1
|
Hamdy NM, Sallam AAM, Elazazy O, Kabel AM, Salama RM, Gouhar SA, El-Daly SM, Darwish SF. LincRNA-miR interactions in hepatocellular carcinoma: comprehensive review and in silico analysis: a step toward ncRNA precision. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04285-7. [PMID: 40410550 DOI: 10.1007/s00210-025-04285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 05/09/2025] [Indexed: 05/25/2025]
Abstract
The most prevalent form of primary liver cancer and one of the chief drivers of cancer-related mortality globally is hepatocellular carcinoma (HCC). Imminent evidence has indicated that non-coding RNAs (ncRNAs) play an integral part in the development and propagation of HCC. RNA stabilization, transcription regulation, chromatin and genomic architecture remodeling, enhancer-associated activity, and other varied properties set long intergenic ncRNA (lincRNA) genes apart from messenger RNA (mRNA)-encoding genes. Through a variety of processes, lincRNAs may generally be used to fine-tune the transcription of nearby genes with exceptional tissue specificity, underscoring our quickly developing knowledge of the non-coding genome. Through their binding with divergent cell targets, some HCC-related ncRNAs have been demonstrated to exhibit abnormal expression, contribute to malignant growth, evade apoptosis, and have invasive potential. Therefore, a better comprehension of lincRNA dysregulation might offer novel perspectives on the pathophysiology of HCC as well as innovative instruments for the early detection and management of HCC. In the present review, we provide an overview of the increasing relevance of lincRNAs as a major contributor to the pathophysiology of HCC, emphasizing their influence on signaling pathways implicated in the development, progression, and response to treatment of tumors. In addition, we go over the new approaches that target lincRNAs for HCC treatment as well as the possible therapeutic uses of lincRNAs as prognostic and diagnostic biomarkers for HCC.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, 11566, Egypt.
| | - Al-Aliaa M Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, 11566, Egypt
- Biochemistry Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ola Elazazy
- Biochemistry Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Shaimaa A Gouhar
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, 12622, Egypt
| | - Samar F Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
2
|
Chang L, Qin C, Wu J, Jiang H, Xu Q, Chen J, Xu X, Zhang X, Guan M, Deng X. The crosstalk between glutathione metabolism and non-coding RNAs in cancer progression and treatment resistance. Redox Biol 2025; 84:103689. [PMID: 40403492 DOI: 10.1016/j.redox.2025.103689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/11/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025] Open
Abstract
Excessive reactive oxygen species (ROS) are closely associated with the initiation and progression of cancers. As the most abundant intracellular antioxidant, glutathione (GSH) plays a critical role in regulating cellular ROS levels, modulating physiological processes, and is intricately linked to tumor progression and drug resistance. However, the underlying mechanisms remain not fully elucidated. Non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are key regulators of GSH levels. Different ncRNAs modulate various pathways involved in GSH metabolism, and these regulatory targets have the potential to serve as therapeutic targets for enhancing cancer treatment. In this review, we summarize the functions of GSH metabolism and highlight the significance of ncRNA-mediated regulation of GSH in cancer progression, drug resistance, and clinical applications.
Collapse
Affiliation(s)
- Lu Chang
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Chao Qin
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Jianbo Wu
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Haoqin Jiang
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Qianqian Xu
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Jian Chen
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Xiao Xu
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Xinju Zhang
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China.
| | - Xuan Deng
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China.
| |
Collapse
|
3
|
Sufianov A, Agaverdiev M, Mashkin A, Ilyasova T. Targeting microRNA methylation: Innovative approaches to diagnosing and treating hepatocellular carcinoma. Noncoding RNA Res 2025; 11:150-157. [PMID: 39829957 PMCID: PMC11742574 DOI: 10.1016/j.ncrna.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Hepatocellular carcinoma (HCC) stands as the most prevalent form of primary liver cancer and is frequently linked to underlying chronic liver conditions such as hepatitis B, hepatitis C, and cirrhosis. Despite the progress achieved in the field of oncology, HCC remains a significant clinical challenge, primarily due to its typically late-stage diagnosis and the complex and multifaceted nature of its tumor biology. These factors contribute to the limited effectiveness of current treatment modalities and result in poor patient prognosis. Emerging research has underscored the vital role of microRNAs (miRNAs)-small, non-coding RNA molecules that play a pivotal part in the post-transcriptional regulation of gene expression. These miRNAs are integral to a wide array of cellular functions, including proliferation, apoptosis, and differentiation, and their dysregulation is closely associated with the pathogenesis of various cancers, notably HCC. A major focus in recent studies has been on the epigenetic regulation of miRNAs through methylation, a key mechanism that modulates gene expression. This process, involving the addition of methyl groups to CpG islands in the promoter regions of miRNA genes, can result in either gene silencing or activation, influencing the expression of oncogenes and tumor suppressor genes. Such alterations have profound implications for tumor growth, metastasis, and resistance to treatment. Evidence suggests that aberrant miRNA methylation can serve as a powerful biomarker for early detection and prognosis in HCC and may present novel opportunities for therapeutic intervention. This review aims to provide a comprehensive overview of the current landscape of miRNA methylation in HCC, elucidating its significance in the molecular mechanisms of liver cancer and examining its potential for clinical application. By exploring the diagnostic and therapeutic potential of miRNA methylation, we seek to highlight its value in enhancing personalized treatment strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Murad Agaverdiev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Andrey Mashkin
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| |
Collapse
|
4
|
Yang S, Raza F, Li K, Qiu Y, Su J, Qiu M. Maximizing arsenic trioxide's anticancer potential: Targeted nanocarriers for solid tumor therapy. Colloids Surf B Biointerfaces 2024; 241:114014. [PMID: 38850742 DOI: 10.1016/j.colsurfb.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Arsenic trioxide (ATO) has gained significant attention due to its promising therapeutic effects in treating different diseases, particularly acute promyelocytic leukemia (APL). Its potent anticancer mechanisms have been extensively studied. Despite the great efficacy ATO shows in fighting cancers, drawbacks in the clinical use are obvious, especially for solid tumors, which include rapid renal clearance and short half-life, severe adverse effects, and high toxicity to normal cells. Recently, the emergence of nanomedicine offers a potential solution to these limitations. The enhanced biocompatibility, excellent targeting capability, and desirable effectiveness have attracted much interest. Therefore, we summarized various nanocarriers for targeted delivery of ATO to solid tumors. We also provided detailed anticancer mechanisms of ATO in treating cancers, its clinical trials and shortcomings as well as the combination therapy of ATO and other chemotherapeutic agents for reduced drug resistance and synergistic effects. Finally, the future study direction and prospects were also presented.
Collapse
Affiliation(s)
- Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kunwei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujiao Qiu
- The Wharton School and School of Nursing, University of Pennsylvania, Philadelphia 19104, USA
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Katifelis H, Gazouli M. RNA biomarkers in cancer therapeutics: The promise of personalized oncology. Adv Clin Chem 2024; 123:179-219. [PMID: 39181622 DOI: 10.1016/bs.acc.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cancer therapy is a rapidly evolving and constantly expanding field. Current approaches include surgery, conventional chemotherapy and novel biologic agents as in immunotherapy, that together compose a wide armamentarium. The plethora of choices can, however, be clinically challenging in prescribing the most suitable treatment for any given patient. Fortunately, biomarkers can greatly facilitate the most appropriate selection. In recent years, RNA-based biomarkers have proven most promising. These molecules that range from small noncoding RNAs to protein coding gene transcripts can be valuable in cancer management and especially in cancer therapeutics. Compared to their DNA counterparts which are stable throughout treatment, RNA-biomarkers are dynamic. This allows prediction of success prior to treatment start and can identify alterations in expression that could reflect response. Moreover, improved nucleic acid technology allows RNA to be extracted from practically every biofluid/matrix and evaluated with exceedingly high analytic sensitivity. In addition, samples are largely obtained by minimally invasive procedures and as such can be used serially to assess treatment response real-time. This chapter provides the reader insight on currently known RNA biomarkers, the latest research employing Artificial Intelligence in the identification of such molecules and in clinical decisions driving forward the era of personalized oncology.
Collapse
Affiliation(s)
- Hector Katifelis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
6
|
Yan M, Wang H, Wei R, Li W. Arsenic trioxide: applications, mechanisms of action, toxicity and rescue strategies to date. Arch Pharm Res 2024; 47:249-271. [PMID: 38147202 DOI: 10.1007/s12272-023-01481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Abstract
Arsenical medicine has obtained its status in traditional Chinese medicine for more than 2,000 years. In the 1970s, arsenic trioxide was identified to have high efficacy and potency for the treatment of acute promyelocytic leukemia, which promoted many studies on the therapeutic effects of arsenic trioxide. Currently, arsenic trioxide is widely used to treat acute promyelocytic leukemia and various solid tumors through various mechanisms of action in clinical practice; however, it is accompanied by a series of adverse reactions, especially cardiac toxicity. This review presents a comprehensive overview of arsenic trioxide from preclinical and clinical efficacy, potential mechanisms of action, toxicities, and rescue strategies for toxicities to provide guidance or assistance for the clinical application of arsenic trioxide.
Collapse
Affiliation(s)
- Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Hao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Rui Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Pharmacy Department, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenwen Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Sun J, Wu L, Wu M, Liu Q, Cao H. Non-coding RNA therapeutics: Towards a new candidate for arsenic-induced liver disease. Chem Biol Interact 2023; 382:110626. [PMID: 37442288 DOI: 10.1016/j.cbi.2023.110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Arsenic, a metalloid toxicant, has caused serious environmental pollution and is presently a global health issue. Long-term exposure to arsenic causes diverse organ and system dysfunctions, including liver disease. Arsenic-induced liver disease comprises a spectrum of liver pathologies, ranging from hepatocyte damage, steatosis, fibrosis, to hepatocellular carcinoma. Various mechanisms, including an imbalance in redox reactions, mitochondrial dysfunction and epigenetic changes, participate in the pathogenesis of arsenic-induced liver disease. Altered epigenetic processes involved in its initiation and progression. Dysregulated modulations of non-coding RNAs (ncRNAs), including miRNAs, lncRNAs and circRNAs, exert regulating effects on these processes. Here, we have reviewed the underlying pathogenic mechanisms that lead to progressive arsenic-induced liver disease, and we provide a discussion focusing on the effects of ncRNAs on dysfunctions in intercellular communication and on the activation of hepatic stellate cells and malignant transformation of hepatocytes. Further, we have discussed the roles of ncRNAs in intercellular communication via extracellular vesicles and cytokines, and have provided a perspective for the application of ncRNAs as biomarkers in the early diagnosis and evaluation of the pathogenesis of arsenic-induced liver disease. Further investigations of ncRNAs will help us to understand the nature of arsenic-induced liver disease and to identify biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jing Sun
- Department of Nutrition, Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| | - Hong Cao
- Department of Nutrition, Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Ghafouri-Fard S, Pourtavakoli A, Hussen BM, Taheri M, Kiani A. A review on the importance of LINC-ROR in human disorders. Pathol Res Pract 2023; 244:154420. [PMID: 36989849 DOI: 10.1016/j.prp.2023.154420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Long Intergenic Non-Protein Coding RNA, Regulator Of Reprogramming (LINC-ROR) is a long non-coding RNA with diverse physiological functions. The gene encoding this transcript resides on 18q21.31. Expression levels of LINC-ROR have been reported to be dysregulated in patients with diverse disorders, including cancer, autoimmune disorders and neurodegenerative and neurodevelopmental disorders. Moreover, polymorphisms within this lncRNA have been shown to be associated with a variety of disorders, such as some kinds of cancer and some aspects of systemic lupus erythematous. Abnormal expression of LINC-ROR in some other human disorders is not yet understood. Emerging evidence suggests that LINC-ROR exerts pivotal roles in most types of human disorders as an oncogene. Differentially expressed LINC-ROR contributes in the development of diseases by changing the expression of genes that control the cell cycle. It can also exert its role by affecting the activity of some cancer-related signaling pathways and sponging tumor suppressor miRNAs. Expanding our understanding of LINC-ROR functions will pave the way for developing efficient therapeutic strategies against cancer and related disorders. The current review aims at providing a concise overview of the role of LINC-ROR in diverse human disorders through providing a summary of association studies and expression assays.
Collapse
|
9
|
Peña-Flores JA, Enríquez-Espinoza D, Muela-Campos D, Álvarez-Ramírez A, Sáenz A, Barraza-Gómez AA, Bravo K, Estrada-Macías ME, González-Alvarado K. Functional Relevance of the Long Intergenic Non-Coding RNA Regulator of Reprogramming (Linc-ROR) in Cancer Proliferation, Metastasis, and Drug Resistance. Noncoding RNA 2023; 9:ncrna9010012. [PMID: 36827545 PMCID: PMC9965135 DOI: 10.3390/ncrna9010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Cancer is responsible for more than 10 million deaths every year. Metastasis and drug resistance lead to a poor survival rate and are a major therapeutic challenge. Substantial evidence demonstrates that an increasing number of long non-coding RNAs are dysregulated in cancer, including the long intergenic non-coding RNA, regulator of reprogramming (linc-ROR), which mostly exerts its role as an onco-lncRNA acting as a competing endogenous RNA that sequesters micro RNAs. Although the properties of linc-ROR in relation to some cancers have been reviewed in the past, active research appends evidence constantly to a better comprehension of the role of linc-ROR in different stages of cancer. Moreover, the molecular details and some recent papers have been omitted or partially reported, thus the importance of this review aimed to contribute to the up-to-date understanding of linc-ROR and its implication in cancer tumorigenesis, progression, metastasis, and chemoresistance. As the involvement of linc-ROR in cancer is elucidated, an improvement in diagnostic and prognostic tools could promote and advance in targeted and specific therapies in precision oncology.
Collapse
|
10
|
Kumari B, Bharti VK. Recent advancements in toxicology, modern technology for detection, and remedial measures for arsenic exposure: review. Biotechnol Genet Eng Rev 2022:1-43. [PMID: 36411979 DOI: 10.1080/02648725.2022.2147664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022]
Abstract
Arsenic toxicity has become a major global health concern for humans and animals due to extensive environmental and occupational exposure to arsenic-contaminated water, air, soil, and plant and animal origin food. It has a wide range of detrimental effects on animals, humans, and the environment. As a result, various experimental and clinical studies were undertaken and are undergoing to understand its source of exposures, pathogenesis, identify key biomarkers, the medical and economic impact on affected populations and ecosystems, and their timely detection and control measures. Despite these extensive studies, no conclusive information for the prevention and control of arsenic toxicity is available, owing to complex epidemiology and pathogenesis, including an imprecise approach and repetitive work. As a result, there is a need for literature that focuses on recent studies on the epidemiology, pathogenesis, detection, and ameliorative measures of arsenic toxicity to assist researchers and policymakers in the practical future planning of research and community control programs. According to the preceding viewpoint, this review article provides an extensive analysis of the recent progress on arsenic exposure to humans through the environment, livestock, and fish, arsenic toxicopathology, nano-biotechnology-based detection, and current remedial measures for the benefit of researchers, academicians, and policymakers in controlling arsenic eco-toxicology and directing future research. Arsenic epidemiology should therefore place the greatest emphasis on the prevalence of different direct and indirect sources in the afflicted areas, followed by control strategies.
Collapse
Affiliation(s)
- Bibha Kumari
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - Vijay K Bharti
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Leh, UT Ladakh, India
| |
Collapse
|
11
|
George S, Cassidy RN, Saintilnord WN, Fondufe-Mittendorf Y. Epigenomic reprogramming in iAs-mediated carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:319-365. [PMID: 36858778 DOI: 10.1016/bs.apha.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Arsenic is a naturally occurring metal carcinogen found in the Earth's crust. Millions of people worldwide are chronically exposed to arsenic through drinking water and food. Exposure to inorganic arsenic has been implicated in many diseases ranging from acute toxicities to malignant transformations. Despite the well-known deleterious health effects of arsenic exposure, the molecular mechanisms in arsenic-mediated carcinogenesis are not fully understood. Since arsenic is non-mutagenic, the mechanism by which arsenic causes carcinogenesis is via alterations in epigenetic-regulated gene expression. There are two possible ways by which arsenic may modify the epigenome-indirectly through an arsenic-induced generation of reactive oxygen species which then impacts chromatin remodelers, or directly through interaction and modulation of chromatin remodelers. Whether directly or indirectly, arsenic modulates epigenetic gene regulation and our understanding of the direct effect of this modulation on chromatin structure is limited. In this chapter we will discuss the various ways by which inorganic arsenic affects the epigenome with consequences in health and disease.
Collapse
Affiliation(s)
- Smitha George
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Richard N Cassidy
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Wesley N Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|
12
|
Speer RM, Zhou X, Volk LB, Liu KJ, Hudson LG. Arsenic and cancer: Evidence and mechanisms. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:151-202. [PMID: 36858772 PMCID: PMC10860672 DOI: 10.1016/bs.apha.2022.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Arsenic is a potent carcinogen and poses a significant health concern worldwide. Exposure occurs through ingestion of drinking water and contaminated foods and through inhalation due to pollution. Epidemiological evidence shows arsenic induces cancers of the skin, lung, liver, and bladder among other tissues. While studies in animal and cell culture models support arsenic as a carcinogen, the mechanisms of arsenic carcinogenesis are not fully understood. Arsenic carcinogenesis is a complex process due its ability to be metabolized and because of the many cellular pathways it targets in the cell. Arsenic metabolism and the multiple forms of arsenic play distinct roles in its toxicity and contribute differently to carcinogenic endpoints, and thus must be considered. Arsenic generates reactive oxygen species increasing oxidative stress and damaging DNA and other macromolecules. Concurrently, arsenic inhibits DNA repair, modifies epigenetic regulation of gene expression, and targets protein function due its ability to replace zinc in select proteins. While these mechanisms contribute to arsenic carcinogenesis, there remain significant gaps in understanding the complex nature of arsenic cancers. In the future improving models available for arsenic cancer research and the use of arsenic induced human tumors will bridge some of these gaps in understanding arsenic driven cancers.
Collapse
Affiliation(s)
- Rachel M Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Lindsay B Volk
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States; Stony Brook Cancer Center, Renaissance School of Medicine, State University of New York Stony Brook, Stony Brook, NY, United States.
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
13
|
Khosravani F, Mir H, Mirzaei A, Kobarfard F, Bardania H, Hosseini E. Arsenic trioxide and Erlotinib loaded in RGD-modified nanoliposomes for targeted combination delivery to PC3 and PANC-1 cell lines. Biotechnol Appl Biochem 2022; 70:811-823. [PMID: 36070882 DOI: 10.1002/bab.2401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/09/2022] [Indexed: 12/27/2022]
Abstract
During the past few years, advances in drag delivery have provided many opportunities in the treatment of various diseases and cancer. Arsenic trioxide (ATO) and Erlotinib (Erlo) are two drugs, approved by the United States Food and Drug Administration to treat cancer, but their use is limited in terms of the toxicity of ATO and the low solubility of Erlo. This study aimed to prepare arginine-glycine-aspartic acid (RGD)-decorated nanoliposomes (NLPs) containing Erlo and ATO (NLPs-ATO-Erlo-RGD) to increase the solubility and reduce the toxicity of Erlo and ATO for cancer treatment. The results of transmission electron microscopy and dynamic light scattering showed that NLPs were synthesized uniformly, with spherical shape morphology and particle sizes between 140 and 160 nm. High-performance liquid chromatography and ICP-MS results showed that about 90% of the drug was loaded in the NLPs. In comparison with NLPs-ATO-Erlo, NLPs-ATO-Erlo-RGD demonstrated considerable toxicity against the αvβ3 overexpressing PC3 cell line in the MTT experiment. It had no effect on the PANC-1 cell line. In addition, apoptosis assays using Annexin V/PI demonstrated that NLPs-ATO-Erlo-RGD generated the highest apoptotic rates in PC3 cells when compared with NLPs-ATO-Erlo and the combination of free ATO and Erlo. Furthermore, treatment with NLPs-ATO-Erlo-RGD in (p < 0.05) PC3 cell line significantly reduced EGFR level. It is concluded NLPs-ATO-Erlo-RGD as a novel drug delivery system may be a promising platform for the treatment of cancer.
Collapse
Affiliation(s)
- Fatemeh Khosravani
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamed Mir
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.,Department of Clinical Biochemistry, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Ali Mirzaei
- Department of Biochemistry, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farzad Kobarfard
- Department of Medical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Vali-e-Asr Ave, Tehran, Iran.,Phytochemistry Research Center, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Vali-e-Asr Ave, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ebrahim Hosseini
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
14
|
Reactive Oxygen Species and Long Non-Coding RNAs, an Unexpected Crossroad in Cancer Cells. Int J Mol Sci 2022; 23:ijms231710133. [PMID: 36077530 PMCID: PMC9456385 DOI: 10.3390/ijms231710133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Long non-coding RNAs (lncRNA) have recently been identified as key regulators of oxidative stress in several malignancies. The level of reactive oxygen species (ROS) must be constantly regulated to maintain cancer cell proliferation and chemoresistance and to prevent apoptosis. This review will discuss how lncRNAs alter the ROS level in cancer cells. We will first describe the role of lncRNAs in the nuclear factor like 2 (Nrf-2) coordinated antioxidant response of cancer cells. Secondly, we show how lncRNAs can promote the Warburg effect in cancer cells, thus shifting the cancer cell’s “building blocks” towards molecules important in oxidative stress regulation. Lastly, we explain the role that lncRNAs play in ROS-induced cancer cell apoptosis and proliferation.
Collapse
|
15
|
Wang T, Yao Y, Hu X, Zhao Y. Message in hand: the application of CRISPRi, RNAi, and LncRNA in adenocarcinoma. Med Oncol 2022; 39:148. [PMID: 35834017 DOI: 10.1007/s12032-022-01727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Gene editing interference technology has been flourishing for more than 30 years. It has always been a common means to interfere with the expression of particular genes. Today it has shown a broad application prospect in clinical treatment, especially in adenocarcinoma treatment. In just a few years, the CRISPRi technology has attracted much z attention with its precise targeting and convenient operability significantly promoted the transformation from bench to bedside, and won the Nobel Prize in Chemistry 2020. In recent years, the importance of non-coding RNA has led LncRNA research to the center. At the same time, it also recalls the surprises obtained in laboratory and clinic research by RNAi technologies such as microRNA, siRNA, and shRNA at the beginning of the century. Therefore, this article focuses on CRISPRi, RNAi, and LncRNA to review their gene interference mechanisms currently expected to be translational research. Their applications and differences in adenocarcinoma research will also be described powerfully. It will provide a helpful reference for scientists to understand better and apply several RNA interference technologies.
Collapse
Affiliation(s)
- Ting Wang
- Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, China
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Yunhong Yao
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Xinrong Hu
- Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, China.
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China.
| | - Yi Zhao
- Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, China.
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, 523808, China.
- Department of Traditional Chinese Medicine, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523713, China.
| |
Collapse
|
16
|
Wu YZ, Su YH, Kuo CY. Stressing the Regulatory Role of Long Non-Coding RNA in the Cellular Stress Response during Cancer Progression and Therapy. Biomedicines 2022; 10:biomedicines10051212. [PMID: 35625948 PMCID: PMC9138696 DOI: 10.3390/biomedicines10051212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022] Open
Abstract
Cellular stress response is an important adaptive mechanism for regulating cell fate decision when cells confront with stress. During tumorigenesis, tumor progression and the course of treatment, cellular stress signaling can activate subsequent response to deal with stress. Therefore, cellular stress response has impacts on the fate of tumor cells and tumor responsiveness relative to therapeutic agents. In recent years, attention has been drawn to long non-coding RNAs (lncRNAs), a novel class of RNA molecules with more than 200 nucleotides in length, which has little protein-coding potential and possesses various functions in multiple biological processes. Accumulating evidence has shown that lncRNAs are also engaged in the regulation of cellular stress response, particularly in cancers. Here, we summarize lncRNAs that have been reported in the adaptive response to major types of cellular stress including genotoxic, hypoxic, oxidative, metabolic and endoplasmic reticulum stress, all of which are often encountered by cancer cells. Specifically, the molecular mechanisms of how lncRNAs regulate cellular stress response during tumor progression or the development of therapy resistance are emphasized. The potential clinical applications of stress-responsive lncRNAs as biomarkers will also be discussed.
Collapse
Affiliation(s)
- Yi-Zhen Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan; (Y.-Z.W.); (Y.-H.S.)
| | - Yong-Han Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan; (Y.-Z.W.); (Y.-H.S.)
| | - Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan; (Y.-Z.W.); (Y.-H.S.)
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 66909)
| |
Collapse
|
17
|
Zhang J, Ma Y, Zhang Y, Niu S, Chu M, Zhang Z. Angiogenesis is Inhibited by Arsenic Trioxide Through Downregulation of the CircHIPK3/miR-149-5p/FOXO1/VEGF Functional Module in Rheumatoid Arthritis. Front Pharmacol 2021; 12:751667. [PMID: 34776969 PMCID: PMC8579003 DOI: 10.3389/fphar.2021.751667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/15/2021] [Indexed: 01/22/2023] Open
Abstract
Angiogenesis is a crucial event in the pathogenesis of rheumatoid arthritis (RA). Arsenic trioxide (ATO, As2O3) has been reported to inhibit synovial angiogenesis via the vascular endothelial growth factor (VEGF)-centered functional module. However, the exact mechanisms of ATO on VEGF modulation remain unclear. Circular RNAs (circRNAs) are emerging as important regulators in RA, and the detailed mechanisms remain largely unknown. Here, we reported a circRNA (circHIPK3), the expression of which was significantly increased in RA fibroblast-like synoviocytes (RA-FLS) after TNF-α induction. Moreover, VEGF content in the supernatants of a RA-FLS and human dermal microvascular endothelial cell (HDMEC) co-culture as well as in RA-FLS co-cultured was significantly elevated in accordance with circHIPK3 levels. This increased VEGF expression may significantly upregulate endothelial tube formation and transwell migration, as well as microvessel sprouting in the ex vivo aortic ring assay. CircHIPK3 was further illustrated to be a sponge for the forkhead box transcription factor O1 (FOXO1)-targeting miR-149-5p, leading to the changing expression of the downstream VEGF. These networked factors mainly form a functional module regulating angiogenesis in RA-FLS, and the expression of this functional module could be significantly downregulated by ATO with a consistently reduced vascularity in vitro. In the collagen-induced arthritis (CIA) mice model, an intra-articular injection of the adeno-associated virus-si-circHIPK3 or ATO was demonstrated to alleviate the synovial VEGF expression and arthritis severity respectively. Thus, we elucidate a previously unknown mechanism between circRNAs and RA, and ATO has a significant protective effect on RA-FLS and CIA synovium via its inhibition of the angiogenic functional module of circHIPK3/miR-149-5p/FOXO1/VEGF, suggesting great potential for the combination therapy of ATO with circHIPK3 silencing.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yeye Ma
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yue Zhang
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Sijia Niu
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Maolin Chu
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhiyi Zhang
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Martínez-Castillo M, García-Montalvo EA, Arellano-Mendoza MG, Sánchez-Peña LDC, Soria Jasso LE, Izquierdo-Vega JA, Valenzuela OL, Hernández-Zavala A. Arsenic exposure and non-carcinogenic health effects. Hum Exp Toxicol 2021; 40:S826-S850. [PMID: 34610256 DOI: 10.1177/09603271211045955] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inorganic arsenic (iAs) exposure is a serious health problem that affects more than 140 million individuals worldwide, mainly, through contaminated drinking water. Acute iAs poisoning produces several symptoms such as nausea, vomiting, abdominal pain, and severe diarrhea, whereas prolonged iAs exposure increased the risk of several malignant disorders such as lung, urinary tract, and skin tumors. Another sensitive endpoint less described of chronic iAs exposure are the non-malignant health effects in hepatic, endocrine, renal, neurological, hematological, immune, and cardiovascular systems. The present review outlines epidemiology evidence and possible molecular mechanisms associated with iAs-toxicity in several non-carcinogenic disorders.
Collapse
Affiliation(s)
- Macario Martínez-Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Mónica G Arellano-Mendoza
- Laboratorio de Investigación en Enfermedades Crónico-Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | - Luz Del C Sánchez-Peña
- Departamento de Toxicología, 540716Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Luis E Soria Jasso
- Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina del Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Jeannett A Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Olga L Valenzuela
- Facultad de Ciencias Químicas, 428055Universidad Veracruzana, Orizaba, México
| | - Araceli Hernández-Zavala
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
19
|
Li X, Zuo C, Wu M, Zhang Z. Linc-ROR promotes arsenite-transformed keratinocyte proliferation by inhibiting P53 activity. Metallomics 2021; 12:963-973. [PMID: 32373892 DOI: 10.1039/d0mt00076k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linc-ROR is an oncogenic long non-coding RNA over-expressed in many kinds of cancer that promotes cancer cell proliferation. Arsenite is a determined carcinogen that increases the risk of skin cancer, but the carcinogenic mechanism of arsenite remains unclear. To explore whether and how linc-ROR plays a role in arsenite-induced carcinogenesis of skin cancer, we established arsenite-transformed keratinocyte HaCaT cells by exposing them to 1 μM arsenite for 50 passages. Then we examined the linc-ROR expression during the transformation and explored the effect of linc-ROR on the cell proliferation of arsenite-transformed HaCaT cells. We found that the linc-ROR level in HaCaT cells was gradually increased during arsenite-induced malignant transformation, and the activity of P53 was decreased, but the P53 expression was not significantly altered, indicating that linc-ROR may play a role in arsenite-induced HaCaT cell transformation that is associated with P53 activity but not P53 expression. We further demonstrated that linc-ROR down-regulation by siRNA significantly inhibited the cellular proliferation and restored P53 activity in arsenite-transformed HaCaT cells, suggesting that linc-ROR promotes proliferation of arsenite-transformed HaCaT cells by inhibiting P53 activity. Moreover, linc-ROR siRNA also down-regulated the PI3K/AKT pathway in arsenite-transformed HaCaT cells, and treatment with AKT inhibitor wortmannin restored P53 activity, implying that linc-ROR inhibits P53 activity by activating the PI3K/AKT pathway. Taken together, the present study shows that linc-ROR promotes arsenite-transformed keratinocyte proliferation by inhibiting P53 activity through activating PI3K/AKT, providing a novel carcinogenic mechanism of arsenite-induced skin cancer.
Collapse
Affiliation(s)
- Xinyang Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nanlu, Chengdu 610041, People's Republic of China.
| | - Chao Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nanlu, Chengdu 610041, People's Republic of China.
| | - Mei Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nanlu, Chengdu 610041, People's Republic of China.
| | - Zunzhen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nanlu, Chengdu 610041, People's Republic of China.
| |
Collapse
|
20
|
Wang Y, Yang T, Han Y, Ren Z, Zou J, Liu J, Xi S. lncRNA OTUD6B-AS1 Exacerbates As 2O 3-Induced Oxidative Damage in Bladder Cancer via miR-6734-5p-Mediated Functional Inhibition of IDH2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3035624. [PMID: 32952848 PMCID: PMC7481943 DOI: 10.1155/2020/3035624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/06/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022]
Abstract
Arsenic trioxide (As2O3) is a promising effective chemotherapeutic agent for cancer treatment; however, how and through what molecular mechanisms the oxidative damage of As2O3 is controlled remains poorly understood. Recently, the involvement of dysregulated long noncoding RNA ovarian tumor domain containing 6B antisense RNA1 (lncRNA OTUD6B-AS1) in tumorigenesis is established. Here, for the first time, we characterize the regulation of As2O3 in the oxidative damage against bladder cancer via lncRNA OTUD6B-AS1. As2O3 could activate lncRNA OTUD6B-AS1 transcription in bladder cancer cells, and these findings were validated in a xenograft tumor model. Functional assays showed that lncRNA OTUD6B-AS1 dramatically exacerbated As2O3-mediated oxidative damage by inducing oxidative stress. Mechanistically, As2O3 increased levels of metal-regulatory transcription factor 1 (MTF1), which regulates lncRNA OTUD6B-AS1, in response to oxidative stress. Further, lncRNA OTUD6B-AS1 inhibited mitochondrial NADP+-dependent isocitrate dehydrogenase 2 (IDH2) expression by stabilizing miR-6734-5p, which contributed to cytotoxicity by enhancing oxidative stress. Together, our findings offer new insights into the mechanism of As2O3-induced oxidative damage and identify important factors in the pathway, As2O3/lncRNA OTUD6B-AS1/miR-6734-5p/IDH2, expanding the knowledge of activity of As2O3 as cancer treatment.
Collapse
Affiliation(s)
- Yutong Wang
- Department of Environmental Health, China Medical University, Shenyang 110122, China
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Tianyao Yang
- Department of Environmental Health, China Medical University, Shenyang 110122, China
| | - Yanshou Han
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Zhaozhou Ren
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jiayun Zou
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jieyu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Shuhua Xi
- Department of Environmental Health, China Medical University, Shenyang 110122, China
| |
Collapse
|
21
|
Zhou L, Zhang Z, Huang Z, Nice E, Zou B, Huang C. Revisiting cancer hallmarks: insights from the interplay between oxidative stress and non-coding RNAs. MOLECULAR BIOMEDICINE 2020; 1:4. [PMID: 35006436 PMCID: PMC8603983 DOI: 10.1186/s43556-020-00004-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the most common disease worldwide, with complex changes and certain traits which have been described as “The Hallmarks of Cancer.” Despite increasing studies on in-depth investigation of these hallmarks, the molecular mechanisms associated with tumorigenesis have still not yet been fully defined. Recently, accumulating evidence supports the observation that microRNAs and long noncoding RNAs (lncRNAs), two main classes of noncoding RNAs (ncRNAs), regulate most cancer hallmarks through their binding with DNA, RNA or proteins, or encoding small peptides. Reactive oxygen species (ROS), the byproducts generated during metabolic processes, are known to regulate every step of tumorigenesis by acting as second messengers in cancer cells. The disturbance in ROS homeostasis leads to a specific pathological state termed “oxidative stress”, which plays essential roles in regulation of cancer progression. In addition, the interplay between oxidative stress and ncRNAs is found to regulate the expression of multiple genes and the activation of several signaling pathways involved in cancer hallmarks, revealing a potential mechanistic relationship involving ncRNAs, oxidative stress and cancer. In this review, we provide evidence that shows the essential role of ncRNAs and the interplay between oxidative stress and ncRNAs in regulating cancer hallmarks, which may expand our understanding of ncRNAs in the cancer development from the new perspective.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China. .,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China.
| |
Collapse
|
22
|
Chen W, Yang J, Fang H, Li L, Sun J. Relevance Function of Linc-ROR in the Pathogenesis of Cancer. Front Cell Dev Biol 2020; 8:696. [PMID: 32850817 PMCID: PMC7432147 DOI: 10.3389/fcell.2020.00696] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are the key components of non-coding RNAs (ncRNAs) with a length of 200 nucleotides. They are transcribed from the so-called “dark matter” of the genome. Increasing evidence have shown that lncRNAs play an important role in the pathophysiology of human diseases, particularly in the development and progression of tumors. Linc-ROR, as a new intergenic non-protein coding RNA, has been considered to be a pivotal regulatory factor that affects the occurrence and development of human tumors, including breast cancer (BC), colorectal cancer (CRC), pancreatic cancer (PC), hepatocellular carcinoma (HCC), and so on. Dysregulation of Linc-ROR has been closely related to advanced clinicopathological factors predicting a poor prognosis. Because linc-ROR can regulate cell proliferation, apoptosis, migration, and invasion, it can thus be used as a potential biomarker for patients with tumors and has potential clinical significance as a therapeutic target. This article reviewed the role of linc-ROR in the development of tumors, its related molecular mechanisms, and clinical values.
Collapse
Affiliation(s)
- Wenjian Chen
- Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China
| | - Junfa Yang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hui Fang
- Department of Pharmacology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Lei Li
- The Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Sun
- Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
Sun DE, Ye SY. Emerging Roles of Long Noncoding RNA Regulator of Reprogramming in Cancer Treatment. Cancer Manag Res 2020; 12:6103-6112. [PMID: 32765105 PMCID: PMC7382586 DOI: 10.2147/cmar.s253042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Despite numerous advances in cancer treatment, the global prevalence and cancer-related mortality remain high. Understanding tumor initiation and progression mechanisms are critical as it will lead to the development of interventions for improving the prognosis of cancer patients. The roles of long noncoding RNAs (lncRNAs) in cancer have attracted immense research interest. Growing evidence indicates that lncRNA regulator of reprogramming (linc-ROR), a well-studied RNA, regulates the progression of various cancers, such as lung cancer (LC), hepatocellular carcinoma (HCC), breast cancer (BC), colorectal cancer (CRC), pancreatic cancer (PC), papillary thyroid carcinoma (PTC), or esophageal squamous cell carcinoma (ESCC). linc-ROR promotes the proliferation, invasion, migration and chemoresistance of cancer cells. Herein, we reviewed current literature on the modulatory functions and mechanisms of linc-ROR in cancer development. We highlight new linc-ROR-related therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Di-Er Sun
- Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China.,Clinical Laboratory, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China
| | - Shu-Yuan Ye
- Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China.,Clinical Laboratory, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
24
|
The Underlying Mechanisms of Noncoding RNAs in the Chemoresistance of Hepatocellular Carcinoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:13-27. [PMID: 32505000 PMCID: PMC7270498 DOI: 10.1016/j.omtn.2020.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal human malignancies. Chemotherapeutic agents, such as sorafenib and lenvatinib, can improve the outcomes of HCC patients. Nevertheless, chemoresistance has become a major hurdle in the effective treatment of HCC. Noncoding RNAs (ncRNAs), including mircoRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), have been demonstrated to participate in the onset and progression of HCC. Moreover, multiple lines of evidence have indicated that ncRNAs also play a pivotal role in HCC drug resistance. ncRNAs can regulate drug efflux and metabolism, glucose metabolism, cellular death pathways, and malignant characteristics in HCC. A deeper understanding of the molecular mechanisms responsible for ncRNA-mediated drug resistance in HCC will provide new opportunities for improving the treatment of HCC. In this review, we summarize recent findings on the molecular mechanisms by which ncRNAs regulate HCC chemoresistance, as well as their potential clinical implications in overcoming HCC chemoresistance.
Collapse
|