1
|
Saleh DO, Elbaset MA, Ahmed KA, Sedik AA. Chrysin mitigates cyclophosphamide-triggered cardiotoxicity in rats: Insights into cardioprotection via Treg expression modulation and iNOS downregulation. Toxicol Rep 2025; 14:102007. [PMID: 40226808 PMCID: PMC11986481 DOI: 10.1016/j.toxrep.2025.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/25/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
Cyclophosphamide (CP) is a potent chemotherapeutic agent widely used in cancer treatment; however, its clinical efficacy is limited by severe cardiotoxic side effects. This study aimed to evaluate the cardioprotective effects of chrysin, a natural flavonoid, against CP-induced cardiotoxicity in rats. To achieve this aim, forty male Wistar rats were randomly divided into five groups (n = 8 per group). Chrysin was administered orally at doses of 25, 50, or 100 mg/kg for 7 days before and 7 days after a single intraperitoneal injection of CP (200 mg/kg). Electrocardiography (ECG) was performed in vivo using the ECG PowerLab module to assess cardiac function, measuring the RR interval, heart rate, and corrected QT (QTc) interval. Serum levels of cardiac injury markers-creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH)-were also determined. Flow cytometry was utilized to evaluate the expression of regulatory T cell markers (CD4, CD25, and Foxp3) and apoptotic marker Annexin V. Histopathological assessment of myocardial tissues was conducted using hematoxylin and eosin (H&E) staining. Immunohistochemical analysis of inducible nitric oxide synthase (iNOS) expression was also performed. CP administration significantly elevated serum levels of cardiac injury markers compared with normal controls. ECG revealed that CP significantly altered cardiac function, as evidenced by a reduced RR interval, an increased heart rate, and an elevated QTc interval. In contrast, chrysin coadministration produced dose-dependent improvements; the highest dose (100 mg/kg) most effectively reduced serum CK-MB and LDH levels, improved the RR interval, decreased the heart rate, and partially restored QTc values. Moreover, CP significantly decreased the cardiac expression of regulatory T cell markers (CD4, CD25, and Foxp3) while markedly increasing Annexin V expression. Chrysin treatment reversed these changes in a dose-dependent manner, with the 100 mg/kg dose eliciting the greatest improvement in Treg expression and reducing Annexin V expression toward normal levels. Histopathological examination confirmed that CP induced myocardial congestion, edema, necrosis, and inflammatory cell infiltration, which were progressively ameliorated by chrysin, with the highest dose restoring near-normal myocardial architecture. Additionally, immunohistochemical analysis demonstrated that CP markedly upregulated iNOS expression in cardiac tissue, whereas chrysin dose-dependently downregulated iNOS, achieving complete normalization at the highest dose. Collectively, these findings suggest that chrysin exerts significant cardioprotective effects against CP-induced cardiotoxicity, likely through the modulation of Treg expression, attenuation of apoptosis, and suppression of iNOS-mediated inflammatory responses, underscoring its potential as an adjunctive therapy in chemotherapy-associated cardiac complications.
Collapse
Affiliation(s)
- Dalia O. Saleh
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Egypt
| | - Marawan A. Elbaset
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Egypt
| | - Kawkab A. Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Ahmed A. Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Egypt
| |
Collapse
|
2
|
Alizadehasl A, Shahrami B, Rahbarghazi R, Yalameh Aliabadi A, Hosseini Jebelli SF, Afsari Zonooz Y, Hakimian H, Fathi F, Forati S, Rezabakhsh A. Post-transplant cyclophosphamide-induced cardiotoxicity: A comprehensive review. J Cardiovasc Thorac Res 2024; 16:211-221. [PMID: 40027370 PMCID: PMC11866776 DOI: 10.34172/jcvtr.33230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/17/2024] [Indexed: 03/05/2025] Open
Abstract
Cyclophosphamide-induced cardiotoxicity, associated with its toxic metabolite acrolein, is a significant concern and unresolved issue, especially when cyclophosphamide is administrated in high doses. However, cardiotoxicity following low-dose cyclophosphamide has been also documented, especially in post-hematopoietic stem cell transplantation (post-HSCT) settings. Despite the involvement of multiple signaling pathways in cyclophosphamide-induced cardiomyopathy, the exact underlying mechanisms remain to be fully elucidated. This review outlines the current challenges of cyclophosphamide therapy in HSCT recipients. In addition, the promising therapeutic approaches by targeting acrolein's anti-angiogenic effect were thoroughly discussed to better manage post-HSCT cyclophosphamide-induced cardiotoxicity.
Collapse
Affiliation(s)
- Azin Alizadehasl
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Bita Shahrami
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Yalameh Aliabadi
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Seyedeh Fatemeh Hosseini Jebelli
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Yasamin Afsari Zonooz
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Hoda Hakimian
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sara Forati
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Sial NT, Malik A, Iqbal U, Rehman MFU. Arbutin attenuates CFA-induced arthritis by modulating expression levels of 5-LOX, NF‑κB, IL-17, PGE-2 and TNF-α. Inflammopharmacology 2024; 32:2377-2394. [PMID: 38748385 DOI: 10.1007/s10787-024-01480-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/07/2024] [Indexed: 08/06/2024]
Abstract
Arbutin, a naturally soluble glycosylated phenol has antioxidant, antimicrobial, antitumor and anti-inflammatory properties. The current exploration appraises the treatment of arthritis by use of Arbutin (25, 50 and 100 mg/kg) orally in CFA-induced rat arthritis model. Body weight changes, paw size, and joint diameter were recorded till the 28th day in the arthritic-induced rats. Hematological, biochemical, oxidative and inflammatory biomarkers were measured through the blood samples of anesthetized rats. Arbutin markedly decreased paw volume, PGE-2, anti-CCP and 5-LOX levels, however, maintained metabolic and hematological balance and prevented weight loss. Radiology and histology changes improved significantly in the ankle joints of rats. Moreover, Arbutin increased gene pointers such as IL-10 and IL-4 while significantly reducing the levels of CRP and WBCs, whereas Hb, platelets and RBCs count markedly raised in post-treatments. Antioxidant levels of SOD, CAT and GSH were improved and MDA level was reduced in treated groups. Rt-PCR investigation showed a significant reduction of the interleukin-1β, TNF-α, interleukin-6, cyclooxygenase-2, NF-κB and IL-17 and increased expression of gene pointers like IL-4, and IL-10 in treated groups. Assessment of molecular docking revealed a strong binding interaction of Arbutin against 5-LOX, IL-17, TNF-alpha and interleukin-6, cyclooxygenase-2, nuclear factor-κB, IL-4 and iNOS providing a strong association between experimental and theoretical results. As a result, Arbutin has significantly reduced CFA-induced arthritis by modulation of anti-inflammatory cytokines, i.e., IL-10 and IL-4, the pro-inflammatory cytokines panel such as NF-κB, TNF-alpha, IL-1β, IL-6, PGE-2, 5-LOX and COX-2 and oxidative biomarkers.
Collapse
Affiliation(s)
- Nabeela Tabassum Sial
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Jail Road, Lahore, 54000, Pakistan
| | - Abdul Malik
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan.
| | - Urooj Iqbal
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
| | | |
Collapse
|
4
|
Zidan A, Elnady M, Khalifa BN. Donepezil protects against cyclophosphamide-induced premature ovarian failure in mice: A focus on proinflammatory cytokines and NLRP3/TLR-4/NF-κB interplay. Toxicol Appl Pharmacol 2024; 488:116989. [PMID: 38825044 DOI: 10.1016/j.taap.2024.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND AND AIM Cyclophosphamide (CP) chemotherapy is a significant iatrogenic component of premature ovarian failure (POF). The aim of this work was to evaluate the potential protective effects of donepezil, a centrally acting acetylcholinesterase (AChE) inhibitor, on CP-induced POF in mice. METHODS 40 female Swiss albino mice were split into 5 equal groups: group 1 (control), group 2 (CP-POF); induced by intraperitoneal injection of CP on 8th day of the experiment, and group (3-5); mice received oral donepezil daily (1, 2, or 4 mg/kg, respectively) 8 days before CP injection. Mice were euthanized after 24 h of CP injection, and blood samples were collected to assay serum anti-Mullerian hormone (AMH) levels. Ovarian tissues were dissected, and the right ovary was processed for further assays of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interlukin-6 (IL-6), nucleotide-binding domain-like receptor family, the Pyrin domain-containing 3 (NLRP3) inflammasome, and Toll-like receptor 4 (TLR-4), while the left one was processed for histopathological and immunohistochemical examination of nuclear factor-Kappa beta (NF-κB) and caspase-3. RESULTS Donepezil, in a dose-dependent manner particularly (4 mg/kg), has an inhibitory action on NO (40 ± 2.85 vs. 28.20 ± 2.23, P < 0.001), proinflammatory cytokines (P < 0.001), the TLR-4/ NF-κB / NLRP3 inflammasome pathway (P < 0.001), and apoptosis (P < 0.001), with a significant elevation in the AMH levels (4.57 ± 1.08 vs. 8.57 ± 0.97, P < 0.001) versus CP-POF group. CONCLUSION Donepezil may be a potential protective agent against CP-induced POF in mice, but further research is needed to fully understand its therapeutic function experimentally and clinically.
Collapse
Affiliation(s)
- Amr Zidan
- Department of Pharmacology, Faculty of medicine, Tanta University, Egypt.
| | - Manar Elnady
- Department of Pathology, Faculty of medicine, Tanta University, Egypt
| | - Basma N Khalifa
- Department of Pharmacology, Faculty of medicine, Tanta University, Egypt
| |
Collapse
|
5
|
Zhao X, Chinnathambi A, Alharbi SA, Natarajan N, Raman M. Nerolidol, Bioactive Compound Suppress Growth of HCT-116 Colorectal Cancer Cells Through Cell Cycle Arrest and Induction of Apoptosis. Appl Biochem Biotechnol 2024; 196:1365-1375. [PMID: 37395945 DOI: 10.1007/s12010-023-04612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Colon cancer is the most prevalent cancer and causes the highest cancer-associated mortality in both men and women globally. It has a high incidence and fatality rate, which places a significant burden on the healthcare system. The current work was performed to understand the beneficial roles of nerolidol on the viability and cytotoxic mechanisms in the colon cancer HCT-116 cells. The MTT cytotoxicity assay was done to investigate the effect of nerolidol at different doses (5-100 µM) on the HCT-116 cell viability. The impacts of nerolidol on ROS accumulation and apoptosis were investigated using DCFH-DA, DAPI, and dual staining assays, respectively. The flow cytometry analysis was performed to study the influence of nerolidol on the cell cycle arrest in the HCT-116 cells. The outcomes of the MTT assay demonstrated that nerolidol at different doses (5-100 µM) substantially inhibited the HCT-116 cell viability with an IC50 level of 25 µM. The treatment with nerolidol appreciably boosted the ROS level in the HCT-116 cells. The findings of DAPI and dual staining revealed higher apoptotic incidences in the nerolidol-exposed HCT-116 cells, which supports its ability to stimulate apoptosis. The flow cytometry analysis demonstrated the considerable inhibition in cell cycle at the G0/G1 phase in the nerolidol-exposed HCT-116 cells. Our research showed that nerolidol can inhibit the cell cycle, increase ROS accumulation, and activate apoptosis in HCT-116 cells. In light of this, it may prove to be a potent and salutary candidate to treat colon cancer.
Collapse
Affiliation(s)
- Xiaoqian Zhao
- Nuclear Medicine Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Nandakumar Natarajan
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX, 75708, USA
| | - Muthusamy Raman
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
6
|
Akram W, Najmi AK, Alam MM, Haque SE. Levocabastine ameliorates cyclophosphamide-induced cardiotoxicity in Swiss albino mice: Targeting TLR4/NF-κB/NLRP3 signaling pathway. Toxicol Appl Pharmacol 2024; 483:116838. [PMID: 38278497 DOI: 10.1016/j.taap.2024.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Cyclophosphamide (CP), although a potent anti-cancer drug, causes cardiotoxicity as a side effect that limits its use. Hence, a specific medicine that can lower cardiotoxicity and be utilised as an adjuvant in cancer treatment is very much needed. In this light, we intended to assess the protective potential of levocabastine (LEV) on CP-induced cardiotoxicity in Swiss albino mice. Mice were administered LEV (50 and 100 μg/kg, i.p.) daily for 14 days and CP at 200 mg/kg, intraperitoneally once on the 7th day. On the 15th day, mice were weighed, blood withdrawn then sacrificed and hearts were removed to estimate various biochemical and histopathological parameters. CP 200 mg/kg significantly increased cardiac troponin T, LDH, CK-MB, interleukin-1β, IL-6, TNF-α, TBARS, nitrite, and decreased CAT, GSH, and SOD levels, thus, manifested cardiac damage, inflammation, oxidative stress, and nitrative stress, cumulatively causing cardiotoxicity. CP also elevated the expression of various markers including cleaved caspase-3, NF-κB, TLR4, NLRP3, and fibrotic lesions in cardiac tissues, whereas decreased hematological parameters (RBCs, platelets, and Hb) to confirm cardiotoxicity. LEV and fenofibrate (FF) treatment reversed these changes towards normal and showed a significant protective effect against CP. The results showed the protective role of LEV in restoring CP-induced cardiotoxicity in terms of inflammation, apoptosis, oxidative stress, cardiac injury and histopathological damage. Thus, levocabastine can be used as an adjuvant to cyclophosphamide in cancer treatment but a thorough study with various animal cancer models is further needed to establish the fact.
Collapse
Affiliation(s)
- Wasim Akram
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - M Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
7
|
Wang T, Song G, Sun M, Zhang Y, Zhang B, Peng M, Li M. Nerolidol attenuates airway inflammation and airway remodeling and alters gut microbes in ovalbumin-induced asthmatic mice. Cell Biochem Funct 2024; 42:e3899. [PMID: 38088534 DOI: 10.1002/cbf.3899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/26/2024]
Abstract
Asthma is a common respiratory disease associated with airway inflammation. Nerolidol is an acyclic sesquiterpenoid with anti-inflammatory properties. BALB/C mice were sensitized with ovalbumin (OVA) to induce asthma symptoms and given different doses of Nerolidol. We found that Nerolidol reduced OVA-induced inflammatory cell infiltration, the number of goblet cells and collagen deposition in lung tissue. Nerolidol reduced the OVA-specific IgE levels in serum and alveolar lavage fluid in an asthma model. Immunohistochemical staining of α-SMA (the marker of airway smooth muscle) showed that Nerolidol caused bronchial basement membrane thinning in asthmatic mice. The hyperplasia of airway smooth muscle cells (ASMCs) is an important feature of airway remodeling in asthma. ASMCs were treated with 10 ng/mL TGF-β to simulate the pathological environment of asthma in vitro and then treated with different doses of Nerolidol. Nerolidol inhibited the activity of TGF-β/Smad signaling pathway both in the lung tissue of OVA-induced mouse and TGF-β-stimulated ASMCs. 16s rRNA sequencing was performed on feces of normal mice, the changes of intestinal flora in OVA-induced asthmatic mice and Nerolidol-treated asthmatic mice were studied. The results showed that Nerolidol reversed the reduced gut microbial alpha diversity in asthmatic mice. Nerolidol changed the relative abundance of gut bacteria at different taxonomic levels. At the phylum level, the dominant bacteria were Bacteroidota, Firmicutes, and Proteobacteria. At the genus level, the dominant bacteria were Lactobacillus, Muribaculaceae, Bacteroides, and Lachnospiraceae. We conclude that Nerolidol attenuates OVA-induced airway inflammation and alters gut microbes in mice with asthma via TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Guihua Song
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mengmeng Sun
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yan Zhang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Bingxue Zhang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Minghao Peng
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mengyin Li
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Iqubal A, Najmi AK, Md S, Alkreathy HM, Ali J, Syed MA, Haque SE. Oral delivery of nerolidol alleviates cyclophosphamide-induced renal inflammation, apoptosis, and fibrosis via modulation of NF-κB/cleaved caspase-3/TGF-β signaling molecules. Drug Deliv 2023; 30:2241661. [PMID: 37559381 PMCID: PMC10946274 DOI: 10.1080/10717544.2023.2241661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 08/11/2023] Open
Abstract
Cyclophosphamide (CP) is one of the most extensively used antineoplastic drug, but the nephrotoxicity caused by this drug is a major limiting factor for its use. Nerolidol (NERO) is a natural bioactive compound with diverse pharmacological actions. In Vitro and in vivo study was performed using HK-2 renal cells and Swiss Albino mice. Cell lines and animals were treated with NERO 25 and 50 µM + 30 µM CP (in vitro), 200 and 400 mg/kg, p.o. NERO from day 1 to day 15 + 200 mg/kg, i.p. CP on day 17 as single intraperitoneal injection (in vivo). The makers of oxidative stress, renal-specific injury markers, inflammation, apoptosis, fibrosis, and histopathological changes were studied. The study's outcome showed a significant reduction in the level of malonaldehyde and interleukin-6 (p < 0.01), tumor necrosis factor-α, IL-1β (p < 0.001), and an increase in the superoxide dismutase, catalase, glutathione and interleukin-10 level (p < 0.01), in the in vivo study when treated with NERO 400 and compared with CP 200. In Vitro study showed reduced expression of nuclear factor kappa light chain enhancer of activated B cells, cleaved caspase-3, kidney injury molecule-1 and transforming growth factor-β-1 (p < 0.001), when treated with NERO 50 µM whereas NERO 25 µM only reduced the level of cleaved caspase-3 (p < 0.05) when compared with 30 µM. NERO 400 also reduced uric acid (p < 0.05), urea (p < 0.01), blood urea nitrogen, and serum creatinine levels (p < 0.001) and increased the level of blood-urea-nitrogen/creatinine ratio (p < 0.001). Additionally, the level of fibrosis-specific markers such as transforming growth factor-β1, hyaluronic acid (p < 0.01), 4-hydroxyproline, a collagen-rich area in Masson's' trichome stain, and Smad3 expression was also significantly reduced (p < 0.001). Furthermore, the outcome of multiple renal staining showed structural reversal aberrations, reduction of the thick basement membrane, and glycogen level toward normal when treated with NERO 400. Thus, the study showed a novel mechanistic modality of NERO against cyclophosphamide-induced renal toxicity. The outcome of this study can be considered a step closer to the development of an adjuvant to mitigate cyclophosphamide-induced renal toxicity among patients treated with cyclophosphamide.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Mohammed Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
9
|
İpek E, Hesapçıoğlu M, Karaboğa M, Avcı H. Selenium protection from DNA damage and regulation of apoptosis signaling following cyclophosphamide induced cardiotoxicity in rats. Biotech Histochem 2023; 98:534-542. [PMID: 37695070 DOI: 10.1080/10520295.2023.2253424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
We investigated the mechanism of the cardioprotective effect of selenium (Se) against cyclophosphamide (CPA) induced cardiotoxicity in rats. We divided 24 female Wistar albino rats into four groups. The control group was injected intraperitoneally (i.p.) with normal saline. The CPA group was injected i.p. with 200 mg/kg CPA. The Se group was injected i.p. with 1 mg/kg Se. The CPA + Se group was injected i.p. with 200 mg/kg CPA and 1 mg/kg Se. Rats were euthanized 24 h after injection and heart tissues were harvested. Histopathological examination revealed reduced severity of myocardial lesions in the CPA + Se group compared to CPA induced cardiotoxicity of the CPA group; this finding was confirmed by increased immunoreactivity of cardiac troponin-I (cTn-I) in the CPA + Se group compared to decreased cTn-I immunoreactivity in the CPA group. Administration of CPA increased the immunoreactivity of phosphorylated histone-2AX (γH2AX). Se reduced the CPA induced increase in γH2AX immunoreactivity. Se administration reversed the CPA induced increase of Bax and decrease of Bcl2 gene expressions. Our findings suggest that Se is cardioprotective by reducing DNA damage and regulating the genes responsible for apoptosis caused by CPA in rats.
Collapse
Affiliation(s)
- Emrah İpek
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mehmet Hesapçıoğlu
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mehmet Karaboğa
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Hamdi Avcı
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
10
|
Zhang Y, Cheng X, Wang Y, Guo H, Song Y, Wang H, Ma D. Phlorizin ameliorates myocardial fibrosis by inhibiting pyroptosis through restraining HK1-mediated NLRP3 inflammasome activation. Heliyon 2023; 9:e21217. [PMID: 38027628 PMCID: PMC10658207 DOI: 10.1016/j.heliyon.2023.e21217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The specific role of phlorizin (PHL), which has antioxidant, anti-inflammatory, hypoglycemic, antiarrhythmic and antiaging effects, on myocardial fibrosis (MF) and the related pharmacological mechanisms remain unknown. The objective of this study was to determine the protective actions of PHL on isoprenaline (ISO)-induced MF and its molecular mechanisms in mice. PHL was administered at 100 and 200 mg/kg for 15 consecutive days with a subcutaneous injection of ISO (10 mg/kg). MF was induced by ISO and alleviated by treatment with PHL, as shown by reduced fibrin accumulation in the myocardial interstitium and decreased levels of myocardial enzymes, such as creatinine kinase-MB, lactate dehydrogenase, and aspartate transaminase. In addition, PHL significantly decreased the expression of the fibrosis-related factors alpha smooth muscle actin, collagen I, and collagen III induced by ISO. The generation of intracellular reactive oxygen species induced by ISO was attenuated after PHL treatment. The malondialdehyde level was reduced, whereas the levels of superoxide dismutase, catalase, and glutathione were elevated with PHL administration. Moreover, compared to ISO, the level of Bcl-2 was increased and the level of Bax protein was decreased in the PHL groups. PHL relieved elevated TNF-α, IL-1β, and IL-18 levels as well as cardiac mitochondrial damage resulting from ISO. Further studies showed that PHL downregulated the high expression of hexokinase 1 (HK1), NLRP3, ASC, Caspase-1, and GSDMD-N caused by ISO. In conclusion, our findings suggest that PHL protects against ISO-induced MF due to its antioxidant, anti-apoptotic, and anti-inflammatory activities and via inhibition of pyroptosis mediated by the HK1/NLRP3 signaling pathway in vivo.
Collapse
Affiliation(s)
- Yuling Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Xizhen Cheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Yanan Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Haochuan Guo
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Yongxing Song
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050091, Hebei, China
| | - Hongfang Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
- Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, 050200, Hebei, China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
- Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, 050200, Hebei, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050091, Hebei, China
| |
Collapse
|
11
|
Yu C, Gao S, Rong M, Xiao M, Xu Y, Wei J. Identification and characterization of novel sesquiterpene synthases TPS9 and TPS12 from Aquilaria sinensis. PeerJ 2023; 11:e15818. [PMID: 37663295 PMCID: PMC10474832 DOI: 10.7717/peerj.15818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/10/2023] [Indexed: 09/05/2023] Open
Abstract
Sesquiterpenes are characteristic components and important quality criterions for agarwood. Although sesquiterpenes are well-known to be biosynthesized by sesquiterpene synthases (TPSs), to date, only a few TPS genes involved in agarwood formation have been reported. Here, two new TPS genes, namely, TPS9 and TPS12, were isolated from Aquilaria sinensis (Lour.) Gilg, and their functions were examined in Escherichia coli BL21(DE3), with farnesyl pyrophosphate (FPP) and geranyl pyrophosphate (GPP) as the substrate of the corresponding enzyme activities. They were both identified as a multiproduct enzymes. After incubation with FPP, TPS9 liberated β-farnesene and cis-sesquisabinene hydrate as main products, with cedrol and another unidentified sesquiterpene as minor products. TPS12 catalyzes the formation of β-farnesene, nerolidol, γ-eudesmol, and hinesol. After incubation with GPP, TPS9 generated citronellol and geraniol as main products, with seven minor products. TPS12 converted GPP into four monoterpenes, with citral as the main product, and three minor products. Both TPS9 and TPS12 showed much higher expression in the two major tissues emitting floral volatiles: flowers and agarwood. Further, RT-PCR analysis showed TPS9 and TPS12 are typical genes mainly expressed during later stages of stress response, which is better known than that of chromone derivatives. This study will advance our understanding of agarwood formation and provide a solid theoretical foundation for clarifying its mechanism in A. sinensis.
Collapse
Affiliation(s)
- Cuicui Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
| | - Shixi Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
| | - Mei Rong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
| | - Mengjun Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
| | - Yanhong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
| | - Jianhe Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plan, Hainan, China
| |
Collapse
|
12
|
Abulfadl YS, El Ela YA, Al Khaiyat AM, Elkhodary KI, Badran M. Cyclophosphamide enfeebles myocardial isometric contraction force via RIP1/RIP3/MLKL/TRPM7-mediated necroptosis. Biomed Pharmacother 2023; 163:114819. [PMID: 37146416 DOI: 10.1016/j.biopha.2023.114819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
This study explores the negative impact of cyclophosphamide (CP) on cardiac contractility by specifically examining its effect on the active and passive tension of the cardiac muscle in-vitro and revealing the mechanism through which CP induces myocardial insult in-vivo. In young male Sprague-Dawley rats, cardiac toxicity was induced by a single intraperitoneal injection of CP (150 mg/kg body weight). Axial heart tissue slices were electrically stimulated, and the total isometric contraction force was measured at varying pretension levels. Blood and tissue biochemical assays, and histological/ immuno-histological assessments were conducted to evaluate the underlying molecular mechanisms. Statistical analysis shows that there is a significant difference between the drugged and the control groups in terms of the active tension values. Moreover, the pre-tension stress significantly affects both the active and passive tension values. CP altered heart, body, and heart-to-body weight, desolated cardiac muscle architecture, surged cardiac enzymes (CK-MB, LDH, and cTn l), augmented myocardial oxidative stressors (MDA), and weakened myocardial antioxidant status (SOD and GSH). Mechanistically, cyclophosphamide prompted the necroptotic trajectory evidenced by the activation of RIPK1, RIPK3, MLKL and TRPM7, the inhibition of caspase 8 and BCL2 and the upregulation of the protein/mRNA expression of TNF-α and TNFR1. This study identifies necroptosis as a key factor in cyclophosphamide-evoked myocardial contractility impairment, highlighting its potential as a target for alleviating antitumor-related myocardial damage. This innovative approach to investigating the underlying mechanisms of CP-induced cardiac toxicity offers valuable insights into the potential of developing new therapies to mitigate cyclophosphamide's negative impact.
Collapse
Affiliation(s)
- Yasmin S Abulfadl
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, New Cairo 11835, Egypt
| | - Yousef Abo El Ela
- Department of Mechanical Engineering, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Abdallah M Al Khaiyat
- Department of Mechanical Engineering, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Khalil I Elkhodary
- Department of Mechanical Engineering, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed Badran
- Department of Mechanical Engineering, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
13
|
Md S, Rahman Mahrous HA, Alhakamy NA, Shaik RA, Eid BG. Protective effect of statistically designed and optimized Icariin nanoemulsion on doxorubicin-induced cardiotoxicity: Inhibition of oxidative stress, inflammation, and apoptosis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
14
|
Xiong J, Ding B, Zhu W, Xu L, Yu S. Exosomes from Adipose-Derived Mesenchymal Stem Cells Protect Against Cyclophosphamide-Induced Cardiotoxicity in Rats. Int Heart J 2023; 64:935-944. [PMID: 37778997 DOI: 10.1536/ihj.23-201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A certain dosage of cyclophosphamide (CYP) in clinical applications contributes to severe cardiotoxicity. Herein, this study explored the impact of adipose-derived mesenchymal stem cell (AdMSC)-exosomes (Exos) on CYP-induced cardiotoxicity.AdMSCs and AdMSCs-Exos were isolated and identified. CYP was utilized for developing a cardiotoxicity rat model, after which blood was collected and then the serum contents of cardiac injury-related indexes (creatine kinase-MB, lactate dehydrogenase, aspartate aminotransferase, and alkaline phosphatase) were detected with enzyme-linked immunosorbent assay kits. Oxidative stress (OS)-related indicators were measured with the corresponding kits. Myocardial pathological changes and collagen fibrosis were tested with hematoxylin-eosin and Masson staining, and apoptosis-related and autophagy-related proteins in rat cardiac tissues with immunohistochemistry and Western blot assays, respectively.AdMSCs and AdMSCs-Exos were successfully isolated. AdMSCs-Exos could target rat hearts. AdMSCs-Exos improved cardiac function and diminished the content of the cardiac injury-related indexes in CYP rats. In addition, AdMSCs-Exos reduced CYP-induced cardiac fibrosis, OS, apoptosis, and autophagy in rats.AdMSCs-Exos alleviated CYP-induced cardiotoxicity in rats via the repression of OS, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Jianhua Xiong
- Department of General Medicine, Fuzhou First People's Hospital
| | - Binjun Ding
- Department of General Medicine, Fuzhou First People's Hospital
| | - Wei Zhu
- Department of Cardiovascular Medicine, Fuzhou First People's Hospital
| | - Lanlan Xu
- Department of General Medicine, Fuzhou First People's Hospital
| | - Songping Yu
- Department of Cardiology, Jiangxi Provincial People's Hospital
| |
Collapse
|
15
|
Farnesol Protects against Cardiotoxicity Caused by Doxorubicin-Induced Stress, Inflammation, and Cell Death: An In Vivo Study in Wistar Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238589. [PMID: 36500681 PMCID: PMC9737179 DOI: 10.3390/molecules27238589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Doxorubicin (DOXO) is an antineoplastic drug that is used extensively in managing multiple cancer types. However, DOXO-induced cardiotoxicity is a limiting factor for its widespread use and considerably affects patients' quality of life. Farnesol (FSN) is a sesquiterpene with antioxidant, anti-inflammatory, and anti-tumor properties. Thus, the current study explored the cardioprotective effect of FSN against DOXO-induced cardiotoxicity. In this study, male Wistar rats were randomly divided into five groups (n = 7) and treated for 14 days. Group I (Control): normal saline, p.o. daily for 14 days; Group II (TOXIC): DOXO 2.4 mg/kg, i.p, thrice weekly for 14 days; Group III: FSN 100 mg/kg, p.o. daily for 14 days + DOXO similar to Group II; Group IV: FSN 200 mg/kg, p.o. daily for 14 days + DOXO similar to Group II; Group V (Standard): nifedipine 10 mg/kg, p.o. daily for 14 days + DOXO similar to Group II. At the end of the study, animals were weighed, blood was collected, and heart-weight was measured. The cardiac tissue was used to estimate biochemical markers and for histopathological studies. The observed results revealed that the FSN-treated group rats showed decrease in heart weight and heart weight/body weight ratio, reversed the oxidative stress, cardiac-specific injury markers, proinflammatory and proapoptotic markers and histopathological aberrations towards normal, and showed cardioprotection. In summary, the FSN reduces cardiac injuries caused by DOXO via its antioxidant, anti-inflammatory, and anti-apoptotic potential. However, more detailed mechanism-based studies are needed to bring this drug into clinical use.
Collapse
|
16
|
Peng X, Zhang X, Wang C, Olatunji OJ. Protective effects of asperuloside against cyclophosphamide-induced urotoxicity and hematotoxicity in rats. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Cyclophosphamide (CP) is a highly efficacious chemotherapy drug for treating cancers and autoimmune disorders, but it is also notable for its deleterious side effects including urotoxicity in cancer patients, which has been extensively linked to CP-induced oxidative/inflammatory cascades. Herein, we investigated the protective effects of asperuloside (ASP) against CP-induced urotoxicity. Rats received oral administration of ASP (20 and 40 mg/kg bw/day) for 35 days and were injected with weekly CP (100 mg/kg bw, i.p.) for 4 weeks to induce acute bladder toxicity. CP acutely altered haematological parameters and significantly reduced body weight gain, bladder glutathione peroxidase, reduced glutathione, catalase, and superoxide dismutase activities. Furthermore, CP caused an upward surge in bladder malondialdehyde, nuclear factor-kappa B, tumour necrosis factor-α, interleukin-1β, and interleukin 6 concentrations. ASP supplementation ameliorated CP-induced haematological derangement and bladder urotoxicity through the restoration of oxidative and inflammatory parameters in CP-treated rats. These findings suggested that ASP could be valorised as a possible therapeutic agent against chemotherapy-related toxicities as well as oxidative damage disorders.
Collapse
Affiliation(s)
- Xiaozhuang Peng
- Emergency Intensive Care Unit, Wuhu Second Peoples Hospital , Wuhu City , 241001, Anhui , China
| | - Xiaomin Zhang
- Emergency Intensive Care Unit, Wuhu Second Peoples Hospital , Wuhu City , 241001, Anhui , China
| | - Chen Wang
- Emergency Intensive Care Unit, Wuhu Second Peoples Hospital , Wuhu City , 241001, Anhui , China
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University , Hat Yai , 90110 , Thailand
| |
Collapse
|
17
|
Balakrishnan V, Ganapathy S, Veerasamy V, Duraisamy R, Jawaharlal S, Lakshmanan V. Nerolidol assists Cisplatin to induce early apoptosis in human laryngeal carcinoma Hep 2 cells through ROS and mitochondrial-mediated pathway: An in vitro and in silico view. J Food Biochem 2022; 46:e14465. [PMID: 36226832 DOI: 10.1111/jfbc.14465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 01/14/2023]
Abstract
The objective of this study was to examine Nerolidol (NER) and Cisplatin (CIS) performed against human laryngeal carcinoma (Hep 2) cells. We evaluated the effect of NER, CIS, and NER + CIS on cell viability, cell migration, oxidative stress, mitochondrial membrane depolarization, nuclear condensation, apoptotic induction, and DNA damage in Hep 2 cells. We used the MTT assay to assess the cytotoxicity effect of NER and CIS on Hep 2 cells in terms of morphological alterations. Present results demonstrated that IC50 values of NER and CIS have potential cytotoxicity against Hep 2 cells. NER effectively inhibited cell viability, increased reactive oxygen species generation, apoptotic induction, and DNA damage in Hep 2 cells. In addition, the docking study evaluated the structural binding interaction of NER with PI3K/Akt and PCNA protein. Furthermore, NER with PI3K/Akt, PCNA has a higher crucial score and affinity. Present results infer that NER could be used to target signaling molecules in anticancer studies. PRACTICAL APPLICATIONS: Nerolidol is a dietary phytochemical with high biological activity that can find in a variety of plants. Many researchers focused on Nerolidol to treat various diseases including cancer. However, there is no studies exist on laryngeal cancer. This study uses Nerolidol and Cisplatin to generate oxidative stress and stimulate apoptosis and DNA damage in human laryngeal cancer cells. Based on present findings, Nerolidol could be a choice of anticancer medication, either alone or in combination against oral squamous cell carcinomas in both in vitro and in vivo experimental systems.
Collapse
Affiliation(s)
- Vaitheeswari Balakrishnan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Sindhu Ganapathy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India.,Department of Biochemistry, Government Arts College (Autonomous), Kumbakonam, India
| | - Vinothkumar Veerasamy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Ramachandhiran Duraisamy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Saranya Jawaharlal
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Vennila Lakshmanan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| |
Collapse
|
18
|
Elsayed FF, Elshenawy WM, Khalifa EM, Rizq MR, Abdelaziz RR. Ameliorative effect of flavocoxid on cyclophosphamide-induced cardio and neurotoxicity via targeting the GM-CSF/NF-κB signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69635-69651. [PMID: 35576032 PMCID: PMC9512761 DOI: 10.1007/s11356-022-20441-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 06/12/2023]
Abstract
Cyclophosphamide (Cyclo) is a chemotherapeutic agent used as an immunosuppressant and as a treatment for many cancerous diseases. Many previous pieces of literature proved the marked cardio and neurotoxicity of the drug. Thus, this research provides evidence on the alleviative effect of flavocoxid on the cardiac and brain toxicity of cyclophosphamide in mice and determines its underlying mechanisms. Flavocoxid (Flavo) is a potent antioxidant and anti-inflammatory agent that inhibits the peroxidase activity of cyclooxygenase (COX-1 and COX-2) enzymes and 5-lipooxygenase (5-LOX). Flavo was administered orally (20 mg/kg) for 2 weeks, followed by Cyclo (100 mg/kg, i.p.) on day 14. Higher heart and brain weight indices, serum lactate dehydrogenase (LDH), creatine kinase (CK-MB), and nitric oxide (NO) were mitigated following Flavo administration. Flavo modulated oxidative stress biomarkers (malonaldehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD)), tumor necrosis factor-α (TNF-α), and interleukin (IL)-1β. Additionally, cardiac troponin I (cTn-I), nuclear factor kappa B (NF-κB), brain amyloid precursor protein (APP), and granulocyte macrophage colony-stimulating factor (GM-CSF) were decreased by Flavo administration. Moreover, Flavo ameliorated heart and brain histopathological changes and caspase-3 levels. Collectively, Flavo (20 mg/kg) for 14 days showed significant cardio and neuroprotective effects due to its antioxidant, anti-inflammatory, and antiapoptotic activities via modulation of oxidative stress, inflammation, and the GM-CSF/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fatma F Elsayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Waad M Elshenawy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Eman M Khalifa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed R Rizq
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
19
|
Yu S, Long Y, Li D, Shi A, Deng J, Ma Y, Wen J, Li X, Zhang Y, Liu S, Wan J, Li N, Guo J. Natural essential oils efficacious in internal organs fibrosis treatment: mechanisms of action and application perspectives. Pharmacol Res 2022; 182:106339. [DOI: 10.1016/j.phrs.2022.106339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
|
20
|
Downregulation of hepatic fat accumulation, inflammation and fibrosis by nerolidol in purpose built western-diet-induced multiple-hit pathogenesis of NASH animal model. Biomed Pharmacother 2022; 150:112956. [PMID: 35447548 DOI: 10.1016/j.biopha.2022.112956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Western diet style (fast food), which includes fatty frozen junk food, lard, processed meats, whole-fat dairy foods, cream, mayonnaise, butter, snacks, and fructose, is a primary etiological determinant for developing nonalcoholic steatohepatitis (NASH) worldwide. Here the primary focus is to see the impact of naturally identified essential oil on disease mechanisms developed in an animal model using the same ingredients. Currently, symptomatic therapies are recommended for the management of NASH due to non-availability of specific treatments. Therefore, the present study was designed to evaluate the potential anti-NASH effect of nerolidol in a rat model fed with a purpose-built diet. The diet substantially induced insulin resistance, hepatic steatosis, dyslipidemia, and elevation of liver enzymes in the experimental animals. The levels of liver oxidative stress markers, nitrites (NO2-), serum pro-inflammatory cytokine (TNF-α) and hepatic collagen were increased in disease control rats. Nerolidol oral treatment in ascending dose order of 250 and 500 mg/kg substantially reduced the steatosis (macrovesicular and microvesicular), degeneration of hepatocytes, and inflammatory cells infiltration. The amounts of circulatory TNF-α and tissue collagen were also reduced at 500 mg/kg dose of nerolidol, expressing its anti-fibrotic effect. The current study described the multiple-hit pathophysiology of NASH as enhanced steatosis, pro-inflammatory markers, and oxidative stress in rats, which resulted in the development of vicious insulin resistance. Nerolidol treatment significantly reduced hepatic lipid accumulation and halted disease progression induced by a hypercaloric diet.
Collapse
|
21
|
Akhter S, Irfan HM, Alamgeer, Jahan S, Shahzad M, Latif MB. Nerolidol: a potential approach in rheumatoid arthritis through reduction of TNF-α, IL-1β, IL-6, NF-kB, COX-2 and antioxidant effect in CFA-induced arthritic model. Inflammopharmacology 2022; 30:537-548. [PMID: 35212850 DOI: 10.1007/s10787-022-00930-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 02/01/2022] [Indexed: 11/05/2022]
Abstract
Rheumatoid arthritis is primarily associated with inflammation and increased level of proinflammatory cytokines which are released by immune cells, macrophages or activation of arachidonic acid metabolism. The expression of these cytokines, oxidative free radicals and the activation of COX-2 enzymes are crucial targets for chronic inflammation. On the basis of established anti-inflammatory efficacy of nerolidol, the primary study was further appraised to determine its approach against Freund's complete adjuvant (CFA) rheumatoid model. Arthritis was induced by inoculation of 0.1 mL CFA injection into the left hind footpad of rats. Anti-arthritic potential of nerolidol (at 200, 400 and 800 mg/kg doses) was assessed by measuring the paw volume, body weight, serum analysis, histopathological and radiographs of ankle joints. Expressions of cytokine's panels such as IL-10, IL-4, COX-2, NF-kB, TNF-α, IL-6, PGE-2 and IL-1β were determined by real-time qPCR. Antioxidant enzyme analyses were conducted by measuring the SOD, POD and catalase activity from serum and equated with arthritic control group. Nerolidol prevented body weight loss, stabilized biochemical and haematological homeostasis and significantly reduced the paw volume. Furthermore, X-ray and histopathological assessment of ankle joints showed an improvement in the joint structure of rats treated with nerolidol. Besides that, overexpression of gene pointers like TNF-α, IL-1β, IL-6, NF-kB, PGE-2 and COX-2 in CFA-treated control rats were also reversed with nerolidol. This anti-arthritic mechanism was further supported by the increased level of IL-10, IL-4 and serum antioxidant activity. The present findings demonstrate that nerolidol reduced adjuvant arthritis by downregulating the proinflammatory cytokines and upregulating the aforementioned anti-inflammatory cytokines and may be used as a therapeutic substance for the management of human rheumatoid arthritis.
Collapse
Affiliation(s)
- Shanila Akhter
- College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Alamgeer
- Department of Pharmacology, Punjab University College of Pharmacy, University of the Punjab, Lahore, 54000, Pakistan
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, 54000, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, 54000, Pakistan
| | - Muhammad Bilal Latif
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
22
|
L'Abbate S, Chianca M, Fabiani I, Del Franco A, Giannoni A, Vergaro G, Grigoratos C, Kusmic C, Passino C, D'Alessandra Y, Burchielli S, Emdin M, Cardinale DM. In Vivo Murine Models of Cardiotoxicity Due to Anticancer Drugs: Challenges and Opportunities for Clinical Translation. J Cardiovasc Transl Res 2022; 15:1143-1162. [PMID: 35312959 DOI: 10.1007/s12265-022-10231-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
Abstract
Modern therapeutic approaches have led to an improvement in the chances of surviving a diagnosis of cancer. However, this may come with side effects, with patients experiencing adverse cardiovascular events or exacerbation of underlying cardiovascular disease related to their cancer treatment. Rodent models of chemotherapy-induced cardiotoxicity are useful to define pathophysiological mechanisms of cardiac damage and to identify potential therapeutic targets. The key mechanisms involved in cardiotoxicity induced by specific different antineoplastic agents are summarized in this state-of-the-art review, as well as the rodent models of cardiotoxicity by different classes of anticancer drugs, along with the strategies tested for primary and secondary cardioprotection. Current approaches for early detection of cardiotoxicity in preclinical studies with a focus on the application of advanced imaging modalities and biomarker strategies are also discussed. Potential applications of cardiotoxicity modelling in rodents are illustrated in relation to the advancements of promising research topics of cardiotoxicity. Created with BioRender.com.
Collapse
Affiliation(s)
- Serena L'Abbate
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Michela Chianca
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Iacopo Fabiani
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| | - Annamaria Del Franco
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alberto Giannoni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giuseppe Vergaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | | | - Claudio Passino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Yuri D'Alessandra
- Cardiovascular Proteomics Unit, Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | | | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Daniela Maria Cardinale
- Cardioncology Unit, Cardiology Division, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| |
Collapse
|
23
|
Md S, Abdullah S, Alhakamy NA, Shaik RA, Eldakhakhny BM, Omar UM, Eid BG, Ansari AR, Alamoudi AJ, Rizg WY, Riadi Y, Venkateswaran SP, Rashid MA. Development and Evaluation of Ginkgo biloba/Sodium Alginate Nanocomplex Gel as a Long-Acting Formulation for Wound Healing. Gels 2022; 8:gels8030189. [PMID: 35323302 PMCID: PMC8949612 DOI: 10.3390/gels8030189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023] Open
Abstract
The aim of the study was to develop and evaluate the Ginkgo biloba nanocomplex gel (GKNG) as a long-acting formulation for the wound healing potential. Pharmaceutical analysis showed an average particle size of 450.14 ± 36.06 nm for GKNG, zeta potential +0.012 ± 0.003 mV, and encapsulation efficiency 91 ± 1.8%. The rheological analysis also showed the optimum diffusion rate and viscosity needed for topical drug delivery. Fourier transform infrared spectroscopy (FTIR), powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis further confirmed the success of GKNG. The in vivo study showed increments in the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) and a lower level of lipid peroxidation (MDA) after GKNG treatment. The GKNG group showed upregulations in collagen type I, as alpha 1 collagen (COL1A1), and collagen type IV, as alpha 1 collagen (COL4A1). Furthermore, the in vivo study showed increments in hydroxyproline, epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and transforming growth factor-beta 1 (TGF-β1) after the GKNG. Additionally, GKNG effectively increased the wound contraction compared to GK gel and sodium alginate (SA) gel. Based on the in vitro and in vivo evaluation, GKNG effectively accelerated wound healing by modulation of antioxidant enzymes, collagens, angiogenic factors, and TGF-β1.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.M.); (S.A.)
| | - Samaa Abdullah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.M.); (S.A.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rasheed A. Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.S.); (B.G.E.)
| | - Basmah Medhat Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ulfat Mohammad Omar
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Princess Dr. Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.S.); (B.G.E.)
| | | | - Abdulmohsin J. Alamoudi
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.S.); (B.G.E.)
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Sunil Pazhayanur Venkateswaran
- Department of Pathology, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| |
Collapse
|
24
|
Abdelzaher WY, Bahaa HA, Elkhateeb R, Atta M, Fawzy MA, Ahmed AF, Rofaeil RR. Role of JNK, ERK, and p38 MAPK signaling pathway in protective effect of sildenafil in cyclophosphamide-induced placental injury in rats. Life Sci 2022; 293:120354. [PMID: 35074407 DOI: 10.1016/j.lfs.2022.120354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/14/2023]
Abstract
AIMS Chemotherapeutic agents; cyclophosphamide (CYC) is used for treatment of cancer and autoimmune diseases. Grievously, CYC is non-selective as it affects both tumor and healthy cells resulting in systemic toxicity including placenta. The present study aimed to evaluate the effect of phosphodiesterase 5 inhibitor, sildenafil (Sild) on CYC-induced placental injury in rats. MATERIALS AND METHODS Thirty-two female Wister rats were randomly divided into 4 experimental groups. Group 1: control pregnant group; Group 2: Sild-treated pregnant rats; Group 3: pregnant rats received CYC; Group 4: pregnant rats received Sild and CYC. Placental malondialdehyde (MDA), total nitrite/nitrate (NOx), reduced glutathione (GSH), tumor necrosis factor-α (TNF-α), platelet growth factor (PlGF), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase (ERK) and cleaved caspase-3 were measured. Histological changes, Nuclear Factor kappa-light-chain-enhancer of activated B (NF-κB), Connexin 43 (GJA1) and proliferating cell nuclear antigen (PCNA) immuno-expressions were also evaluated. KEY FINDINGS CYC showed significant decrease in placental GSH, NOx, PlGF, GJA1 and PCNA immuno-expressions but significant increase in placental MDA, TNF-α, JNK, P38MAPK, ERK, caspase-3 and NF-kB immuno-expression. Sild showed significant improvement in all oxidative, inflammatory and apoptotic parameters. SIGNIFICANCE Sild is a promising protective drug against placental injury induced by CYC through antagonizing MAPK (JNK, ERK, and p38) signaling pathway with anti-oxidant, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
| | - Haitham Ahmed Bahaa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Minia University, Minia 61511, Egypt
| | - Reham Elkhateeb
- Department of Obstetrics and Gynecology, Faculty of Medicine, Minia University, Minia 61511, Egypt
| | - Medhat Atta
- Department of Anatomy, Faculty of Medicine, Minia University, Minia 61511, Egypt
| | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61511, Egypt
| | - Amira F Ahmed
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Remon Roshdy Rofaeil
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia 61511, Egypt; Department of Pharmacology, Deraya University, New Minia, Egypt.
| |
Collapse
|
25
|
Ahmad MA, Kareem O, Khushtar M, Akbar M, Haque MR, Iqubal A, Haider MF, Pottoo FH, Abdulla FS, Al-Haidar MB, Alhajri N. Neuroinflammation: A Potential Risk for Dementia. Int J Mol Sci 2022; 23:ijms23020616. [PMID: 35054805 PMCID: PMC8775769 DOI: 10.3390/ijms23020616] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Dementia is a neurodegenerative condition that is considered a major factor contributing to cognitive decline that reduces independent function. Pathophysiological pathways are not well defined for neurodegenerative diseases such as dementia; however, published evidence has shown the role of numerous inflammatory processes in the brain contributing toward their pathology. Microglia of the central nervous system (CNS) are the principal components of the brain’s immune defence system and can detect harmful or external pathogens. When stimulated, the cells trigger neuroinflammatory responses by releasing proinflammatory chemokines, cytokines, reactive oxygen species, and nitrogen species in order to preserve the cell’s microenvironment. These proinflammatory markers include cytokines such as IL-1, IL-6, and TNFα chemokines such as CCR3 and CCL2 and CCR5. Microglial cells may produce a prolonged inflammatory response that, in some circumstances, is indicated in the promotion of neurodegenerative diseases. The present review is focused on the involvement of microglial cell activation throughout neurodegenerative conditions and the link between neuroinflammatory processes and dementia.
Collapse
Affiliation(s)
- Md Afroz Ahmad
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow 226021, India; (M.A.A.); (M.K.); (M.F.H.)
| | - Ozaifa Kareem
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India;
| | - Mohammad Khushtar
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow 226021, India; (M.A.A.); (M.K.); (M.F.H.)
| | - Md Akbar
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.); (A.I.)
| | - Md Rafiul Haque
- Department of Pharmacognosy, School of Pharmacy, Al-Karim University, Katihar 854106, India;
| | - Ashif Iqubal
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.); (A.I.)
| | - Md Faheem Haider
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow 226021, India; (M.A.A.); (M.K.); (M.F.H.)
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Fatima S. Abdulla
- College of Medicine and Health Science, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (F.S.A.); (M.B.A.-H.)
| | - Mahia B. Al-Haidar
- College of Medicine and Health Science, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (F.S.A.); (M.B.A.-H.)
| | - Noora Alhajri
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence:
| |
Collapse
|
26
|
Haque S, Ekbbal R, Iqubal A, Ansari M, Ahmad S. Evaluation of cardioprotective potential of isolated swerchirin against the isoproterenol-induced cardiotoxicity in wistar albino rats. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_500_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Pottoo FH, Iqubal A, Iqubal MK, Salahuddin M, Rahman JU, AlHajri N, Shehadeh M. miRNAs in the Regulation of Cancer Immune Response: Effect of miRNAs on Cancer Immunotherapy. Cancers (Basel) 2021; 13:6145. [PMID: 34885253 PMCID: PMC8656569 DOI: 10.3390/cancers13236145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
In the last few decades, carcinogenesis has been extensively explored and substantial research has identified immunogenic involvement in various types of cancers. As a result, immune checkpoint blockers and other immune-based therapies were developed as novel immunotherapeutic strategies. However, despite being a promising therapeutic option, immunotherapy has significant constraints such as a high cost of treatment, unpredictable toxicity, and clinical outcomes. miRNAs are non-coding, small RNAs actively involved in modulating the immune system's multiple signalling pathways by binding to the 3'-UTR of target genes. miRNAs possess a unique advantage in modulating multiple targets of either the same or different signalling pathways. Therefore, miRNA follows a 'one drug multiple target' hypothesis. Attempts are made to explore the therapeutic promise of miRNAs in cancer so that it can be transported from bench to bedside for successful immunotherapeutic results. Therefore, in the current manuscript, we discussed, in detail, the mechanism and role of miRNAs in different types of cancers relating to the immune system, its diagnostic and therapeutic aspect, the effect on immune escape, immune-checkpoint molecules, and the tumour microenvironment. We have also discussed the existing limitations, clinical success and the prospective use of miRNAs in cancer.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
- Product Development Department, Sentiss Research Centre, Sentiss Pharma Pvt Ltd., Gurugram 122001, India
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Noora AlHajri
- Mayo Clinic, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi 127788, United Arab Emirates
| | - Mustafa Shehadeh
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
28
|
Wang Y, Zou Z, Jaisi A, Olatunji OJ. Unravelling the Protective Effects of Emodin Against Cyclophosphamide Induced Gonadotoxicity in Male Wistar Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4403-4411. [PMID: 34703213 PMCID: PMC8541740 DOI: 10.2147/dddt.s333383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022]
Abstract
Background Over the past few decades, cyclophosphamide (CP) has been extensively used as a broad-spectrum alkylating agent for the treatment of various cancers and solid tumors. However, the therapeutic actions on CP are not limited to only cancer cells, as it simultaneously exerts significant toxicities on healthy cells through the instigation of oxidative stress and oxidative damages. CP induced testicular toxicity is associated with impaired spermatogenesis, reduced sperm functionality, reproductive hormone and testicular weight. This study was aimed at unravelling the protective effects of emodin (EMD) on testicular toxicity following CP treatment. Methods Twenty-four male Wistar rats were allotted into 4 groups as normal control group (NCG), CP control group (CPCG), EMD25+CP (25 mg/kg in 5% tween 80) and EMD50+CP groups (50 mg/kg in 5% tween 80). EMD was orally administered for 35 consecutive days, while four doses of CP (100 mg/kg/week) were administered intraperitoneally from the second to fifth week of treatment. Thereafter, the animals were sacrificed and histopathological examination of the testes as well as serum/testicular biochemical assays were conducted. Results The results revealed that CP significantly impeded sperm function parameters including sperm count, viability and motility as well as decreased reproductive hormones (testosterone, LH and FSH) levels. In addition, CP enhanced testicular oxidative stress and proinflammatory markers (MDA, IL-6 and TNF-α), while simultaneously decreasing testicular antioxidant enzymes (GSH, GPx, SOD and CAT). Evidence of marked histopathological alterations was also observed in the H&E stained testicular tissues of CP treated rats. EMD significantly prevented these CP induced negative effects. Conclusion This study provides a basis for the potential use of EMD in counteracting chemotherapy induced testicular toxicity. The results further suggest that EMD testicular protective effects in CP-treated rats may be mediated through its modulatory role on oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yinhua Wang
- The Second Peoples Hospital of Wuhu, Wuhu, 241001, Anhui, People's Republic of China
| | - Zhaoling Zou
- The Second Peoples Hospital of Wuhu, Wuhu, 241001, Anhui, People's Republic of China
| | - Amit Jaisi
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Opeyemi Joshua Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| |
Collapse
|
29
|
Adhikari A, Asdaq SMB, Al Hawaj MA, Chakraborty M, Thapa G, Bhuyan NR, Imran M, Alshammari MK, Alshehri MM, Harshan AA, Alanazi A, Alhazmi BD, Sreeharsha N. Anticancer Drug-Induced Cardiotoxicity: Insights and Pharmacogenetics. Pharmaceuticals (Basel) 2021; 14:ph14100970. [PMID: 34681194 PMCID: PMC8539940 DOI: 10.3390/ph14100970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022] Open
Abstract
The advancement in therapy has provided a dramatic improvement in the rate of recovery among cancer patients. However, this improved survival is also associated with enhanced risks for cardiovascular manifestations, including hypertension, arrhythmias, and heart failure. The cardiotoxicity induced by chemotherapy is a life-threatening consequence that restricts the use of several chemotherapy drugs in clinical practice. This article addresses the prevalence of cardiotoxicity mediated by commonly used chemotherapeutic and immunotherapeutic agents. The role of susceptible genes and radiation therapy in the occurrence of cardiotoxicity is also reviewed. This review also emphasizes the protective role of antioxidants and future perspectives in anticancer drug-induced cardiotoxicities.
Collapse
Affiliation(s)
- Archana Adhikari
- Pharmacology Department, Himalayan Pharmacy Institute Majhitar, Rangpo 737136, Sikkim, India; (A.A.); (G.T.)
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
- Correspondence: (S.M.B.A.); (M.C.)
| | - Maitham A. Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Hofuf 31982, Saudi Arabia;
| | - Manodeep Chakraborty
- Pharmacology Department, Himalayan Pharmacy Institute Majhitar, Rangpo 737136, Sikkim, India; (A.A.); (G.T.)
- Correspondence: (S.M.B.A.); (M.C.)
| | - Gayatri Thapa
- Pharmacology Department, Himalayan Pharmacy Institute Majhitar, Rangpo 737136, Sikkim, India; (A.A.); (G.T.)
| | - Nihar Ranjan Bhuyan
- Department of Pharmaceutical Analysis, Himalayan Pharmacy Institute, Majhitar, Rangpo 737136, Sikkim, India;
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | | | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia;
| | - Aishah Ali Harshan
- Department of Pharmaceutical Care, Northern Area Armed Forces Hospital, King Khalid Military City Hospital, Hafr Al-Batin 39745, Saudi Arabia;
| | - Abeer Alanazi
- Department of Pharmaceutical Care, First Health Cluster in Eastern Province, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia;
| | | | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa-31982, Saudi Arabia;
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bengaluru 560035, Karnataka, India
| |
Collapse
|
30
|
Arunachalam S, Nagoor Meeran MF, Azimullah S, Sharma C, Goyal SN, Ojha S. Nerolidol Attenuates Oxidative Stress, Inflammation, and Apoptosis by Modulating Nrf2/MAPK Signaling Pathways in Doxorubicin-Induced Acute Cardiotoxicity in Rats. Antioxidants (Basel) 2021; 10:984. [PMID: 34205494 PMCID: PMC8235529 DOI: 10.3390/antiox10060984] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
The clinical usage of doxorubicin (DOX), a potent anthracycline antineoplastic drug, is often limited by its cardiotoxic effects. Thus, for improving usage of DOX, the aim of this study was to assess the cardioprotective effects of nerolidol (NERO) in a rat model of DOX-induced acute cardiotoxicity and examine underlying molecular mechanisms that contribute to these effects. To induce acute cardiotoxicity male albino Wistar rats were injected with single dose intraperitoneal DOX (12.5 mg/kg). The rats were treated with NERO (50 mg/kg, orally) for five days. DOX-injected rats showed elevated levels of cardiac marker enzymes and enhanced oxidative stress markers along with altered Nrf2/Keap1/HO-1 signaling pathways. DOX administration also induced the activation of NF-κB/MAPK signaling and increased the levels and expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) as well as expression of inflammatory mediators (iNOS and COX-2) in the heart. DOX also triggered DNA damage and apoptotic cell death in the myocardium. Additionally, histological studies revealed structural alterations of the myocardium. NERO treatment exhibited protection against the deleterious results of DOX on myocardium, as evidenced by the restoration of altered biochemical parameters, mitigated oxidative stress, inflammation, and apoptosis. The findings of the present study demonstrate that NERO provides cardioprotective effects against DOX-induced acute cardiotoxicity attributed to its potent antioxidant, anti-inflammatory, and antiapoptotic activities through modulating cellular signaling pathways.
Collapse
Affiliation(s)
- Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (S.A.); (M.F.N.M.); (S.A.)
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (S.A.); (M.F.N.M.); (S.A.)
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (S.A.); (M.F.N.M.); (S.A.)
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, India;
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (S.A.); (M.F.N.M.); (S.A.)
| |
Collapse
|
31
|
Waris M, Shahzad N, Anjum H, Al-Ghamdi SS, Mir SR, Singh T. Withania coagulans extract loaded nano-formulation ameliorates streptozotocin-induced diabetes and associated renal stress and inflammation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Bastaki SMA, Amir N, Adeghate E, Ojha S. Nerolidol, a sesquiterpene, attenuates oxidative stress and inflammation in acetic acid-induced colitis in rats. Mol Cell Biochem 2021; 476:3497-3512. [PMID: 33999335 DOI: 10.1007/s11010-021-04094-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022]
Abstract
Targeting oxidative stress and inflammation by novel dietary compounds of natural origin convincingly appears to be one of the most important therapeutic strategies to keep inflammatory bowel diseases (IBD) such as ulcerative colitis disease in remission. It is imperative to investigate naturally occuring plant-derived dietary phytochemicals that are receiving attention for their therapeutic benefits to overcome the debilitating conditions of IBD. In the present study, the effect of nerolidol (NRD), a monocyclic sesquiterpene found in German Chamomile tea, was investigated in acetic acid-induced colitis model in Wistar rats. NRD was orally administered at a dose of 50 mg/kg/day either for 3 days before or 30 min after induction of IBD for 7 days, after intrarectal administration of acetic acid. The body weight, macroscopic, and microscopic analyses of the colon in different experimental groups were observed on days 0, 2, 4, and 7. Acetic acid caused significant reduction in body weight and induced macroscopic and microscopic ulcer along with a significant decline of antioxidants, concomitant to increased malondialdehyde (MDA), a marker of lipid peroxidation, and myeloperoxidase (MPO) activity, a marker of neutrophil activation. Treatment with NRD significantly improved IBD-induced reduction in body weight, improved histology, inhibited MDA formation, and restored antioxidants along with reduced MPO activity. Acetic acid also induced the release of pro-inflammatory cytokines and increased calprotectin, released by neutrophils under inflammatory conditions. NRD treatment significantly reduced calprotectin and pro-inflammatory cytokines. NRD treatment showed potential to improve disease activity and inhibit oxidative stress, lipid peroxidation, and inflammation along with histological preservation of the colon tissues.
Collapse
Affiliation(s)
- Salim M A Bastaki
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Naheed Amir
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
33
|
Iqubal A, Iqubal MK, Ahmed M, Haque SE. Natural Products, a Potential Therapeutic Modality in Management and Treatment of nCoV-19 Infection: Preclinical and Clinical Based Evidence. Curr Pharm Des 2021; 27:1153-1169. [DOI: 10.2174/1381612827999210111190855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/13/2020] [Indexed: 11/22/2022]
Abstract
A recent outbreak of novel coronavirus (nCoV-19) has put an enormous burden on global public
health. Millions of people were affected by this pandemic, and as of now, no effective antiviral drug has been
found for the management of this situation. Cytokine storm, acute respiratory distress, hypoxia and multi-organ
failure are hallmark clinical conditions of this disease. Trials for several investigational and repurposed drugs
are being conducted, but none of them were found to be safe and effective. However, for the critically ill patient,
plasma therapy, dexamethasone, and remdesivir are included in the treatment protocol. For a long time,
various natural drugs have been used as antiviral agents in Indian and Chinese traditional medicines, which can
be explored as a potential therapeutic option in such situation. It is, therefore, speculated that the proper screening
and standardization of these medicines can be a breakthrough in the management and treatment of nCoV-19
infection. As natural products possess antioxidant, anti-inflammatory, anti-apoptotic, immunomodulatory properties
and also specifically act on various viral enzymatic machinery and affect their replication process, thus
they may be useful as alternatives in relieving symptoms and treatment of nCoV-19 infection. However, only
on the basis of their traditional value, discrimination and off-label use of these natural drugs must be prevented,
and robust preclinical and clinical data along with appropriate guidelines are needed for them to enter into clinical
practice.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad K. Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Musheer Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Syed E. Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
34
|
Iqubal A, Rahman SO, Ahmed M, Bansal P, Haider MR, Iqubal MK, Najmi AK, Pottoo FH, Haque SE. Current Quest in Natural Bioactive Compounds for Alzheimer's Disease: Multi-Targeted-Designed-Ligand Based Approach with Preclinical and Clinical Based Evidence. Curr Drug Targets 2021; 22:685-720. [PMID: 33302832 DOI: 10.2174/1389450121999201209201004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 12/06/2022]
Abstract
Alzheimer's disease is a common and most chronic neurological disorder (NDs) associated with cognitive dysfunction. Pathologically, Alzheimer's disease (AD) is characterized by the presence of β-amyloid (Aβ) plaques, hyper-phosphorylated tau proteins, and neurofibrillary tangles, however, persistence oxidative-nitrative stress, endoplasmic reticulum stress, mitochondrial dysfunction, inflammatory cytokines, pro-apoptotic proteins along with altered neurotransmitters level are common etiological attributes in its pathogenesis. Rivastigmine, memantine, galantamine, and donepezil are FDA approved drugs for symptomatic management of AD, whereas tacrine has been withdrawn because of hepatotoxic profile. These approved drugs only exert symptomatic relief and exhibit poor patient compliance. In the current scenario, the number of published evidence shows the neuroprotective potential of naturally occurring bioactive molecules via their antioxidant, anti-inflammatory, antiapoptotic and neurotransmitter modulatory properties. Despite their potent therapeutic implications, concerns have arisen in context to their efficacy and probable clinical outcome. Thus, to overcome these glitches, many heterocyclic and cyclic hydrocarbon compounds inspired by natural sources have been synthesized and showed improved therapeutic activity. Computational studies (molecular docking) have been used to predict the binding affinity of these natural bioactive as well as synthetic compounds derived from natural sources for the acetylcholine esterase, α/β secretase Nuclear Factor kappa- light-chain-enhancer of activated B cells (NF-kB), Nuclear factor erythroid 2-related factor 2(Nrf2) and other neurological targets. Thus, in this review, we have discussed the molecular etiology of AD, focused on the pharmacotherapeutics of natural products, chemical and pharmacological aspects and multi-targeted designed ligands (MTDLs) of synthetic and semisynthetic molecules derived from the natural sources along with some important on-going clinical trials.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Syed Obaidur Rahman
- Department of Pharmaceutical Medicine, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Musheer Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Pratichi Bansal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal, University, P.O.BOX 1982, Damman, 31441, Saudi Arabia
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| |
Collapse
|
35
|
Iqubal A, Iqubal MK, Fazal SA, Pottoo FH, Haque SE. Nutraceuticals and their Derived Nano-formulations for the Prevention and Treatment of Alzheimer's disease. Curr Mol Pharmacol 2021; 15:23-50. [PMID: 33687906 DOI: 10.2174/1874467214666210309115605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is one of the common chronic neurological disorders and associated with cognitive dysfunction, depression and progressive dementia. Presence of β-amyloid or senile plaques, hyper-phosphorylated tau proteins, neurofibrillary tangle, oxidative-nitrative stress, mitochondrial dysfunction, endoplasmic reticulum stress, neuroinflammation and derailed neurotransmitter status are the hallmark of AD. Currently, donepezil, memantine, rivastigmine and galantamine are approved by the FDA for symptomatic management. It is well-known that these approved drugs only exert symptomatic relief and possess poor patient-compliance. Additionally, various published evidence shows the neuroprotective potential of various nutraceuticals via their antioxidant, anti-inflammatory and anti-apoptotic effects in the preclinical and clinical studies. These nutraceuticals possess a significant neuroprotective potential and hence, can be a future pharmacotherapeutic for the management and treatment of AD. However, nutraceutical suffers from certain major limitations such as poor solubility, low bioavailability, low stability, fast hepatic-metabolism and larger particle size. These pharmacokinetic attributes restrict their entry into the brain via the blood-brain barrier. Therefore, to over such issues, various nanoformulation of nutraceuticals was developed, that allows their effective delivery into brain owning to reduced particle size, increased lipophilicity increased bioavailability and avoidance of fast hepatic metabolism. Thus, in this review, we have discussed the etiology of AD, focused on the pharmacotherapeutics of nutraceuticals with preclinical and clinical evidence, discussed pharmaceutical limitation and regulatory aspects of nutraceuticals to ensure safety and efficacy. We further explored the latitude of various nanoformulation of nutraceuticals as a novel approach to overcome the existing pharmaceutical limitation and for effective delivery into the brain.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Syed Abul Fazal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal, University, P.O.BOX 1982, Damman, 31441. Saudi Arabia
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| |
Collapse
|
36
|
Iqubal A, Bansal P, Iqubal MK, Pottoo FH, Haque SE. An Overview and Therapeutic Promise of Nutraceuticals against Sports-Related Brain Injury. Curr Mol Pharmacol 2021; 15:3-22. [PMID: 33538684 DOI: 10.2174/1874467214666210203211914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022]
Abstract
Sports-related traumatic brain injury (TBI) is one of the common neurological maladies experienced by athletes. Earlier the term 'punch drunk syndrome' was used in the case TBI of boxers and now this term is replaced by chronic traumatic encephalopathy (CTE). Sports-related brain injury can either be short term or long term. A common instance of brain injury encompasses subdural hematoma, concussion, cognitive dysfunction, amnesia, headache, vision issue, axonopathy, or even death if remain undiagnosed or untreated. Further, chronic TBI may lead to pathogenesis of neuroinflammation and neurodegeneration via tauopathy, formation of neurofibrillary tangles, and damage to the blood-brain barrier, microglial, and astrocyte activation. Thus, altered pathological, neurochemical, and neurometabolic attributes lead to the modulation of multiple signaling pathways and cause neurological dysfunction. Available pharmaceutical interventions are based on one drug one target hypothesis and thereby unable to cover altered multiple signaling pathways. However, in recent time's pharmacological intervention of nutrients and nutraceuticals have been explored as they exert a multifactorial mode of action and maintain over homeostasis of the body. There are various reports available showing the positive therapeutic effect of nutraceuticals in sport-related brain injury. Therefore, in the current article we have discussed the pathology, neurological consequence, sequelae, and perpetuation of sports-related brain injury. Further, we have discussed various nutraceutical supplements as well as available animal models to explore the neuroprotective effect/ upshots of these nutraceuticals in sports-related brain injury.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, . India
| | - Pratichi Bansal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, . India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, . India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal, University, P.O.BOX 1982, Damman, 31441, . Saudi Arabia
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, . India
| |
Collapse
|
37
|
Iqubal A, Hoda F, Najmi AK, Haque SE. Macrophage Activation and Cytokine Release Syndrome in COVID-19: Current Updates and Analysis of Repurposed and Investigational Anti-Cytokine Drugs. Drug Res (Stuttg) 2021; 71:173-179. [PMID: 33434935 DOI: 10.1055/a-1291-7692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Coronavirus disease (COVID-19) emerged from Wuhan, has now become pandemic and the mortality rate is growing exponentially. Clinical complication and fatality rate is much higher for patients having co-morbid issues. Compromised immune response and hyper inflammation is hall mark of pathogenesis and major cause of mortality. Cytokine release syndrome (CRS) or cytokine storm is a term used to affiliate the situation of hyper inflammation and therefore use of anti-cytokine and anti-inflammatory drugs is used to take care of this situation. Looking into the clinical benefit of these anti-inflammatory drugs, many of them enter into clinical trials. However, understanding the immunopathology of COVID-19 is important otherwise, indiscriminate use of these drugs could be fetal as there exists a very fine line of difference between viral clearing cytokines and inflammatory cytokines. If any drug suppresses the viral clearing cytokines, it will worsen the situation and hence, the use of these drugs must be based on the clinical condition, viral load, co-existing disease condition and severity of the infection.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi
| | - Farazul Hoda
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi
| |
Collapse
|
38
|
Lin YM, Badrealam KF, Kuo WW, Lai PF, Shao-Tsu Chen W, Hsuan Day C, Ho TJ, Viswanadha VP, Shibu MA, Huang CY. Nerolidol improves cardiac function in spontaneously hypertensive rats by inhibiting cardiac inflammation and remodelling associated TLR4/ NF-κB signalling cascade. Food Chem Toxicol 2021; 147:111837. [PMID: 33212213 DOI: 10.1016/j.fct.2020.111837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022]
Abstract
Toll-like receptor 4 (TLR4) is an important mediator of hypertension and AngII induced cardiac inflammation and remodelling. In this study, the potential of nerolidol to ameliorate hypertension induced cardiac injuries and the underlying mechanism of action was explored by using in vitro and in vivo models. The in vitro analysis was performed on AngII challenged H9c2 cells and their ability to overcome cardiac inflammation and cardiac remodelling effects was determined by evaluating TLR4/NF-κB signalling cascade using Western blot analysis and immunofluorescence. The results were further ascertained using in vivo experiments. Eighteen week old male rats were randomly allocated into different groups i.e. Wistar Kyoto (WKY) rats, hypertensive SHRs, SHRs treated with a low-dose (75 mg/kg b.w) and high-dose of nerolidol (150 mg/kg b.w) and SHRs treated with captopril (50 mg/kg b.w) through oral gauge and finally analysed through echocardiography, histopathological techniques and molecular analysis. The results show that nerilodol target TLR4/NF-κB signalling and thereby attenuate hypertension associated inflammation and oxidative stress thereby provides effective cardioprotection. Echocardiography analysis showed that nerolidol improved cardiac functional characteristics including Ejection Fraction and Fractional Shortening in the SHRs. Collectively, the data of the study demonstrates nerolidol as a cardio-protective agent against hypertension induced cardiac remodelling.
Collapse
Affiliation(s)
- Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, 500, Taiwan; Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Taipei, 11260, Taiwan
| | - Khan Farheen Badrealam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Pei Fang Lai
- Emergency Department, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - William Shao-Tsu Chen
- Department of Psychiatry, Tzu Chi General Hospital, 707, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan; School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan
| | - Cecilia Hsuan Day
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; School of Post‑Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, 97004, Taiwan
| | | | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan; Department of Biological Science and Technology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
39
|
Famurewa AC, Edeogu CO, Offor FI, Besong EE, Akunna GG, Maduagwuna EK. Downregulation of redox imbalance and iNOS/NF-ĸB/caspase-3 signalling with zinc supplementation prevents urotoxicity of cyclophosphamide-induced hemorrhagic cystitis in rats. Life Sci 2020; 266:118913. [PMID: 33333050 DOI: 10.1016/j.lfs.2020.118913] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
AIM Cyclophosphamide (CYP) chemotherapy induces bladder toxicity and hemorrhagic cystitis in cancer patients constituting a current clinical concern. Oxidative inflammatory cascades have been implicated as the mechanism contributing to CYP bladder urotoxicity. We thus assayed to explore whether zinc (Zn) supplementation could mitigate CYP-induced urotoxicity and evaluate the possible underlying mechanism in rats. MAIN METHOD Rats were orally administered Zn (100 mg/kg b.w./day) for 10 days against urotoxicity induced by single injection of CYP (150 mg/kg b.w., ip) on day 7. KEY FINDINGS CYP significantly depressed bladder activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH) levels, whereas malondialdehyde level was increased prominently. In addition, CYP induced marked increases in the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and nitric oxide (NO) confirmed by histological alterations. CYP prominently increased bladder inducible nitric oxide synthase (iNOS) activity, nuclear factor-kappa B (NF-ĸB) and expression of caspase-3 protein. Zinc supplementation considerably abrogated the bladder urotoxicity by restoring redox balance, proinflammatory and apoptotic cascades and alleviated histopathological changes. SIGNIFICANCE This is the first to reveal zinc potential to prevent CYP-induced urotoxic hemorrhagic cystitis via restoring redox balance and enhancing anti-inflammatory and antiapoptotic mechanisms in rat bladder.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex-Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria.
| | - C O Edeogu
- Department of Medical Biochemistry, Faculty of Basic Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Florence I Offor
- Department of Medical Laboratory Sciences, Faculty of Health Sciences and Technology, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria
| | - Elizabeth E Besong
- Department of Physiology, Faculty of Basic Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Gabriel G Akunna
- Department of Anatomy, College of Medicine and Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | | |
Collapse
|
40
|
Iqubal A, Syed MA, Ali J, Najmi AK, Haque MM, Haque SE. Nerolidol protects the liver against cyclophosphamide-induced hepatic inflammation, apoptosis, and fibrosis via modulation of Nrf2, NF-κB p65, and caspase-3 signaling molecules in Swiss albino mice. Biofactors 2020; 46:963-973. [PMID: 32941697 DOI: 10.1002/biof.1679] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Cyclophosphamide (CP)-induced hepatotoxic manifestations are major concern for patients undergoing chemotherapy, which often limit its therapeutic utility. Nerolidol (NER) is a natural bioactive molecule having potent gonadoprotective, neuroprotective, and cardioprotective properties but has not been explored for its hepatoprotective effect and underlying mechanism. Therefore, in the current study hepatoprotective potential of nerolidol was studied in CP-induced hepatic oxidative stress, inflammation, apoptosis, and fibrosis via modulation of Nrf2, NF-κB p65, caspase-3, TGF-β1, and associated biochemical status in Swiss albino mice. NER (200, 400 mg/kg, p.o) and fenofibrate (FF) 80 mg/kg, p.o. were administered from first to fourteenth day and CP was administered at the dose of 200 mg/kg, i.p on seventh day. On fifteenth day, animals were sacrificed and estimation of oxidative stress, inflammation, apoptosis, fibrosis, histopathology (H E and MT staining), and immunohistochemistry was performed in the liver tissue. Administration of NER effectively normalized the elevated level of hepatic injury markers (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase), marker of oxidative stress that is, malondialdehyde, inflammatory cytokines (TNF-α, IL-6, IL-1β, and IL-10), NF-κB p65, apoptotic marker (cleaved caspase 3) and increased the level of Nrf2 and antioxidant enzymes (superoxide dismutase, CAT, and glutathione). Treatment with NER further reduced the structural damage of hepatocytes and markers of hepatic fibrosis such as TGF-β1, hyaluronic acid, 4-hydroxyproline and collagen-rich stained area, estimated by MT staining. Findings of the current study showed that nerolidol exhibited potent antioxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic potential and thus acted as hepatoprotective agent. Present study represents novel mechanism of nerolidol against CP-induced hepatotoxicity. However, further studies are needed to use nerolidol as an adjuvant in chemotherapeutically treated patients.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | | | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
41
|
Iqubal A, Ahmed M, Ahmad S, Sahoo CR, Iqubal MK, Haque SE. Environmental neurotoxic pollutants: review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41175-41198. [PMID: 32820440 DOI: 10.1007/s11356-020-10539-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/16/2020] [Indexed: 05/23/2023]
Abstract
Environmental pollutants are recognized as one of the major concerns for public health and responsible for various forms of neurological disorders. Some of the common sources of environmental pollutants related to neurotoxic manifestations are industrial waste, pesticides, automobile exhaust, laboratory waste, and burning of terrestrial waste. Among various environmental pollutants, particulate matter, ultrafine particulate matter, nanoparticles, and lipophilic vaporized toxicant (acrolein) easily cross the blood-brain barrier, activate innate immune responses in the astrocytes, microglia, and neurons, and exert neurotoxicity. Growing shreds of evidence from human epidemiological studies have correlated the environmental pollutants with neuroinflammation, oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, myelin sheath disruption, and alterations in the blood-brain barrier anatomy leading to cognitive dysfunction and poor quality of life. These environmental pollutants also considerably cause developmental neurotoxicity, exhibit teratogenic effect and mental growth retardance, and reduce IQ level. Until now, the exact mechanism of pollutant-induced neurotoxicity is not known, but studies have shown interference of pollutants with the endogenous antioxidant defense system, inflammatory pathway (Nrf2/NF-kB, MAPKs/PI3K, and Akt/GSK3β), modulation of neurotransmitters, and reduction in long-term potentiation. In the current review, various sources of pollutants and exposure to the human population, developmental neurotoxicity, and molecular mechanism of different pollutants involved in the pathogenesis of different neurological disorders have been discussed.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Musheer Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shahnawaz Ahmad
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
42
|
Iqubal A, Syed MA, Najmi AK, Azam F, Barreto GE, Iqubal MK, Ali J, Haque SE. Nano-engineered nerolidol loaded lipid carrier delivery system attenuates cyclophosphamide neurotoxicity - Probable role of NLRP3 inflammasome and caspase-1. Exp Neurol 2020; 334:113464. [PMID: 32941795 DOI: 10.1016/j.expneurol.2020.113464] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/29/2020] [Accepted: 09/12/2020] [Indexed: 01/15/2023]
Abstract
Neuroinflammation is one of the most common etiology in various neurological disorders and responsible for multi-array neurotoxic manifestations such as neurodegeneration, neurotransmitters alteration and cognitive dysfunction. NR (Nerolidol) is a natural bioactive molecule which possesses significant antioxidant and anti-inflammatory potential, but suffers from glitches of low solubility, low bioavailability and fast hepatic metabolism. In the current study, we fabricated nano-engineered lipid carrier of nerolidol (NR-NLC) for its effective delivery into the brain and explored its effect on neuroinflammation, neurotransmitters level and on dysfunctional behavioral attributes induced by CYC (cyclophosphamide). The binding affinity of nerolidol with NLRP3 and TLR-4 was performed which showed stong interaction between them. NR-NLC was prepared by the ultrasonication methods and particle size was determined by Zeta-sizer. Swiss Albino mice were divided into 5 groups (n = 6), assessed for behavioral dysfunction, and sacrificed on the fifteenth day following cyclophosphamide treatment. Brains were then removed and used for biochemical, histopathological, immunohistochemical and fluorescence microscopic analysis. Biochemical analysis showed increased levels of MDA, TNF-α, IL-6, IL-1β, acetylcholine esterase, BDNF, 5-HT and dopamine, and reduced levels of SOD, CAT, GSH, IL-10, along with significant behavioral dysfunction in cyclophosphamide-treated animals. Significant neuronal damage was also observed in the histological study. Immunohistochemical analysis demonstrated increased expression of NLRP3 and caspase-1. Fluorescence microscopic analysis showed significant availability of NR-NLC in the hippocampus and cortex region. In contrast, treatment with NR-NLC effectively mitigated the aforementioned neurotoxic manifestation as compared to NR suspension. Our results showed potent neuroprotective effect of NR-NLC via modulation of oxidative stress, NLRP3 inflammasome, caspase-1 and neurotransmitter status.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Faizul Azam
- Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
43
|
The Role of Antioxidants in Ameliorating Cyclophosphamide-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4965171. [PMID: 32454939 PMCID: PMC7238386 DOI: 10.1155/2020/4965171] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
The chemotherapeutic and immunosuppressive agent cyclophosphamide has previously been shown to induce complications within the setting of bone marrow transplantation. More recently, cardiotoxicity has been shown to be a dose-limiting factor during cyclophosphamide therapy, and cardiooncology is getting wider attention. Though mechanism of cyclophosphamide-induced cardiotoxicity is not completely understood, it is thought to encompass oxidative and nitrative stress. As such, this review focuses on antioxidants and their role in preventing or ameliorating cyclophosphamide-induced cardiotoxicity. It will give special emphasis to the cardioprotective effects of natural, plant-derived antioxidants that have garnered significant interest in recent times.
Collapse
|
44
|
Iqubal A, Syed MA, Najmi AK, Ali J, Haque SE. Ameliorative effect of nerolidol on cyclophosphamide-induced gonadal toxicity in Swiss Albino mice: Biochemical-, histological- and immunohistochemical-based evidences. Andrologia 2020; 52:e13535. [PMID: 32048763 DOI: 10.1111/and.13535] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
Cyclophosphamide (CP) is commonly used as antineoplastic and immunosuppressant drug with noticeable gonadotoxic profile. Nerolidol (NER) is a sesquiterpene with potent antioxidant and anti-inflammatory properties. Thus, the present study was designed to explore its possible gonadal protective potential against cyclophosphamide-induced testicular, epididymal, seminal and spermatozoal toxicities. Animals were divided into five groups: control (normal saline for 14 days), treatment group (NER 200 and 400 mg/kg, p.o) for 14 days along with a single dose of cyclophosphamide (200 mg/kg, i.p) on 7th day, toxic and Per se groups (cyclophosphamide 200 mg/kg i.p) on 7th day and NER 400 mg/kg for 14 days respectively. Animals were sacrificed on the 15 day, and body weight, weight of reproductive organs, testosterone level, sperm count, biochemical parameters, histopathological and immunohistochemical studies were performed in the testes, epididymis and in the serum. CP administration induced oxidative stress, nitrative stress, inflammation, reduced testosterone level, sperm count, increased expression of MPO and caused histological aberrations in the testes, epididymis and seminal vesicles. CP caused reduced sperm count, sperm motility and testosterone level which got reversed upon treatment with nerolidol in a dose-dependent manner. Nerolidol thus acted as a gonadoprotective molecule and prevented the gonadotoxicity of CP.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
45
|
Gonçalves ECD, Baldasso GM, Bicca MA, Paes RS, Capasso R, Dutra RC. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules 2020; 25:E1567. [PMID: 32235333 PMCID: PMC7181184 DOI: 10.3390/molecules25071567] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Medicinal use of Cannabis sativa L. has an extensive history and it was essential in the discovery of phytocannabinoids, including the Cannabis major psychoactive compound-Δ9-tetrahydrocannabinol (Δ9-THC)-as well as the G-protein-coupled cannabinoid receptors (CBR), named cannabinoid receptor type-1 (CB1R) and cannabinoid receptor type-2 (CB2R), both part of the now known endocannabinoid system (ECS). Cannabinoids is a vast term that defines several compounds that have been characterized in three categories: (i) endogenous, (ii) synthetic, and (iii) phytocannabinoids, and are able to modulate the CBR and ECS. Particularly, phytocannabinoids are natural terpenoids or phenolic compounds derived from Cannabis sativa. However, these terpenoids and phenolic compounds can also be derived from other plants (non-cannabinoids) and still induce cannabinoid-like properties. Cannabimimetic ligands, beyond the Cannabis plant, can act as CBR agonists or antagonists, or ECS enzyme inhibitors, besides being able of playing a role in immune-mediated inflammatory and infectious diseases, neuroinflammatory, neurological, and neurodegenerative diseases, as well as in cancer, and autoimmunity by itself. In this review, we summarize and critically highlight past, present, and future progress on the understanding of the role of cannabinoid-like molecules, mainly terpenes, as prospective therapeutics for different pathological conditions.
Collapse
Affiliation(s)
- Elaine C. D. Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Gabriela M. Baldasso
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Maíra A. Bicca
- Neurosurgery Department, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Rodrigo S. Paes
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80,055 Portici, Italy
| | - Rafael C. Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
46
|
Iqubal A, Syed MA, Haque MM, Najmi AK, Ali J, Haque SE. Effect of nerolidol on cyclophosphamide-induced bone marrow and hematologic toxicity in Swiss albino mice. Exp Hematol 2020; 82:24-32. [PMID: 31987924 DOI: 10.1016/j.exphem.2020.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
Cyclophosphamide (CP) is one of the commonly used anticancer drugs, but its use is limited by myelotoxicity. Nerolidol (NER) is a lipophilic, bioactive sesquiterpene reported to have neuroprotective, cardioprotective, gastroprotective, and renal protective potential, but its myeloprotective potential is underexplored. This study was aimed at evaluating the myeloid-protective potential of NER in CP-induced myelotoxic mice. NER 200 and 400 mg/kg was given orally from the first to the 14th day. CP 200 mg/kg was administered intravenously on the seventh day. At the end of the study, mice were humanly killed, and blood and bone marrow were collected and stored for hematologic, biochemical and histopathologic estimations. Bone marrow analysis revealed reduced bone marrow cellularity, α-esterase activity, colony-forming unit granulocyte-macrophage (CFU-GM) levels, colony-forming unit erythroid (CFU-E) levels, and burst-forming unit-erythroid (BFU-E) levels. Hematologic findings revealed reduced peripheral blood count and granulocyte-colony stimulating factor (G-CSF) levels, whereas biochemical analysis revealed increased malondialdehyde (MDA), tumor necrosis factor α (TNF-α), interleukin (IL)-6, and IL-1β levels and reduced superoxide dismutase (SOD), catalase (CAT), and IL-10 levels. Histopathologic study further strengthened our findings. Treatment with NER significantly reversed the hematotoxic and myelotoxic aberrations and retained the structural integrity of bone marrow. Findings of the current study suggest that NER is a potential therapeutic molecule that can mitigate CP-induced hematotoxic and myelotoxic manifestations. However, more detailed studies are needed to explicate the mechanism underlying its protective effect.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|