1
|
Cai DL, Chan Y, Kong YM, Liu YZ, Guo Y, Cai AQ, Zhu BS. Ginsenoside Rg1 promotes fetal hemoglobin production in vitro: A potential therapeutic avenue for β-thalassemia. Eur J Pharmacol 2024; 968:176404. [PMID: 38382804 DOI: 10.1016/j.ejphar.2024.176404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
β-thalassemia, a globally prevalent genetic disorder, urgently requires innovative treatment options. Fetal hemoglobin (HbF) induction stands as a key therapeutic approach. This investigation focused on Ginsenoside Rg1 from the Panax genus for HbF induction. Employing K562 cells and human erythroid precursor cells (ErPCs) derived from neonatal cord blood, the study tested Rg1 at different concentrations. We measured its effects on γ-globin mRNA levels and HbF expression, alongside assessments of cell proliferation and differentiation. In K562 cells, Rg1 at 400 μM significantly increased γ-globin mRNA expression by 4.24 ± 1.08-fold compared to the control. In ErPCs, the 800 μM concentration was most effective, leading to an over 80% increase in F-cells and a marked upregulation in HbF expression. Notably, Rg1 did not adversely affect cell proliferation or differentiation, with the 200 μM concentration showing an increase in γ-globin mRNA by 2.33 ± 0.58-fold, and the 800 μM concentration enhancing HbF expression by 2.59 ± 0.03-fold in K562 cells. Our results underscore Rg1's potential as an effective and safer alternative for β-thalassemia treatment. By significantly enhancing HbF levels without cytotoxicity, Rg1 offers a notable advantage over traditional treatments like Hydroxyurea. While promising, these in vitro findings warrant further in vivo exploration to confirm Rg1's therapeutic efficacy and to unravel its underlying mechanistic pathways.
Collapse
Affiliation(s)
- Dong-Ling Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Ying Chan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Ya-Min Kong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yi-Ze Liu
- Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Yan Guo
- Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Ai-Qi Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Bao-Sheng Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| |
Collapse
|
2
|
Iftikhar F, Khan MBN, Tehreem S, Kanwal N, Musharraf SG. BCL11A-targeted γ-globin gene induction by triterpenoid glycosides of Fagonia indica: A preclinical scientific validation of indigenous herb for the treatment of β-hemoglobinopathies. Bioorg Chem 2023; 140:106768. [PMID: 37586133 DOI: 10.1016/j.bioorg.2023.106768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Pharmacological induction of fetal hemoglobin has proven to be a promising therapeutic intervention in β-hemoglobinopathies by reducing the globin chain imbalance and inhibiting sickle cell polymerization. Fagonia indica has shown therapeutic relevance to β-thalassemia. Therefore, we study the ethnopharmacological potential of Fagonia indica and its biomarker compounds for their HbF induction ability for the treatment of β-thalassemia. Here, we identify, compound 8 (triterpenoid glycosides) of F. indica. as a prominent HbF inducer in-vitro and in-vivo. Compound 8 showed potent erythroid differentiation, enhanced cellular proliferation, ample accumulation of total hemoglobin, and a strong notion of γ-globin gene expression in K562 cultures. Compound 8 treatment also revealed strong induction of erythroid differentiation and fetal hemoglobin mRNA and protein in adult erythroid precursor cells. This induction was associated with simultaneous downregulation of BCL11A and SOX6, and overexpression of the GATA-1 gene, suggesting a compound 8-mediated partial mechanism involved in the reactivation of fetal-like globin genes. The in vivo study with compound 8 (10 mg/kg) in β-YAC mice resulted in significant HbF synthesis demonstrated by the enhanced level of F-cells (84.14 %) and an 8.85-fold increase in the γ-globin gene. Overall, the study identifies compound 8 as a new HbF-inducing entity and provides an early "proof-of-concept" to enable the initiation of preclinical and clinical studies in the development of this HbF-inducing agent for β-thalassemia.
Collapse
Affiliation(s)
- Fizza Iftikhar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Behroz Naeem Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syeda Tehreem
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Nayab Kanwal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
3
|
Dragomanova S, Andonova V, Volcho K, Salakhutdinov N, Kalfin R, Tancheva L. Therapeutic Potential of Myrtenal and Its Derivatives-A Review. Life (Basel) 2023; 13:2086. [PMID: 37895468 PMCID: PMC10608190 DOI: 10.3390/life13102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The investigation of monoterpenes as natural products has gained significant attention in the search for new pharmacological agents due to their ability to exhibit a wide range in biological activities, including antifungal, antibacterial, antioxidant, anticancer, antispasmodic, hypotensive, and vasodilating properties. In vitro and in vivo studies reveal their antidepressant, anxiolytic, and memory-enhancing effects in experimental dementia and Parkinson's disease. Chemical modification of natural substances by conjugation with various synthetic components is a modern method of obtaining new biologically active compounds. The discovery of new potential drugs among monoterpene derivatives is a progressive avenue within experimental pharmacology, offering a promising approach for the therapy of diverse pathological conditions. Biologically active substances such as monoterpenes, for example, borneol, camphor, geraniol, pinene, and thymol, are used to synthesize compounds with analgesic, anti-inflammatory, anticonvulsive, antidepressant, anti-Alzheimer's, antiparkinsonian, antiviral and antibacterial (antituberculosis) properties. Myrtenal is a perspective monoterpenoid with therapeutic potential in various fields of medicine. Its chemical modifications often lead to new or more pronounced biological effects. As an example, the conjugation of myrtenal with the established pharmacophore adamantane enables the augmentation of several of its pivotal properties. Myrtenal-adamantane derivatives exhibited a variety of beneficial characteristics, such as antimicrobial, antifungal, antiviral, anticancer, anxiolytic, and neuroprotective properties, which are worth examining in more detail and at length.
Collapse
Affiliation(s)
- Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, 84 A Tsar Osvoboditel Blvd., 9002 Varna, Bulgaria;
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 84 A Tsar Osvoboditel Blvd., 9002 Varna, Bulgaria;
| | - Konstantin Volcho
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, 9 Lavrentiev Av., 630090 Novosibirsk, Russia; (K.V.); (N.S.)
| | - Nariman Salakhutdinov
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, 9 Lavrentiev Av., 630090 Novosibirsk, Russia; (K.V.); (N.S.)
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria;
- Department of Healthcare, South-West University, 66 Ivan Mihailov St., 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria;
| |
Collapse
|
4
|
Nawaz S, Irfan HM, Alamgeer, Arshad L, Jahan S. Attenuation of CFA-induced chronic inflammation by a bicyclic monoterpene fenchone targeting inducible nitric oxide, prostaglandins, C-reactive protein and urea. Inflammopharmacology 2023; 31:2479-2491. [PMID: 37689616 DOI: 10.1007/s10787-023-01333-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Fenchone (a bicyclic monoterpene) is present in the essential oils of plant species like Foeniculum vulgare and Peumus boldus and is used to treat GIT disorders. Research reports have indicated its strong anti-inflammatory, antioxidant, and anti-nociceptive properties. The present study was designed to investigate fenchone's anti-arthritic effects in a rat model of chronic joint inflammation (Complete Freud's Adjuvant-mediated inflammation [CFA]). Molecular docking analysis revealed a high binding interaction of fenchone with inducible nitric oxide synthase (iNOS), Interleukin-17, Prostaglandin E Receptor EP4, and Cycloxygenase-2 (COX-2), indicating its anti-inflammatory efficacy using computational tests. Fenchone treatment at 100 mg/kg, 200 mg/kg, and 400 mg/kg significantly enhanced the tail-flick latency when compared with the solvent-treated group. Correspondingly, the raised mRNA values of iNOS, IL-17, IL-1β, IL-6, TNF-α, and COX-2 in solvent-treated group were significantly reduced following treatment with fenchone. Moreover, fenchone significantly lowered spleen and thymus indices, Nitric oxide (NO) and PGE2 values as compared to solvent-treated group. Hence, the results of the present study indicated that fenchone has a potent anti-inflammatory effect by inhibiting pro-inflammatory markers and thus may have therapeutic potential for chronic joint inflammation as well as chronic inflammatory disorders.
Collapse
Affiliation(s)
- Shoaib Nawaz
- College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
- Doctor Institute of Health Sciences, Sargodha, Punjab, Pakistan
| | | | - Alamgeer
- Department of Pharmacology, Punjab University College of Pharmacy, University of the Punjab, Lahore, 54000, Pakistan
| | - Laiba Arshad
- Department of Pharmacy, Forman Christian College (A Chartered University), Ferozpur Road, Lahore, Pakistan
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, 54600, Pakistan
| |
Collapse
|
5
|
Metabolomics Study of Serum Samples of β-YAC Transgenic Mice Treated with Tenofovir Disoproxil Fumarate. Int J Mol Sci 2022; 23:ijms232415750. [PMID: 36555396 PMCID: PMC9778960 DOI: 10.3390/ijms232415750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
β-thalassemia is one of the most common monogenic disorders and a life-threatening health issue in children. A cost-effective and safe therapeutic approach to treat this disease is to reactivate the γ-globin gene for fetal hemoglobin (HbF) production that has been silenced during infancy. Hydroxyurea (HU) is the only FDA approved HbF inducer. However, its cytotoxicity and inability to respond significantly in all patients pose a need for an HbF inducer with better efficacy. The study describes the serum metabolic alteration in β-YAC transgenic mice treated with Tenofovir disoproxil fumarate (TDF) (n = 5), a newly identified HbF inducer, and compared to the mice groups treated with HU (n = 5) and untreated control (n = 5) using gas chromatography-mass spectrometry. Various univariate and multivariate statistical analyses were performed to identify discriminant metabolites that altered the biological pathways encompassing galactose metabolism, lactose degradation, and inositol. Furthermore, the decreased concentrations of L-fucose and geraniol in TDF-treated mice help in recovering towards normal, decreasing oxidative stress even much better than the HU-treated mice. The proposed study suggested that TDF can reduce the deficiency of blood required for β-thalassemia and can be used for the preclinical study at phase I/II for fetal hemoglobin production.
Collapse
|
6
|
Pavan AR, Lopes JR, Dos Santos JL. The state of the art of fetal hemoglobin-inducing agents. Expert Opin Drug Discov 2022; 17:1279-1293. [PMID: 36302760 DOI: 10.1080/17460441.2022.2141708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Sickle cell anemia (SCA) is a hematological genetic disorder caused by a mutation in the gene of the β-globin. Pharmacological treatments will continue to be an important approach, including the strategy to induce fetal hemoglobin (HbF). AREAS COVERED Here, we analyzed the articles described in the literature regarding the drug discovery of HbF inducers. The main approaches for such strategy will be discussed, highlighting those most promising. EXPERT OPINION The comprehension of the mechanisms involved in the β-globin regulation is the main key to design new drugs to induce HbF. Among the strategies, gamma-globin regulation by epigenetic enzymes seems to be a promising approach to be pursued, although the comprehension of the selectivity role for those new drugs is crucial to reduce adverse effects. The low druggability of transcription factors and their vital role in embryonic human development are critical points that should be taken in account for drug design. The guanylate cyclase and the NO/cGMP signaling pathway seem to be promising not only for HbF induction, but also for the protective effects in the cardiovascular system. The association of drugs acting through different mechanisms to induce HbF seems to be promising for the discovery of new drugs.
Collapse
Affiliation(s)
- Aline Renata Pavan
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
| | - Juliana Romano Lopes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Drugs and Medicine Department, Araraquara, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil.,School of Pharmaceutical Sciences, São Paulo State University (UNESP), Drugs and Medicine Department, Araraquara, Brazil
| |
Collapse
|
7
|
Iftikhar F, Rahman S, Khan MBN, Khan K, Khan MN, Uddin R, Musharraf SG. In Vitro and In Vivo Studies for the Investigation of γ-Globin Gene Induction by Adhatoda vasica: A Pre-Clinical Study of HbF Inducers for β-Thalassemia. Front Pharmacol 2022; 13:797853. [PMID: 35422700 PMCID: PMC9002120 DOI: 10.3389/fphar.2022.797853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal hemoglobin (HbF) is a potent genetic modifier, and the γ-globin gene induction has proven to be a sustainable therapeutic approach for the management of β-thalassemia. In this study, we have evaluated the HbF induction ability of A. vasica in vitro and in vivo, and the identification of potential therapeutic compounds through a bioassay-guided approach. In vitro benzidine-Hb assay demonstrated strong erythroid differentiation of K562 cells by A. vasica extracts. Subsequently, an in vivo study with an aqueous extract of A. vasica (100 mg/kg) showed significant induction of the γ-globin gene and HbF production. While in the acute study, the hematological and biochemical indices were found to be unaltered at the lower dose of A. vasica. Following the bioassay-guided approach, two isolated compounds, vasicinol (1) and vasicine (2) strongly enhanced HbF levels and showed prominent cellular growth kinetics with ample accumulation of total hemoglobin in K562 cultures. High HbF levels were examined by immunofluorescence and flow cytometry analysis, concomitant with the overexpression in the γ-globin gene level. Compound 1 (0.1 µM) and compound 2 (1 µM) resulted in a greater increase in F-cells (90 and 83%) with marked up (8-fold and 5.1-fold) expression of the γ-globin gene, respectively. Molecular docking studies indicated strong binding affinities of (1) and (2) with HDAC2 and KDM1 protein that predict the possible mechanism of compounds in inhibition of these epigenetic regulators in the γ-globin gene reactivation. Altogether, these observations demonstrated the therapeutic usefulness of A. vasica for fostering HbF production in clinical implications for blood disorders.
Collapse
Affiliation(s)
- Fizza Iftikhar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Saeedur Rahman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Behroz Naeem Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Noman Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Reaz Uddin
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
8
|
Mukherjee M, Rahaman M, Ray SK, Shukla PC, Dolai TK, Chakravorty N. Revisiting fetal hemoglobin inducers in beta-hemoglobinopathies: a review of natural products, conventional and combinatorial therapies. Mol Biol Rep 2021; 49:2359-2373. [PMID: 34822068 DOI: 10.1007/s11033-021-06977-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022]
Abstract
Beta-hemoglobinopathies exhibit a heterogeneous clinical picture with varying degrees of clinical severity. Pertaining to the limited treatment options available, where blood transfusion still remains the commonest mode of treatment, pharmacological induction of fetal hemoglobin (HbF) has been a lucrative therapeutic intervention. Till now more than 70 different HbF inducers have been identified. The practical usage of many pharmacological drugs has been limited due to safety concerns. Natural compounds, like Resveratrol, Ripamycin and Bergaptene, with limited cytotoxicity and high efficacy have started capturing the attention of researchers. In this review, we have summarized pharmacological drugs and bioactive compounds isolated from natural sources that have been shown to increase HbF significantly. It primarily discusses recently identified synthetic and natural compounds, their mechanism of action, and their suitable screening platforms, including high throughput drug screening technology and biosensors. It also delves into the topic of combinatorial therapy and drug repurposing for HbF induction. Overall, we aim to provide insights into where we stand in HbF induction strategies for treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Mandrita Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Motiur Rahaman
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Suman Kumar Ray
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Tuphan Kanti Dolai
- Department of Hematology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, 700014, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|