1
|
Banzato R, Pinheiro-Menegasso NM, Novelli FPRS, Olivo CR, Taguchi L, de Oliveira Santos S, Fukuzaki S, Teodoro WPR, Lopes FDTQS, Tibério IFLC, de Toledo-Arruda AC, Prado MAM, Prado VF, Prado CM. Alpha-7 Nicotinic Receptor Agonist Protects Mice Against Pulmonary Emphysema Induced by Elastase. Inflammation 2024; 47:958-974. [PMID: 38227123 DOI: 10.1007/s10753-023-01953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024]
Abstract
Pulmonary emphysema is a primary component of chronic obstructive pulmonary disease (COPD), a life-threatening disorder characterized by lung inflammation and restricted airflow, primarily resulting from the destruction of small airways and alveolar walls. Cumulative evidence suggests that nicotinic receptors, especially the α7 subtype (α7nAChR), is required for anti-inflammatory cholinergic responses. We postulated that the stimulation of α7nAChR could offer therapeutic benefits in the context of pulmonary emphysema. To investigate this, we assessed the potential protective effects of PNU-282987, a selective α7nAChR agonist, using an experimental emphysema model. Male mice (C57BL/6) were submitted to a nasal instillation of porcine pancreatic elastase (PPE) (50 µl, 0.667 IU) to induce emphysema. Treatment with PNU-282987 (2.0 mg/kg, ip) was performed pre and post-emphysema induction by measuring anti-inflammatory effects (inflammatory cells, cytokines) as well as anti-remodeling and anti-oxidant effects. Elastase-induced emphysema led to an increase in the number of α7nAChR-positive cells in the lungs. Notably, both groups treated with PNU-282987 (prior to and following emphysema induction) exhibited a significant decrease in the number of α7nAChR-positive cells. Furthermore, both groups treated with PNU-282987 demonstrated decreased levels of macrophages, IL-6, IL-1β, collagen, and elastic fiber deposition. Additionally, both groups exhibited reduced STAT3 phosphorylation and lower levels of SOCS3. Of particular note, in the post-treated group, PNU-282987 successfully attenuated alveolar enlargement, decreased IL-17 and TNF-α levels, and reduced the recruitment of polymorphonuclear cells to the lung parenchyma. Significantly, it is worth noting that MLA, an antagonist of α7nAChR, counteracted the protective effects of PNU-282987 in relation to certain crucial inflammatory parameters. In summary, these findings unequivocally demonstrate the protective abilities of α7nAChR against elastase-induced emphysema, strongly supporting α7nAChR as a pivotal therapeutic target for ameliorating pulmonary emphysema.
Collapse
Affiliation(s)
- Rosana Banzato
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Nathalia M Pinheiro-Menegasso
- Department of Biosciences, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Rua Silva Jardim 136 sala 312, Santos, SP, 11015-020, Brazil
| | | | - Clarice R Olivo
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Laura Taguchi
- Department of Biosciences, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Rua Silva Jardim 136 sala 312, Santos, SP, 11015-020, Brazil
| | - Stheffany de Oliveira Santos
- Department of Biosciences, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Rua Silva Jardim 136 sala 312, Santos, SP, 11015-020, Brazil
| | - Silvia Fukuzaki
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Walcy Paganelli Rosolia Teodoro
- Rheumatology Division of the Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, FMUSP, São Paulo, Brazil
| | - Fernanda D T Q S Lopes
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Iolanda F L C Tibério
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | | | - Marco Antônio M Prado
- Department of Physiology & Pharmacology, University of Western Ontario, London, Canada
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Vânia F Prado
- Department of Physiology & Pharmacology, University of Western Ontario, London, Canada
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Carla M Prado
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil.
- Department of Biosciences, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Rua Silva Jardim 136 sala 312, Santos, SP, 11015-020, Brazil.
| |
Collapse
|
2
|
Richter K, Herz SM, Stokes C, Damaj MI, Grau V, Papke RL. Pharmacological profiles and anti-inflammatory activity of pCN-diEPP and mCN-diEPP, new alpha9alpha10 nicotinic receptor ligands. Neuropharmacology 2023; 240:109717. [PMID: 37758018 PMCID: PMC11295495 DOI: 10.1016/j.neuropharm.2023.109717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
Pain due to inflammation can be reduced by targeting the noncanonical nicotinic receptors (NCNR) in cells of the immune system that regulate the synthesis and release of pro- and anti-inflammatory cytokines. Although NCNR do not generate ion channel currents, the pharmacology of ion-channel forms of the receptors can predict drugs which may be effective regulators of the cholinergic anti-inflammatory system (CAS). Agonists of α7 type receptors have been definitively associated with CAS. Receptors containing α9 and α10 subunits have also been implicated. We have recently characterized two small molecules, pCN-diEPP and mCN-diEPP, as selective α9α10 agonists and antagonists, respectively. We used these drugs, along with nicotine, an α7 agonist and α9α10 antagonist, to probe the mixed populations of receptors that are formed when α7, α9, and α10 are all expressed together in Xenopus oocytes. We also evaluated the effects of the CN-diEPP compounds on regulating the ATP-induced release of interleukin-1β from monocytic THP-1 cells, which express NCNR. The compounds successfully identified separate populations of receptors when all three subunits were co-expressed, including a potential population of homomeric α10 receptors. The α9α10 agonist pCN-diEPP was the more effective regulator of interleukin-1β release in THP-1 cells. pCN-diEPP was also fully effective in a mouse model of inflammatory pain, while mCN-diEPP had only partial effects, requiring a higher dosage. The analgetic effects of pCN-diEPP and mCN-diEPP were retained in α7 knockout mice. Taken together, our results suggest that drugs that selectively activate α9α10 receptors may useful to reduce inflammatory pain through the CAS.
Collapse
Affiliation(s)
- Katrin Richter
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research [DZL], Cardio-Pulmonary Institute [CPI], Giessen, Germany
| | - Sara M Herz
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, USA
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL, 32610, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, USA
| | - Veronika Grau
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research [DZL], Cardio-Pulmonary Institute [CPI], Giessen, Germany
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL, 32610, USA.
| |
Collapse
|
3
|
Giraudo A, Pallavicini M, Bolchi C. Small molecule ligands for α9* and α7 nicotinic receptors: a survey and an update, respectively. Pharmacol Res 2023; 193:106801. [PMID: 37236412 DOI: 10.1016/j.phrs.2023.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The α9- and α7-containing nicotinic acetylcholine receptors (nAChRs) mediate numerous physiological and pathological processes by complex mechanisms that are currently the subject of intensive study and debate. In this regard, selective ligands serve as invaluable investigative tools and, in many cases, potential therapeutics for the treatment of various CNS disfunctions and diseases, neuropathic pain, inflammation, and cancer. However, the present scenario differs significantly between the two aforementioned nicotinic subtypes. Over the past few decades, a large number of selective α7-nAChR ligands, including full, partial and silent agonists, antagonists, and allosteric modulators, have been described and reviewed. Conversely, reports on selective α9-containing nAChR ligands are relatively scarce, also due to a more recent characterization of this receptor subtype, and hardly any focusing on small molecules. In this review, we focus on the latter, providing a comprehensive overview, while providing only an update over the last five years for α7-nAChR ligands.
Collapse
Affiliation(s)
- Alessandro Giraudo
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, I-20133 Milano, Italy
| | - Marco Pallavicini
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, I-20133 Milano, Italy
| | - Cristiano Bolchi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, I-20133 Milano, Italy.
| |
Collapse
|
4
|
Mazurov A, Ho J, Low T, Hoeng J. Novel α7 nicotinic acetylcholine receptor modulators as potential antitussive agents. Bioorg Med Chem Lett 2023; 80:129067. [PMID: 36395996 DOI: 10.1016/j.bmcl.2022.129067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
A novel series of α7 nicotinic acetylcholine receptor (nAChR) modulators was designed and evaluated for antitussive activity in an in vivo guinea pig model of chemically induced cough. Compound 16 at all tested doses (9.5, 3 and 1 mg/kg) significantly (p < 0.01) reduced the cumulative number of coughs and showed similar results to a positive control (codeine at 30 mg/kg). Among three different administration routes (intraperitoneal, oral and inhalation), compound 16 exerted a significant antitussive effect in guinea pigs at an inhaled dose as low as 0.4 mg/kg (p < 0.05). α7 nAChR modulators may provide a novel, non-narcotic approach to therapy in patients with acute and chronic cough.
Collapse
Affiliation(s)
- Anatoly Mazurov
- Philip Morris International, R&D Innovation Cube, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Jenny Ho
- Philip Morris International, R&D Innovation Cube, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Tiffany Low
- Philip Morris International, R&D Innovation Cube, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Julia Hoeng
- Philip Morris International, R&D Innovation Cube, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland.
| |
Collapse
|
5
|
Chen Y, Lian P, Peng Z, Wazir J, Ma C, Wei L, Li L, Liu J, Zhao C, Pu W, Wang H, Su Z. Alpha-7 nicotinic acetylcholine receptor agonist alleviates psoriasis-like inflammation through inhibition of the STAT3 and NF-κB signaling pathway. Cell Death Dis 2022; 8:141. [PMID: 35351863 PMCID: PMC8964744 DOI: 10.1038/s41420-022-00943-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/17/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022]
Abstract
Psoriasis is a chronic inflammatory cutaneous disease; it has been discovered that stimulation of the nervous system increases susceptibility to psoriasis. Although the cholinergic anti-inflammatory pathway, which is mediated by the alpha-7 nicotinic acetylcholine receptor (α7nAChR), is critical for controlling multiple types of inflammation, its expression pattern and pathogenesis function in psoriatic lesioned skin tissue are unknown. We hereby analyzed the expression of α7nAchR in human and mouse psoriatic skin tissue. In vivo, PNU-282987 or Methyllycaconitine, a specific agonist or antagonist of α7nAchR, were administered to imiquimod (IMQ)-induced psoriatic mouse models. The macroscopic appearance and histopathological features of the psoriatic mice skin were evaluated. In addition, cell proliferation and differentiation markers were investigated. The level of pro-inflammatory cytokines released from the lesioned skin, as well as the activation of the relevant signaling pathways, were measured. Our findings indicated that psoriatic lesional skin expressed an increased level of α7nAChR, with its tissue distribution being primarily in skin keratinocytes and macrophages. In an IMQ-induced murine psoriasis model, α7nAChR agonist PNU-282987 treatment alleviated psoriasis-like inflammation by down-regulating the expression of multiple types of pro-inflammatory mediators and normalized keratinocyte proliferation and differentiation, whereas α7nAChR antagonist treatment exacerbated its effect. Mechanically, we observed that activation of the α7nAChR inhibited the activation of the STAT3 and NF-κB signaling pathways in in vitro cultured HaCaT cells induced by Th17-related cytokine IL-6/IL-22 or Th1-related cytokine TNF-α. Taken together, these findings demonstrate that attenuation of psoriatic inflammation via the cholinergic anti-inflammatory pathway is dependent on α7nAChR activation.
Collapse
Affiliation(s)
- Yiwen Chen
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P.R. China.,State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P.R. China
| | - Panpan Lian
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P.R. China
| | - Ziqi Peng
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P.R. China
| | - Chujun Ma
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Lulu Wei
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P.R. China
| | - Li Li
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P.R. China
| | - Jun Liu
- Department of Dermatology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, Nanjing, P.R. China
| | - Chen Zhao
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P.R. China
| | - Wenyuan Pu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P.R. China
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P.R. China.
| | - Zhonglan Su
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P.R. China.
| |
Collapse
|
6
|
Mehranfard D, Speth RC. Cholinergic anti-inflammatory pathway and COVID-19. BIOIMPACTS : BI 2022; 12:171-174. [PMID: 35411295 PMCID: PMC8905591 DOI: 10.34172/bi.2022.23980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 01/09/2023]
Abstract
The cholinergic anti-inflammatory pathway (CAP) first described by Wang et al, 2003 has contemporary interest arising from the COVID-19 pandemic. While tobacco smoking has been considered an aggravating factor in the severity of COVID-19 infections, it has been suggested by some that the nicotine derived from tobacco could lessen the severity of COVID-19 infections. This spotlight briefly describes the CAP and its potential role as a therapeutic target for the treatment of COVID-19 infections using vagus nerve stimulation or selective alpha7 nicotinic acetylcholine receptor agonists.
Collapse
Affiliation(s)
- Danial Mehranfard
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Robert C. Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Pharmacology and Physiology, School of Medicine, Georgetown University, Washington, DC, USA
| |
Collapse
|
7
|
Xue Y, Zhou Y, Bao W, Fu Q, Hao H, Han L, Zhang X, Tian X, Zhang M. STAT3 and IL-6 Contribute to Corticosteroid Resistance in an OVA and Ozone-induced Asthma Model with Neutrophil Infiltration. Front Mol Biosci 2021; 8:717962. [PMID: 34760922 PMCID: PMC8573338 DOI: 10.3389/fmolb.2021.717962] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to high levels of ozone contributes to insensitivity to glucocorticoids in asthma treatment, but the underlying mechanisms are not known. We built two asthma models: a "T2-high" asthma model was established by ovalbumin (OVA) sensitization/challenge and OVA sensitization/challenge combined with ozone exposure (OVA + ozone) was used to induce airway inflammation with increased numbers of neutrophils to simulate "T2-low" asthma. The expression of T-helper (Th)1/2/17-related cytokines was measured by cytokine antibody arrays. Bronchial provocation tests were carried out to evaluate the lung resistance of mice. Hematoxylin and eosin staining, periodic acid-Schiff staining, and immunohistochemical (IHC) analyses of alpha-smooth muscle actin were undertaken to observe morphology changes in lungs. The expression of glucocorticoid receptors (GRs) and phosphorylated-GR (p-GR) was measured by western blotting. Nr3c1 mRNA was quantified by RT-qPCR. Protein expression of proinflammatory cytokines, signal transducer and activator of transcription 3 (STAT3), suppressor of cytokine signaling 3 (SOCS3), and CXCL1 was measured through ELISAs, western blotting, or IHC analyses. Resected lung tissue from seven asthma patients and 10 healthy controls undergoing thoracotomy for pulmonary nodules was evaluated by IHC analyses and ELISAs. In both asthma models, mucus hypersecretion, as well as inflammation, hyperresponsiveness, and remodeling of the airways, was present compared with the control group, whereas the OVA + ozone group showed severe neutrophil infiltration. The expression of Th17-related cytokines (interleukin (IL)-6, IL-17A, IL-21), GR protein, and CXCL1 increased in the OVA + ozone group, whereas the expression of p-GR decreased. Dexamethasone (Dex) could not totally reverse the expression of p-GR and histone deacetylase-2 in the OVA + ozone group. STAT3 expression increased in the OVA + ozone group and could not be completely reversed by Dex, and nor could IL-6 expression. A positive correlation between IL-6 or IL-17A and STAT3 and negative correlation between SOCS3 and STAT3 were shown, suggesting that the IL-6/STAT3 pathway may be involved in OVA + ozone-induced corticosteroid-resistant airway inflammation. In clinical samples, IL-17A expression in lung tissue was positively correlated with percent STAT3-positive area and negatively correlated with SOCS3 expression. The IL-6/STAT3 pathway may contribute to corticosteroid insensitivity in OVA + ozone-induced neutrophilic airway inflammation through regulation of Th17 cells and could provide new targets for individual treatment of corticosteroid resistance in asthma.
Collapse
Affiliation(s)
- Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wuping Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijuan Hao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Tian
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Long-term endogenous acetylcholine deficiency potentiates pulmonary inflammation in a murine model of elastase-induced emphysema. Sci Rep 2021; 11:15918. [PMID: 34354132 PMCID: PMC8342425 DOI: 10.1038/s41598-021-95211-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Acetylcholine (ACh), the neurotransmitter of the cholinergic system, regulates inflammation in several diseases including pulmonary diseases. ACh is also involved in a non-neuronal mechanism that modulates the innate immune response. Because inflammation and release of pro-inflammatory cytokines are involved in pulmonary emphysema, we hypothesized that vesicular acetylcholine transport protein (VAChT) deficiency, which leads to reduction in ACh release, can modulate lung inflammation in an experimental model of emphysema. Mice with genetical reduced expression of VAChT (VAChT KDHOM 70%) and wild-type mice (WT) received nasal instillation of 50 uL of porcine pancreatic elastase (PPE) or saline on day 0. Twenty-eight days after, animals were evaluated. Elastase instilled VAChT KDHOM mice presented an increase in macrophages, lymphocytes, and neutrophils in bronchoalveolar lavage fluid and MAC2-positive macrophages in lung tissue and peribronchovascular area that was comparable to that observed in WT mice. Conversely, elastase instilled VAChT KDHOM mice showed significantly larger number of NF-κB-positive cells and isoprostane staining in the peribronchovascular area when compared to elastase-instilled WT-mice. Moreover, elastase-instilled VAChT-deficient mice showed increased MCP-1 levels in the lungs. Other cytokines, extracellular matrix remodeling, alveolar enlargement, and lung function were not worse in elastase-instilled VAChT deficiency than in elastase-instilled WT-controls. These data suggest that decreased VAChT expression may contribute to the pathogenesis of emphysema, at least in part, through NF-κB activation, MCP-1, and oxidative stress pathways. This study highlights novel pathways involved in lung inflammation that may contribute to the development of chronic obstrutive lung disease (COPD) in cholinergic deficient individuals such as Alzheimer's disease patients.
Collapse
|
9
|
Pinheiro NM, Banzato R, Tibério I, Prado MAM, Prado VF, Hamouda AK, Prado CM. Acute Lung Injury in Cholinergic-Deficient Mice Supports Anti-Inflammatory Role of α7 Nicotinic Acetylcholine Receptor. Int J Mol Sci 2021; 22:ijms22147552. [PMID: 34299169 PMCID: PMC8303767 DOI: 10.3390/ijms22147552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The lung cholinergic pathway is important for controlling pulmonary inflammation in acute lung injury, a condition that is characterized by a sudden onset and intense inflammation. This study investigated changes in the expression levels of nicotinic and muscarinic acetylcholine receptors (nAChR and mAChR) in the lung during acute lung injury. (2) Methods: acute lung injury (ALI) was induced in wild-type and cholinergic-deficient (VAChT-KDHOM) mice using intratracheal lipopolysaccharide (LPS) instillation with or without concurrent treatment with nicotinic ligands. Bronchoalveolar lavage fluid was collected to evaluate markers of inflammation, and then the lung was removed and processed for isolation of membrane fraction and determination of acetylcholine receptors level using radioligand binding assays. (3) Results: LPS-induced increase in lung inflammatory markers (e.g., neutrophils and IL-1β) was significantly higher in VAChT-KDHOM than wild-type mice. In contrast, LPS treatment resulted in a significant increase in lung’s α7 nicotinic receptor level in wild-type, but not in VAChT-KDHOM mice. However, treatment with PNU 282987, a selective α7 nicotinic receptor agonist, restored VAChT-KDHOM mice’s ability to increase α7 nicotinic receptor levels in response to LPS-induced acute lung injury and reduced lung inflammation. LPS also increased muscarinic receptors level in VAChT-KDHOM mice, and PNU 282987 treatment reduced this response. (4) Conclusions: Our data indicate that the anti-inflammatory effects of the lung cholinergic system involve an increase in the level of α7 nicotinic receptors. Pharmacological agents that increase the expression or the function of lung α7 nicotinic receptors have potential clinical uses for treating acute lung injury.
Collapse
Affiliation(s)
- Nathalia M. Pinheiro
- Department of Bioscience, Federal University of Sao Paulo, Santos 11015-020, SP, Brazil;
- College of Pharmacy, University of Texas at Tyler, Tyler, TX 75799, USA;
| | - Rosana Banzato
- Department of Medicine, School of Medicine, University of Sao Paulo, Sao Paulo 01246-903, SP, Brazil; (R.B.); (I.T.); (V.F.P.)
| | - Iolanda Tibério
- Department of Medicine, School of Medicine, University of Sao Paulo, Sao Paulo 01246-903, SP, Brazil; (R.B.); (I.T.); (V.F.P.)
| | - Marco A. M. Prado
- Molecular Medicine Group, Robarts Research Institute, London, ON N6A 5B7, Canada;
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Vânia F. Prado
- Department of Medicine, School of Medicine, University of Sao Paulo, Sao Paulo 01246-903, SP, Brazil; (R.B.); (I.T.); (V.F.P.)
- Molecular Medicine Group, Robarts Research Institute, London, ON N6A 5B7, Canada;
| | - Ayman K. Hamouda
- College of Pharmacy, University of Texas at Tyler, Tyler, TX 75799, USA;
| | - Carla M. Prado
- Department of Bioscience, Federal University of Sao Paulo, Santos 11015-020, SP, Brazil;
- Correspondence: ; Tel.: +55-13-3229-0118
| |
Collapse
|
10
|
Abstract
The α7-type nicotinic acetylcholine receptor is one of the most unique and interesting of all the members of the cys-loop superfamily of ligand-gated ion channels. Since it was first identified initially as a binding site for α-bungarotoxin in mammalian brain and later as a functional homomeric receptor with relatively high calcium permeability, it has been pursued as a potential therapeutic target for numerous indications, from Alzheimer disease to asthma. In this review, we discuss the history and state of the art for targeting α7 receptors, beginning with subtype-selective agonists and the basic pharmacophore for the selective activation of α7 receptors. A key feature of α7 receptors is their rapid desensitization by standard "orthosteric" agonist, and we discuss insights into the conformational landscape of α7 receptors that has been gained by the development of ligands binding to allosteric sites. Some of these sites are targeted by positive allosteric modulators that have a wide range of effects on the activation profile of the receptors. Other sites are targeted by direct allosteric agonist or antagonists. We include a perspective on the potential importance of α7 receptors for metabotropic as well as ionotropic signaling. We outline the challenges that exist for future development of drugs to target this important receptor and approaches that may be considered to address those challenges. SIGNIFICANCE STATEMENT: The α7-type nicotinic acetylcholine receptor (nAChR) is acknowledged as a potentially important therapeutic target with functional properties associated with both ionotropic and metabotropic signaling. The functional properties of α7 nAChR can be regulated in diverse ways with the variety of orthosteric and allosteric ligands described in this review.
Collapse
Affiliation(s)
- Roger L Papke
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| |
Collapse
|