1
|
Wally ME, Aly MH. Gastroprotective Effect of Linagliptin on Indomethacin-Induced Gastric Ulceration in Mice: Crosstalk Between Oxidative Stress and Inflammasome Pathways. ACS Pharmacol Transl Sci 2025; 8:808-818. [PMID: 40109745 PMCID: PMC11915470 DOI: 10.1021/acsptsci.4c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
The clinical efficacy of indomethacin, a nonsteroidal anti-inflammatory drug, is hindered by its high ulcerogenic potential. Linagliptin, a dipeptidyl peptidase-4 inhibitor, has demonstrated anti-inflammatory properties through NLRP3 inflammasome modulation; however, its possible antiulcerogenic effect remains unclear. This study aimed to examine the potential prophylactic effect of linagliptin against indomethacin-induced gastric ulcers with a focus on NLRP3 inflammasome signaling. Gastric ulcers were induced using indomethacin and compared to pretreatment with linagliptin or the standard prophylactic omeprazole. Gastric injury was confirmed by gross morphology, ulcer scoring, and histopathological assessments. Additionally, redox status markers glutathione reductase (GSH), malondialdehyde (MDA), and Nrf2/Keap-1/HO-1 were evaluated in the gastric tissue. Immunohistochemical analysis of pNF-κB, NLRP3, and Caspase-1 inflammasome parameters was also conducted. Finally, measurement of gastric levels of Gasdermin-D was performed, as well as immunohistochemical and gene expression of IL-1β. Pretreatment with linagliptin suppressed all features of mucosal damage as well as inflammatory cell infiltration. The antioxidant effect of linagliptin was evident in low MDA, high GSH gastric levels, and high immunohistochemical reactivity of gastric tissues against Nrf2 and HO-1 antibodies, as well as low gastric levels of keap1. The overly active inflammasome pathway observed in indomethacin-induced ulcerated samples was reinstated by linagliptin, as seen in the suppression of pNF-κB, NLRP3, Caspase-1, and IL-1β immunohistochemical reactivity as well as Gasdermin-D levels. Our study showed that NLRP3 inflammasome contributes to the pathogenesis of indomethacin-mediated gastric injury and that linagliptin exhibits a protective effect against indomethacin-induced gastric ulcers, possibly through activation of the Nrf2/HO-1 antioxidant pathway and inhibition of the NLRP3 inflammasome axis.
Collapse
Affiliation(s)
- Maha E Wally
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
- Health Research Center of Excellence; Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Mohamed H Aly
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
- Health Research Center of Excellence; Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| |
Collapse
|
2
|
Sun J, Yan T, Zhang Y, Wen C, Yang J. Gastroprotective effect of fucoidan from Sargassum siliquastrum against ethanol-induced gastric mucosal injury. Food Res Int 2025; 201:115566. [PMID: 39849715 DOI: 10.1016/j.foodres.2024.115566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/21/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
The ethanol-induced BALB/c mice and human gastric epithelial cell (Ges-1 cell) models were used to investigate the Sargassum siliquastrum fucoidan (SFuc) gastroprotective capability. The injury score and histopathological sections of the stomach were used to evaluate the gastroprotective capability. The western blotting and RT-PCR methods determined the signaling mechanism of mice's gastric injury. SFuc is fucoidan with a molecular weight of 300.7 and 25.1 kDa. The injury score and ulcer index of the SFuc-200 group decreased by 3.85 and 2.06 folds in contrast with the Model group, respectively. The findings indicated that SFuc reduced oxidative stress and inflammatory factor expression in the gastric mucosa by downregulating the levels of associated genes within the TLR-4, MyD88, and MAPK/NF-κB signaling pathways. Meanwhile, the SFuc-200 group promoted the expressions of EGF and PGE 2 by 1.53 and 1.52 folds, respectively. Together with the expression inhibition of p38, ERK, JNK, and NF-κB proteins in gastric tissue to help for differentiation of gastric cells. In addition, SFuc significantly reduced apoptosis occurrence in mice and Ges-1 cells. Our study provides potential mechanism clues of the SFuc's resistance to ethanol-induced gastric mucosal damage, suggesting its potential functional food for gastric protection.
Collapse
Affiliation(s)
- Jinghe Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Tingting Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yuying Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chengrong Wen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jingfeng Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
3
|
Aly MH, Said AK, Farghaly AM, Eldaly DA, Ahmed DS, Gomaa MH, Elgebaly NH, Sameh O, Elahwany SK, Ebrahem TT, Sameh Y, Wally ME. Protective effect of astaxanthin on indomethacin-induced gastric ulcerations in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9897-9907. [PMID: 38940848 PMCID: PMC11582222 DOI: 10.1007/s00210-024-03206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
Gastric ulcer disease remains one of the common medical burdens affecting millions worldwide due to its prevalent risk factors with the chronic usage of non-steroidal anti-inflammatory drugs at the top, reportedly through the stimulation of oxidative stress and triggering of inflammatory and apoptotic cascades in the gastric mucosa. Astaxanthin, a dietary keto-carotenoid derived from marine organisms is gaining a wide interest as a nutraceutical for its pronounced antioxidant properties. Here, we aim to examine the potential modulatory role of astaxanthin on indomethacin-induced gastric ulceration in experimental mice. Twenty-four Swiss albino mice were randomly distributed into four groups: a control group, an indomethacin group, and two groups pre-treated with either omeprazole or astaxanthin. The gastric tissues were assessed using gross morphology, ulcer scoring, gastric juice acidity, as well as reduced glutathione (GSH) and malondialdehyde (MDA) levels. Histopathological examination and immunostaining for nuclear factor-kappa B (NF-κB) and caspase-3 levels were also employed. Indomethacin group tended to show a higher number of mucosal ulcerations relative to control and pre-treated groups. The indomethacin group also showed significantly lower GSH levels and higher MDA levels relative to control. Immunostaining of gastric tissue sections showed a higher reactivity to NF-κB and caspase-3 in indomethacin group. Astaxanthin pre-treatment significantly elevated gastric juice pH, normalized GSH levels, and lowered the indomethacin-induced elevations in MDA, NF-κB, and caspase-3 levels. These results indicate that astaxanthin exhibits a comparable protective effect to omeprazole, against indomethacin-induced gastric ulceration. This anti-ulcerogenic effect could be mediated through its antioxidant, anti-inflammatory, and anti-apoptotic modulatory activities.
Collapse
Affiliation(s)
- Mohamed H Aly
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt.
- Health Research Center of Excellence; Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt.
| | - Aya K Said
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
- Health Research Center of Excellence; Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Aya M Farghaly
- Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Dalia A Eldaly
- Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Dina S Ahmed
- Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Maram H Gomaa
- Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Nazih H Elgebaly
- Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Omar Sameh
- Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Salma K Elahwany
- Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Tasneem T Ebrahem
- Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Youssif Sameh
- Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Maha E Wally
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt.
- Health Research Center of Excellence; Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt.
| |
Collapse
|
4
|
Zhang X, Guan M, Yi W, Li X, Ding X, He Y, Han W, Wang Z, Tang Q, Liao B, Shen J, Han X, Bai D. Smart Response Biomaterials for Pain Management. Adv Healthc Mater 2024; 13:e2401555. [PMID: 39039990 DOI: 10.1002/adhm.202401555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/12/2024] [Indexed: 07/24/2024]
Abstract
The intricate nature of pain classification and mechanism constantly affects the recovery of diseases and the well-being of patients. Key medical challenges persist in devising effective pain management strategies. Therefore, a comprehensive review of relevant methods and research advancements in pain management is conducted. This overview covers the main categorization of pain and its developmental mechanism, followed by a review of pertinent research and techniques for managing pain. These techniques include commonly prescribed medications, invasive procedures, and noninvasive physical therapy methods used in rehabilitation medicine. Additionally, for the first time, a systematic summary of the utilization of responsive biomaterials in pain management is provided, encompassing their response to physical stimuli such as ultrasound, magnetic fields, electric fields, light, and temperature, as well as changes in the physiological environment like reactive oxygen species (ROS) and pH. Even though the application of responsive biomaterials in pain management remains limited and at a fundamental level, recent years have seen the examination and debate of relevant research findings. These profound discussions aim to provide trends and directions for future research in pain management.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Mengtong Guan
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weiwei Yi
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Xinhe Li
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Xiaoqian Ding
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Yi He
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Wang Han
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Zijie Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Qiuyu Tang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Bo Liao
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jieliang Shen
- Department of Rehabilitation Medicine, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, 402760, P. R. China
| | - Xiaoyu Han
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
5
|
H. Altemani F, H. Elmaidomy A, H. Abu-Baih D, M. Abdel Zaher A, Mokhtar FA, A. Algehainy N, T. Bakhsh H, Bringmann G, Ramadan Abdelmohsen U, Abdelhafez OH. Tamarix aphylla derived metabolites ameliorate indomethacin-induced gastric ulcers in rats by modulating the MAPK signaling pathway, alleviating oxidative stress and inflammation: In vivo study supported by pharmacological network analysis. PLoS One 2024; 19:e0302015. [PMID: 38728332 PMCID: PMC11086843 DOI: 10.1371/journal.pone.0302015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Nature has proven to be a treasure resource of bioactive metabolites. In this regard, Tamarix aphylla (F. Tamaricaceae) leaves crude extract was investigated for its gastroprotective effect against indomethacin-induced damage to the gastric mucosa. Additionally, phytochemical investigation of the methanolic extract afforded eight flavonoids' derivatives (1-8). On pharmacology networking study, the isolated compounds identified 123 unique targets where only 45 targets were related to peptic ulcer conditions, these 45 targets include 11 targets specifically correlate to gastric ulcer. The protein-protein interaction defined the PTGS2 gene as one of the highly interacted genes and the complete pharmacology network defined the PTGS2 gene as the most represented gene. The top KEGG signaling pathways according to fold enrichment analysis was the EGFR tyrosine kinase inhibitor resistance pathway. As a result, these findings highlighted the significance of using T. aphylla leaves crude extract as an anti-gastric ulcer candidate, which provides a safer option to chemical antisecretory medicines, which are infamous for their negative side effects. Our findings have illuminated the potent anti-inflammatory and antioxidant effects of T. aphylla, which are likely mediated by suppressing IL-1β, IL-6, TNF-α, and MAPK signaling pathways, without compromising gastric acidity.
Collapse
Affiliation(s)
- Faisal H. Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abeer H. Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Dalia H. Abu-Baih
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Deraya Center for Scientific Research, Deraya University, Minia, Egypt
| | - Azza M. Abdel Zaher
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | | | - Naseh A. Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Hussain T. Bakhsh
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Usama Ramadan Abdelmohsen
- Deraya Center for Scientific Research, Deraya University, Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | |
Collapse
|
6
|
Gong H, Zhao N, Zhu C, Luo L, Liu S. Treatment of gastric ulcer, traditional Chinese medicine may be a better choice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117793. [PMID: 38278376 DOI: 10.1016/j.jep.2024.117793] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastric ulcer (GU) is the injury of the gastric mucosa caused by the stimulation of various pathogenic factors penetrating the deep mucosal muscle layer. An increasing number of studies have shown that traditional Chinese medicine (TCM) is highly effective in treating GU due to its multitarget, multilevel, and multi-pathway effects. AIM OF THE STUDY To review the latest research progress in the treatment of GU by TCM, including clinical and experimental studies, focusing on the target and mechanism of action of drugs and providing a theoretical basis for the treatment of GU by natural herbs. MATERIALS AND METHODS Electronic databases (PubMed, Elsevier, Springer, Web of Science, and CNKI) were searched using the keywords "gastric ulcer", "gastric mucosal lesion", "TCM" and or paired with "peptic ulcer" and "natural drugs" for studies published in the last fifteen years until 2023. RESULTS TCM, including single components of natural products, Chinese patent medicines (CPM), and TCM decoction, is expected to treat GU by regulating various mechanisms, such as redox balance, inflammatory factors, angiogenesis, gastric mucosal protective factors, intestinal flora, apoptosis, and autophagy. CONCLUSIONS We discussed and summarized the mechanism of TCM in the treatment of GU, which provided a sufficient basis for TCM treatment of GU.
Collapse
Affiliation(s)
- Haiying Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Department of Gastroenterology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Conglei Zhu
- Department of Pharmacy, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Lin Luo
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Ferah Okkay I, Okkay U, Cicek B, Karatas O, Yilmaz A, Yesilyurt F, Hacimuftuoglu A. Syringic acid guards against indomethacin-induced gastric ulcer by alleviating inflammation, oxidative stress and apoptosis. Biotech Histochem 2024; 99:147-156. [PMID: 38644776 DOI: 10.1080/10520295.2024.2344477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
The purpose of this study was to evaluate the effects of syringic acid, an anti-oxidant, on indomethacin induced gastric ulcers in rats. Experimental groups were control, ulcer, ulcer treated with 20 mg/kg esomeprazole (a proton pump inhibitor that reduces acid secretion), and ulcer treated with 100 mg/kg syringic acid. Rats were pretreated with esomeprazole or syringic acid two weeks before ulcer induction. Our histopathological observations showed that either syringic acid or esomeprazole attenuated the severity of gastric mucosal damage. Moreover, syringic acid and esomeprazole pretreatments alleviated indomethacin-induced damage by regulating oxidative stress, inflammatory response, the level of transforming growth factor-β (TGF-β), expressions of COX and prostaglandin E2, cell proliferation, apoptosis and regulation of the NF-κB signaling pathway. We conclude that either esomeprazole or syringic acid administration protected the gastric mucosa from harmful effects of indomethacin. Syringic acid might, therefore be a potential therapeutic agent for preventing and treating indomethacin-induced gastric damage.
Collapse
Affiliation(s)
- Irmak Ferah Okkay
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Ufuk Okkay
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Ozhan Karatas
- Department of Pathology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Aysegul Yilmaz
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Fatma Yesilyurt
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
8
|
Abu-Baih DH, Gomaa AAR, Abdel-Wahab NM, Abdelaleem ER, Zaher AMA, Hassan NF, Bringmann G, Abdelmohsen UR, Altemani FH, Algehainy NA, Mokhtar FA, Abdelwahab MF. Apium extract alleviates indomethacin-induced gastric ulcers in rats via modulating the VEGF and IK-κB/NF-κB p65 signaling pathway: insights from in silico and in vivo investigations. BMC Complement Med Ther 2024; 24:88. [PMID: 38355510 PMCID: PMC10865661 DOI: 10.1186/s12906-023-04333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/31/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Gastric ulcers represent a worldwide health problem, characterized by erosions that affect the mucous membrane of the stomach and may even reach the muscular layer, leading to serious complications. Numerous natural products have been assessed as anti-ulcerogenic agents, and have been considered as new approaches for treatment or prevention of gastric ulcers. The present research investigated the preventive benefits of Apium graveolens L. (Apiaceae), known as celery, seed extract towards indomethacin-induced ulceration of the stomach in rats. METHODS Metabolomic profiling, employing liquid chromatography coupled to high-resolution electrospray ionization mass spectrometry (LC-HR-ESI-MS), was implemented with the aim of investigating the chemical profile of the seeds. Histopathological analysis of gastric tissues, as well as assessment of numerous inflammatory cytokines and oxidative stress indicators, confirmed the in vivo evaluation. RESULTS The prior treatment with A. graveolens seed extract resulted in a substantial reduction in the ulcer index when compared to the indomethacin group, indicating an improvement in stomach mucosal injury. Moreover, the gastroprotective effect was demonstrated through examination of the oxidative stress biomarkers which was significantly attenuated upon pre-treatment with A. graveolens seed extract. Vascular endothelial growth factor (VEGF), a fundamental angiogenic factor that stimulates angiogenesis, was markedly inhibited by indomethacin. A. graveolens seed extract restored this diminished level of VEGF. The dramatic reductions in NF-κB protein levels indicate a considerable attenuation of the indomethacin-induced IKκB/NF-κB p65 signaling cascade. These activities were also correlated to the tentatively featured secondary metabolites including, phenolic acids, coumarins and flavonoids, previously evidenced to exert potent anti-inflammatory and antioxidant activities. According to our network pharmacology study, the identified metabolites annotated 379 unique genes, among which only 17 genes were related to gastric ulcer. The PTGS2, MMP2 and PTGS1 were the top annotated genes related to gastric ulcer. The top biological pathway was the VEGF signaling pathway. CONCLUSION A. graveolens seed extract possesses significant anti-ulcer activity, similar to famotidine, against gastric lesions induced by indomethacin in rats. It is worth highlighting that the extract overcomes the negative effects of conventional chemical anti-secretory drugs because it does not lower stomach acidity.
Collapse
Affiliation(s)
- Dalia H Abu-Baih
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, New Minia, 61111, Egypt
| | | | | | - Enas Reda Abdelaleem
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Azza M Abdel Zaher
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, 11571, Egypt
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt.
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Naseh A Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Fatma Alzahraa Mokhtar
- Fujairah Research Centre, Sakamkam Road, Fujairah, United Arab Emirates
- Department of pharmacognosy, Faculty of pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, 44813, Sharkia, Egypt
| | - Miada F Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| |
Collapse
|
9
|
Liu J, Fang J, Zhang J, Wang D, Zhang Z, Wang C, Sun J, Chen J, Li H, Jing S. Protective Effect of Anwulignan on Gastric Injury Induced by Indomethacin in Mice. J Pharmacol Exp Ther 2022; 383:80-90. [PMID: 36041883 DOI: 10.1124/jpet.121.001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
Anwulignan (AN) is a monomer lignan from Schisandra sphenanthera Rehd. et Wits (Schisandra sphenanthera fructus, Schisandra sphenanthera). The protective effect of AN against the indomethacin (IND)-induced gastric injury to mice and the related mechanism of action was investigated in this study. The effect of AN was mainly assessed by observing the gastric tissue morphology, gastric ulcer index (GUI), ulcer inhibition rate (UIR), gastric juice volume (GJV) and pH value. Chemical colorimetry, immunofluorescence, ELISA, and Western blot were used to detect related factors in the gastric tissue. The results showed that AN reduced the GUI, increased the UIR, inhibited the GJV, and increased the gastric pH value. AN significantly increased cyclooxygenase-1, cyclooxygenase-2, and prostaglandin E2 expression levels in the gastric tissue, activated nuclear factor (erythroid-derived 2)-like 2 (Nrf2), increased heme oxygenase-1 expression, enhanced the activity of superoxide dismutase and glutathione peroxidase, and decreased the malondialdehyde content. AN reduced the phosphorylation of nuclear factor-κ gene binding (NF-κB) p65 and its nuclear translocation, the key protein of NF-κB signaling pathway in the gastric tissue, and the content of the pathway downstream signaling molecules, including interleukin-6, interleukin-1β, and tumor necrosis factor-α, to play an anti-inflammatory role. AN inhibited the downstream signals B-cell lymphoma 2-associated x protein and cleaved caspase-3 in gastric tissue, and activated B-cell lymphoma 2, to play an antiapoptotic role, which were further verified by Hoechst staining. Therefore, AN has a significant protection against the gastric injury induced by IND in mice, and the mechanism may be concerned in its activation of Nrf2, inhibition of NF-κB signaling pathway, and anti-apoptotic effect. SIGNIFICANCE STATEMENT: Anwulignan (AN) significantly reduced the indomethacin-induced gastric injury in mice, and its antioxidation, anti-inflammation, and antiapoptosis were considered to be involve in the effect, suggesting that AN should be a potential drug or food supplement for gastric injury induced by indomethacin.
Collapse
Affiliation(s)
- Jiawei Liu
- College of Pharmacy (J.W.L., J.H.F., J.X.Z., Z.H.Z., C.W., J.S., J.C., H.L.) and College of Medicine (D.W.), Beihua University, Affiliated Hospital of Beihua University (S.J.), Jilin, China
| | - Jiahui Fang
- College of Pharmacy (J.W.L., J.H.F., J.X.Z., Z.H.Z., C.W., J.S., J.C., H.L.) and College of Medicine (D.W.), Beihua University, Affiliated Hospital of Beihua University (S.J.), Jilin, China
| | - Junxiong Zhang
- College of Pharmacy (J.W.L., J.H.F., J.X.Z., Z.H.Z., C.W., J.S., J.C., H.L.) and College of Medicine (D.W.), Beihua University, Affiliated Hospital of Beihua University (S.J.), Jilin, China
| | - Dan Wang
- College of Pharmacy (J.W.L., J.H.F., J.X.Z., Z.H.Z., C.W., J.S., J.C., H.L.) and College of Medicine (D.W.), Beihua University, Affiliated Hospital of Beihua University (S.J.), Jilin, China
| | - Zhihong Zhang
- College of Pharmacy (J.W.L., J.H.F., J.X.Z., Z.H.Z., C.W., J.S., J.C., H.L.) and College of Medicine (D.W.), Beihua University, Affiliated Hospital of Beihua University (S.J.), Jilin, China
| | - Chunmei Wang
- College of Pharmacy (J.W.L., J.H.F., J.X.Z., Z.H.Z., C.W., J.S., J.C., H.L.) and College of Medicine (D.W.), Beihua University, Affiliated Hospital of Beihua University (S.J.), Jilin, China
| | - Jinghui Sun
- College of Pharmacy (J.W.L., J.H.F., J.X.Z., Z.H.Z., C.W., J.S., J.C., H.L.) and College of Medicine (D.W.), Beihua University, Affiliated Hospital of Beihua University (S.J.), Jilin, China
| | - Jianguang Chen
- College of Pharmacy (J.W.L., J.H.F., J.X.Z., Z.H.Z., C.W., J.S., J.C., H.L.) and College of Medicine (D.W.), Beihua University, Affiliated Hospital of Beihua University (S.J.), Jilin, China
| | - He Li
- College of Pharmacy (J.W.L., J.H.F., J.X.Z., Z.H.Z., C.W., J.S., J.C., H.L.) and College of Medicine (D.W.), Beihua University, Affiliated Hospital of Beihua University (S.J.), Jilin, China
| | - Shu Jing
- College of Pharmacy (J.W.L., J.H.F., J.X.Z., Z.H.Z., C.W., J.S., J.C., H.L.) and College of Medicine (D.W.), Beihua University, Affiliated Hospital of Beihua University (S.J.), Jilin, China
| |
Collapse
|
10
|
Lu SY, Guo S, Chai SB, Yang JQ, Yue Y, Li H, Yan HF, Zhang T, Sun PM, Sun HW, Zhou JL, Yang JW, Li ZP, Cui Y. Proteomic analysis of the effects of simulated microgravity in human gastric mucosal cells. LIFE SCIENCES IN SPACE RESEARCH 2022; 32:26-37. [PMID: 35065758 DOI: 10.1016/j.lssr.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 06/14/2023]
Abstract
Microgravity is an ecological factor that affects the environment of the body. In this study, quantitative isobaric labeling (tandem mass tag) method was used to study the changes in human gastric mucosal cells under simulated microgravity for the first time. Comparative proteomic analysis identified 394 (202 upregulated and 192 downregulated) and 542 (286 upregulated and 256 downregulated) proteins differentially regulated by simulated microgravity after 3 and 7 days, respectively. Then the identified proteins were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses for further exploration. The results of the analysis showed that the ribosomes of gastric mucosal cells were significantly impacted after exposure to simulated microgravity for 3 days, and the cells appeared to be in a state of stress and inflammation. Exposure to simulated microgravity for 7 days significantly affected the mitochondria of the cells, oxidative stress became more evident, while inflammation and weakened connections were observed in the cells. The results of this study highlighted the temporal response trend of gastric mucosal cells to the stressor of microgravity at the two time points of 3 and 7 days. These findings will provide insights into the development of methods to protect the gastric mucosa during space flight.
Collapse
Affiliation(s)
- Sheng-Yu Lu
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Song Guo
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Shao-Bin Chai
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jia-Qi Yang
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Pei-Ming Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Zheng-Peng Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| |
Collapse
|
11
|
Küçükler S, Kandemir FM, Yıldırım S. Protective effect of chrysin on indomethacin induced gastric ulcer in rats: role of multi-pathway regulation. Biotech Histochem 2022; 97:490-503. [PMID: 35026960 DOI: 10.1080/10520295.2021.2014569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We investigated the potential gastroprotective effects of chrysin on indomethacin induced gastric ulcers in rats. We used six groups of animals: control; indomethacin (Indo); reference (Ulcuran®); indomethacin + 25 mg/kg chrysin (Indo + CHR25); indomethacin + 50 mg/kg chrysin (Indo + CHR50); indomethacin + 100 mg/kg chrysin (Indo + CHR100). All doses of chrysin were given orally to rats before indomethacin. Gastric lesions were examined macroscopically and microscopically. The effects of treatment with chrysin were assessed versus a single dose of 30 mg/kg Ulcuran® (generic ranitidine) as reference standard. We also investigated gastric mucosal superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), malonaldehyde (MDA) and arginase activities, and COX-2, PGE2, iNOS, TNF-α, IL-1β, NFκB, MPO, Bax, caspase-3 and 8-OHdG levels. We assessed caspase-3 and Bax levels using immunohistochemistry. Compared to the control and reference groups, SOD, CAT, GPx and arginase activities and GSH levels decreased, and MDA levels increased in the indomethacin induced gastric ulcer group. iNOS, TNF-α, IL-1β, NFκB, MAPK-14, MPO, Bax and 8-OHdG levels were increased in the indomethacin treated gastric group, while COX-2 activity and PGE2 levels were decreased. The three doses of chrysin co-administered with indomethacin increased COX-2 activity and PGE2 levels in rats with ulcers. Chrysin exhibited gastroprotective effects on indomethacin induced gastric ulcer due to its antioxidant, anti-inflammatory and anti-apoptotic activities.
Collapse
Affiliation(s)
- Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
12
|
Wei Y, Ren S, Wang J, Wang Y, Cui Y, Tian M, Wang R, Liu H, Zhao Y. Dehydroevodiamine ameliorates indomethacin-induced gastric injury via inhibition of ERK and p38 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153764. [PMID: 34628242 DOI: 10.1016/j.phymed.2021.153764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Dehydroevodiamine (DHE), a pivotal quinazoline alkaloid isolated from Fructus Evodiae (Tetradium ruticarpum (A. Juss.) Hartley), has various pharmacological effects. However, the effect of DHE on gastric injury is still uncharted. PURPOSE To clarify the pharmacological effect and mechanism of DHE on gastric injury (GI) induced by indomethacin (IDO). STUDY DESIGN The gastric injury was induced in rat by oral administration of 5 mg/kg IDO for 7 days. Then the rats were treated with DHE (10, 20, 40 mg/kg, ig) for 7 days. METHODS The changes of food intake, body weight, gastric pH and general state observation were determined. And HE staining and AB-PAS staining was analyzed. Then, the inflammatory infiltration of gastric tissue was observed through MPO immunohistochemical approach, and the expression of TNF-α, IL-6 and IL-10 were measured. Furthermore, the levels of proteins ERK, p-ERK, P38, p-P38, JNK and p-JNK were determined to elucidate the molecular mechanism of DHE. RESULTS DHE alleviated food intake reduction, weight loss and gastric injury induced by IDO and made gastric pH and mucosal thickness return to normal. In addition, DHE could down regulate the expression of MPO, TNF-α and IL-6 and up regulate the expression of IL-10 to reduce the damage induced by inflammatory, and create a healing environment. Furthermore, DHE could significantly inhibit the phosphorylation of ERK and p38 not JNK. CONCLUSION DHE ameliorated dyspepsia, inflammatory infiltration and tissue damage induced by IDO through ERK and p38 signaling pathways rather than JNK pathway.
Collapse
Affiliation(s)
- Ying Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sichen Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jian Wang
- Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanling Wang
- China Military Institute of Chinese Medicine, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanfei Cui
- China Military Institute of Chinese Medicine, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Miao Tian
- China Military Institute of Chinese Medicine, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruilin Wang
- China Military Institute of Chinese Medicine, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Honghong Liu
- China Military Institute of Chinese Medicine, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanling Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
13
|
Kim SH, Ko IG, Jin JJ, Hwang L, Baek SS. Treadmill exercise ameliorates impairment of spatial learning memory in pups born to old and obese mother rats. J Exerc Rehabil 2021; 17:234-240. [PMID: 34527634 PMCID: PMC8413911 DOI: 10.12965/jer.2142466.233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/01/2021] [Indexed: 12/03/2022] Open
Abstract
Memory state of rat pups born to old and obese mother rats and the effect of a treadmill running of mother rats on the memory of rat pups were studied. The radial 8-arm maze test was performed to detect spatial learning memory, and the level of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in the hippocampus was measured by enzyme-linked immunoassay. Western blotting was performed for the expression of nuclear factor kappa-light-chain-enhancer (NF-κB), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), matrix metalloproteinase (MMP)-9, and immunohistochemistry for caspase-3 was conducted. The newborn rats were classified into following groups: pups born to old mother rats, pups born to old mother rats with exercise, pups born to old and obese mother rats, and pups born to old and obese mother rats with exercise. Exercise of mother ameliorated spatial learning memory impairment, inhibited proinflammatory cytokines production, NF-κB expression, and IκB-α phosphorylation of the pups born to old and obese mother rats. Maternal exercise suppressed Bax expression, the number of caspase-3, the level of MMP-9, and enhanced Bcl-2 expression of the pups born to old and obese mother rats. When the maternal exercise was performed, the impairment of spatial learning memory in pups was ameliorated. Therefore, it can be seen that exercise during pregnancy of older and obese mothers is an important factor in fetal health management.
Collapse
Affiliation(s)
- Sang-Hoon Kim
- Department of Sport & Health Sciences, College of Art & Culture, Sangmyung University, Seoul, Korea.,Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jun-Jang Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Lakkyong Hwang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Seung-Soo Baek
- Department of Sport & Health Sciences, College of Art & Culture, Sangmyung University, Seoul, Korea
| |
Collapse
|
14
|
Kim J, Chun S, Ohk SO, Kim S, Kim J, Lee S, Kim H, Kim S. Amelioration of alcohol‑induced gastric mucosa damage by oral administration of food‑polydeoxyribonucleotides. Mol Med Rep 2021; 24:790. [PMID: 34505634 PMCID: PMC8441963 DOI: 10.3892/mmr.2021.12430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Gastritis refers to inflammation caused by injury to the gastric epithelium, which is usually due to excessive alcohol consumption and prolonged use of nonsteroidal anti-inflammatory drugs. Millions of individuals worldwide suffer from this disease. However, the lack of safe and promising treatments makes it urgent to explore and develop leads from natural resources. Therefore, food as medicine may be the best approach for the treatment of these disorders. The present study described the protective effects of food-polydeoxyribonucleotides (f-PDRNs) in a rat model of gastric mucosal injury induced by HCl-EtOH. Administration of f-PDRN was performed with low-PRF002 (26 mg/kg/day), medium-PRF002 (52 mg/kg/day) and high-PRF002 (78 mg/kg/day) on the day of autopsy. The site of damage to the mucous membrane was also analysed. In addition, an increase in gastric juice pH, total acidity of gastric juice and decrease in gastric juice secretion were confirmed, and gastric juice secretion-related factors corresponding to the administration of f-PDRN were analysed. Administration of f-PDRN reduced the mRNA expression of histamine H2 receptor, muscarinic acetylcholine receptor M3, cholecystokinin 2 receptor and H+/K+ ATPase related to gastric acid secretion and downregulation of histamine, myeloperoxidase and cyclic adenosine monophosphate. In addition, it was histologically confirmed that the loss of epithelial cells and the distortion of the mucosa were recovered in the group in which f-PDRN was administered compared to the model group with gastric mucosa damage. In summary, the present study suggested that f-PDRN has therapeutic potential and may have beneficial effects if taken regularly as a food supplement.
Collapse
Affiliation(s)
- Jonghwan Kim
- Technology Innovation Team, C&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Soyoung Chun
- DNA Team, R&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Seul-Ong Ohk
- DNA Team, R&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Sanghoon Kim
- DNA Team, R&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Juwan Kim
- Pharmaceutical Formulation Team, R&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Sungoh Lee
- Research Strategy Team, C&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Hangyu Kim
- DNA Team, R&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Sujong Kim
- Research Strategy Team, C&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| |
Collapse
|
15
|
NF-κB in Gastric Cancer Development and Therapy. Biomedicines 2021; 9:biomedicines9080870. [PMID: 34440074 PMCID: PMC8389569 DOI: 10.3390/biomedicines9080870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is considered one of the most common causes of cancer-related death worldwide and, thus, a major health problem. A variety of environmental factors including physical and chemical noxae, as well as pathogen infections could contribute to the development of gastric cancer. The transcription factor nuclear factor kappa B (NF-κB) and its dysregulation has a major impact on gastric carcinogenesis due to the regulation of cytokines/chemokines, growth factors, anti-apoptotic factors, cell cycle regulators, and metalloproteinases. Changes in NF-κB signaling are directed by genetic alterations in the transcription factors themselves, but also in NF-κB signaling molecules. NF-κB actively participates in the crosstalk of the cells in the tumor micromilieu with divergent effects on the heterogeneous tumor cell and immune cell populations. Thus, the benefits/consequences of therapeutic targeting of NF-κB have to be carefully evaluated. In this review, we address recent knowledge about the mechanisms and consequences of NF-κB dysregulation in gastric cancer development and therapy.
Collapse
|
16
|
Wei Y, Wang R, Ren S, Liu X, Jing M, Li R, Tong Y, Wen J, Yang T, Wang J, Zhao Y. Zuojin Pill ameliorates inflammation in indomethacin-induced gastric injury via inhibition of MAPK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114103. [PMID: 33836259 DOI: 10.1016/j.jep.2021.114103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuojin Pill (ZJP) has been a classic prescription for the treatment of gastrointestinal diseases in China since ancient times. But its effect on non-steroidal anti-inflammatory drugs (NSAIDs) induced gastric injury (GI) is still uncharted. AIM OF THE STUDY This study aims to investigate the therapeutic effect and molecular mechanism of ZJP on indomethacin (IDO) induced gastric injury. MATERIALS AND METHODS GI was induced in rat by oral administration of 5 mg/kg IDO. Then the rats were treated with ZJP (1.26, 2.52, 5.04 g/kg, ig). The changes of food intake, body weight, gastric pH and general state observation were carried out to determine the improvement of ZJP in IDO-induced GI: HE staining and AB-PAS staining was analyzed to characterize the thickness of gastric mucosa and micro mucosal injury; in order to elucidate the effect of ZJP on IDO-induced inflammatory injury, the inflammatory infiltration of gastric tissue was observed by MPO immunohistochemical method, and the contents of TNF-α, IL-6 and IL-10 were measured. Furthermore, the regulatory mechanism of ZJP in treating IDO-induced GI was predicted with the help of network pharmacology, and the expression levels of key proteins ERK, p-ERK, P38, p-P38, JNK, p-JNK were determined to elucidate the molecular mechanism of ZJP. RESULTS Current data strongly demonstrated that ZJP alleviated food intake reduction, weight loss and gastric injury caused by IDO and made gastric pH and mucosal thickness return to normal. In addition, ZJP could reduce the level of MPO to alleviate the inflammatory infiltration of gastric tissue. Simultaneously, ZJP could down regulate the expression of TNF-α and IL-6 and up regulate the expression of IL-10 to reduce the damage caused by inflammatory, and create a healing environment. Furthermore, ZJP could significantly inhibit the phosphorylation of ERK, p38 and JNK, which leaded to the increase of inflammatory factors and the damage of gastric mucosa. CONCLUSION ZJP improved local inflammation by inhibiting MAPK signaling pathway, and had a good therapeutic effect on IDO-induced GI. This study has reference significance for the study of ZJP in the prevention and treatment of NSAID induced gastric injury. In addition, ZJP may be a new treatment option for the prevention and treatment of NSAID induced gastric disease.
Collapse
Affiliation(s)
- Ying Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruilin Wang
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sichen Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xia Liu
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, The Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Yuling Tong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tao Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yanling Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
17
|
Kim TH, Heo SY, Oh GW, Heo SJ, Jung WK. Applications of Marine Organism-Derived Polydeoxyribonucleotide: Its Potential in Biomedical Engineering. Mar Drugs 2021; 19:296. [PMID: 34067499 PMCID: PMC8224764 DOI: 10.3390/md19060296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
Polydeoxyribonucleotides (PDRNs) are a family of DNA-derived drugs with a molecular weight ranging from 50 to 1500 kDa, which are mainly extracted from the sperm cells of salmon trout or chum salmon. Many pre-clinical and clinical studies have demonstrated the wound healing and anti-inflammatory properties of PDRN, which are mediated by the activation of adenosine A2A receptor and salvage pathways, in addition to promoting osteoblast activity, collagen synthesis, and angiogenesis. In fact, PDRN is already marketed due to its therapeutic properties against various wound healing- and inflammation-related diseases. Therefore, this review assessed the most recent trends in marine organism-derived PDRN using the Google Scholar search engine. Further, we summarized the current applications and pharmacological properties of PDRN to serve as a reference for the development of novel PDRN-based technologies.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Department of Biomedical Engineering and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea;
| | - Seong-Yeong Heo
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea; (S.-Y.H.); (G.-W.O.)
| | - Gun-Woo Oh
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea; (S.-Y.H.); (G.-W.O.)
| | - Soo-Jin Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Korea
- Department of Marine Biology, Korea University of Science and Technology, Deajeon 34113, Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea;
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea; (S.-Y.H.); (G.-W.O.)
| |
Collapse
|
18
|
Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem Pharmacol 2020; 180:114147. [PMID: 32653589 PMCID: PMC7347500 DOI: 10.1016/j.bcp.2020.114147] [Citation(s) in RCA: 827] [Impact Index Per Article: 165.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Owing to the efficacy in reducing pain and inflammation, non-steroidal anti-inflammatory drugs (NSAIDs) are amongst the most popularly used medicines confirming their position in the WHO's Model List of Essential Medicines. With escalating musculoskeletal complications, as evident from 2016 Global Burden of Disease data, NSAID usage is evidently unavoidable. Apart from analgesic, anti-inflammatory and antipyretic efficacies, NSAIDs are further documented to offer protection against diverse critical disorders including cancer and heart attacks. However, data from multiple placebo-controlled trials and meta-analyses studies alarmingly signify the adverse effects of NSAIDs in gastrointestinal, cardiovascular, hepatic, renal, cerebral and pulmonary complications. Although extensive research has elucidated the mechanisms underlying the clinical hazards of NSAIDs, no review has extensively collated the outcomes on various multiorgan toxicities of these drugs together. In this regard, the present review provides a comprehensive insight of the existing knowledge and recent developments on NSAID-induced organ damage. It precisely encompasses the current understanding of structure, classification and mode of action of NSAIDs while reiterating on the emerging instances of NSAID drug repurposing along with pharmacophore modification aimed at safer usage of NSAIDs where toxic effects are tamed without compromising the clinical benefits. The review does not intend to vilify these 'wonder drugs'; rather provides a careful understanding of their side-effects which would be beneficial in evaluating the risk-benefit threshold while rationally using NSAIDs at safer dose and duration.
Collapse
Affiliation(s)
- Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101 India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India; Division of Molecular Medicine, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kankurgachi, Kolkata, West Bengal 700054 India.
| |
Collapse
|