal Transduction
- src-Family Kinases/metabolism
- Rats
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Syun Kondo
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Nanase Harada
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Tomoyo Takimoto
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Nozomi Tokunaga
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| |
Collapse
|
12
|
Lavigne EG, Buttigieg D, Steinschneider R, Burstein ES. Pimavanserin Promotes Trophic Factor Release and Protects Cultured Primary Dopaminergic Neurons Exposed to MPP+ in a GDNF-Dependent Manner. ACS Chem Neurosci 2021; 12:2088-2098. [PMID: 34032411 DOI: 10.1021/acschemneuro.0c00751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Neurodegeneration and impaired neural development are a common feature of many neuropsychiatric disorders. Second-generation antipsychotics (SGAs) and certain atypical antidepressants display neuroprotective effects. Though these drugs interact with many molecular targets, a common shared attribute is high antagonist potency at 5-HT2A receptors. Pimavanserin is a selective 5-HT2A inverse agonist/antagonist that was recently FDA approved for treating hallucinations and delusions associated with Parkinson's disease. Unlike SGAs, pimavanserin lacks activity at other targets like dopamine, histamine, muscarinic, and adrenergic receptors. To investigate whether selective 5-HT2A inverse agonists have neuroprotective properties, pimavanserin and another selective 5-HT2A inverse agonist, M100907, were applied to primary cultures of dopaminergic neurons treated with 1-methyl-4-phenylpyridinium (MPP+). Both pimavanserin and M100907 protected dopaminergic neurons against MPP+-induced cell death. The neuroprotective effects of pimavanserin required signaling through the extracellular signal-regulated kinase 1/2 pathway, restored mitochondrial function, and reduced oxidative stress. Further investigation showed that pimavanserin promotes the release of brain-derived neurotrophic factor and glial-derived neurotrophic factor (GDNF) and that the neuroprotective effects of pimavanserin were blocked by antibodies to GDNF but not by anti-tyrosine receptor kinase B receptor antibodies. Thus, pimavanserin induces release of neurotrophic factors and protects dopaminergic neurons against MPP+ toxicity in a GDNF-dependent manner.
Collapse
Affiliation(s)
| | | | | | - Ethan S. Burstein
- Acadia Pharmaceuticals Inc., 12830 El Camino Real, Suite 400, San Diego, California 92130, United States
| |
Collapse
|
13
|
How Antidepressant Drugs Affect the Antielectroshock Action of Antiseizure Drugs in Mice: A Critical Review. Int J Mol Sci 2021; 22:ijms22052521. [PMID: 33802323 PMCID: PMC7959142 DOI: 10.3390/ijms22052521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 01/07/2023] Open
Abstract
Depression coexists with epilepsy, worsening its course. Treatment of the two diseases enables the possibility of interactions between antidepressant and antiepileptic drugs. The aim of this review was to analyze such interactions in one animal seizure model-the maximal electroshock (MES) in mice. Although numerous antidepressants showed an anticonvulsant action, mianserin exhibited a proconvulsant effect against electroconvulsions. In most cases, antidepressants potentiated or remained ineffective in relation to the antielectroshock action of classical antiepileptic drugs. However, mianserin and trazodone reduced the action of valproate, phenytoin, and carbamazepine against the MES test. Antiseizure drug effects were potentiated by all groups of antidepressants independently of their mechanisms of action. Therefore, other factors, including brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) modulation, should be considered as the background for the effect of drug combinations.
Collapse
|
14
|
Yan T, Qiu Y, Yu X, Yang L. Glymphatic Dysfunction: A Bridge Between Sleep Disturbance and Mood Disorders. Front Psychiatry 2021; 12:658340. [PMID: 34025481 PMCID: PMC8138157 DOI: 10.3389/fpsyt.2021.658340] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Mounting evidence demonstrates a close relationship between sleep disturbance and mood disorders, including major depression disorder (MDD) and bipolar disorder (BD). According to the classical two-process model of sleep regulation, circadian rhythms driven by the light-dark cycle, and sleep homeostasis modulated by the sleep-wake cycle are disrupted in mood disorders. However, the exact mechanism of interaction between sleep and mood disorders remains unclear. Recent discovery of the glymphatic system and its dynamic fluctuation with sleep provide a plausible explanation. The diurnal variation of the glymphatic circulation is dependent on the astrocytic activity and polarization of water channel protein aquaporin-4 (AQP4). Both animal and human studies have reported suppressed glymphatic transport, abnormal astrocytes, and depolarized AQP4 in mood disorders. In this study, the "glymphatic dysfunction" hypothesis which suggests that the dysfunctional glymphatic pathway serves as a bridge between sleep disturbance and mood disorders is proposed.
Collapse
Affiliation(s)
- Tao Yan
- Department of Psychiatry, Changxing People's Hospital, Huzhou, China
| | - Yuefeng Qiu
- Department of Psychiatry, Zhejiang Hospital, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linglin Yang
- Department of Psychiatry, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Kikuoka R, Miyazaki I, Kubota N, Maeda M, Kagawa D, Moriyama M, Sato A, Murakami S, Kitamura Y, Sendo T, Asanuma M. Mirtazapine exerts astrocyte-mediated dopaminergic neuroprotection. Sci Rep 2020; 10:20698. [PMID: 33244123 PMCID: PMC7693322 DOI: 10.1038/s41598-020-77652-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022] Open
Abstract
Mirtazapine, a noradrenergic and specific serotonergic antidepressant (NaSSA), is known to activate serotonin (5-HT) 1A receptor. Our recent study demonstrated that stimulation of astrocytic 5-HT1A receptors promoted astrocyte proliferation and upregulated antioxidative property in astrocytes to protect dopaminergic neurons against oxidative stress. Here, we evaluated the neuroprotective effects of mirtazapine against dopaminergic neurodegeneration in models of Parkinson’s disease (PD). Mirtazapine administration attenuated the loss of dopaminergic neurons in the substantia nigra and increased the expression of the antioxidative molecule metallothionein (MT) in the striatal astrocytes of 6-hydroxydopamine (6-OHDA)-injected parkinsonian mice via 5-HT1A receptors. Mirtazapine protected dopaminergic neurons against 6-OHDA-induced neurotoxicity in mesencephalic neuron and striatal astrocyte cocultures, but not in enriched neuronal cultures. Mirtazapine-treated neuron-conditioned medium (Mir-NCM) induced astrocyte proliferation and upregulated MT expression via 5-HT1A receptors on astrocytes. Furthermore, treatment with medium from Mir-NCM-treated astrocytes protected dopaminergic neurons against 6-OHDA neurotoxicity, and these effects were attenuated by treatment with a MT-1/2-specific antibody or 5-HT1A antagonist. Our study suggests that mirtazapine could be an effective disease-modifying drug for PD and highlights that astrocytic 5-HT1A receptors may be a novel target for the treatment of PD.
Collapse
Affiliation(s)
- Ryo Kikuoka
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Natsuki Kubota
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Megumi Maeda
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Daiki Kagawa
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masaaki Moriyama
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Asuka Sato
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shinki Murakami
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yoshihisa Kitamura
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Sendo
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
16
|
Hisaoka-Nakashima K, Yokoe T, Watanabe S, Nakamura Y, Kajitani N, Okada-Tsuchioka M, Takebayashi M, Nakata Y, Morioka N. Lysophosphatidic acid induces thrombospondin-1 production in primary cultured rat cortical astrocytes. J Neurochem 2020; 158:849-864. [PMID: 33118159 DOI: 10.1111/jnc.15227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/09/2020] [Accepted: 10/25/2020] [Indexed: 11/25/2022]
Abstract
Lysophosphatidic acid (LPA), a brain membrane-derived lipid mediator, plays important roles including neural development, function, and behavior. In the present study, the effects of LPA on astrocyte-derived synaptogenesis factor thrombospondins (TSPs) production were examined by real-time PCR and western blotting, and the mechanism underlying this event was examined by pharmacological approaches in primary cultured rat cortical astrocytes. Treatment of astrocytes with LPA increased TSP-1 mRNA, and TSP-2 mRNA, but not TSP-4 mRNA expression. TSP-1 protein expression and release were also increased by LPA. LPA-induced TSP-1 production were inhibited by AM966 a LPA1 receptor antagonist, and Ki16425, LPA1/3 receptors antagonist, but not by H2L5146303, LPA2 receptor antagonist. Pertussis toxin, Gi/o inhibitor, but not YM-254890, Gq inhibitor, and NF499, Gs inhibitor, inhibited LPA-induced TSP-1 production, indicating that LPA increases TSP-1 production through Gi/o-coupled LPA1 and LPA3 receptors. LPA treatment increased phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK). LPA-induced TSP-1 mRNA expression was inhibited by U0126, MAPK/ERK kinase (MEK) inhibitor, but not SB202190, p38 MAPK inhibitor, or SP600125, JNK inhibitor. However, LPA-induced TSP-1 protein expression was diminished with inhibition of all three MAPKs, indicating that these signaling molecules are involved in TSP-1 protein production. Treatment with antidepressants, which bind to astrocytic LPA1 receptors, increased TSP-1 mRNA and protein production. The current findings show that LPA/LPA1/3 receptors signaling increases TSP-1 production in astrocytes, which could be important in the pathogenesis of affective disorders and could potentially be a target for the treatment of affective disorders.
Collapse
Affiliation(s)
- Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshiki Yokoe
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shintaro Watanabe
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoto Kajitani
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
17
|
Yang L, Zhou Y, Jia H, Qi Y, Tu S, Shao A. Affective Immunology: The Crosstalk Between Microglia and Astrocytes Plays Key Role? Front Immunol 2020; 11:1818. [PMID: 32973758 PMCID: PMC7468391 DOI: 10.3389/fimmu.2020.01818] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence demonstrates the critical role of the immune response in the mechanisms relating to mood disorders, such as major depression (MDD) and bipolar disorder (BD). This has cast a spotlight on a specialized branch committed to the research of dynamics of the fine interaction between emotion (or affection) and immune response, which has been termed as “affective immunology.” Inflammatory cytokines and gut microbiota are actively involved in affective immunology. Furthermore, abnormalities of the astrocytes and microglia have been observed in mood disorders from both postmortem and molecular imaging studies; however, the underlying mechanisms remain elusive. Notably, the crosstalk between astrocyte and microglia acts as a mutual and pivotal intermediary factor modulating the immune response posed by inflammatory cytokines and gut microbiota. In this study, we propose the “altered astrocyte-microglia crosstalk (AAMC)” hypothesis which suggests that the astrocyte-microglia crosstalk regulates emotional alteration through mediating immune response, and thus, contributing to the development of mood disorders.
Collapse
Affiliation(s)
- Linglin Yang
- Department of Psychiatry, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honglei Jia
- Department of Student Affairs, Zhejiang University School of Medicine, Hangzhou, China
| | - Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Hisaoka-Nakashima K, Azuma H, Ishikawa F, Nakamura Y, Wang D, Liu K, Wake H, Nishibori M, Nakata Y, Morioka N. Corticosterone Induces HMGB1 Release in Primary Cultured Rat Cortical Astrocytes: Involvement of Pannexin-1 and P2X7 Receptor-Dependent Mechanisms. Cells 2020; 9:cells9051068. [PMID: 32344830 PMCID: PMC7290518 DOI: 10.3390/cells9051068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
A major risk factor for major depressive disorder (MDD) is stress. Stress leads to the release of high-mobility group box-1 (HMGB1), which in turn leads to neuroinflammation, a potential pathophysiological basis of MDD. The mechanism underlying stress-induced HMGB1 release is not known, but stress-associated glucocorticoids could be involved. To test this, rat primary cultured cortical astrocytes, the most abundant cell type in the central nervous system (CNS), were treated with corticosterone and HMGB1 release was assessed by Western blotting and ELISA. Significant HMGB1 was released with treatment with either corticosterone or dexamethasone, a synthetic glucocorticoid. HMGB1 translocated from the nucleus to the cytoplasm following corticosterone treatment. HMGB1 release was significantly attenuated with glucocorticoid receptor blocking. In addition, inhibition of pannexin-1, and P2X7 receptors led to a significant decrease in corticosterone-induced HMGB1 release. Taken together, corticosterone stimulates astrocytic glucocorticoid receptors and triggers cytoplasmic translocation and extracellular release of nuclear HMGB1 through a mechanism involving pannexin-1 and P2X7 receptors. Thus, under conditions of stress, glucocorticoids induce astrocytic HMGB1 release, leading to a neuroinflammatory state that could mediate neurological disorders such as MDD.
Collapse
Affiliation(s)
- Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
| | - Honami Azuma
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
| | - Fumina Ishikawa
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
| | - Dengli Wang
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama 700-8558, Japan; (D.W.); (K.L.); (H.W.); (M.N.)
| | - Keyue Liu
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama 700-8558, Japan; (D.W.); (K.L.); (H.W.); (M.N.)
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama 700-8558, Japan; (D.W.); (K.L.); (H.W.); (M.N.)
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama 700-8558, Japan; (D.W.); (K.L.); (H.W.); (M.N.)
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
- Correspondence: ; Tel.: +81-082-257-5310
| |
Collapse
|