1
|
Quintieri L, Luparelli A, Caputo L, Schirinzi W, De Bellis F, Smiriglia L, Monaci L. Unraveling the Biological Properties of Whey Peptides and Their Role as Emerging Therapeutics in Immune Tolerance. Nutrients 2025; 17:938. [PMID: 40289962 PMCID: PMC11946102 DOI: 10.3390/nu17060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
Whey is a natural by-product of the cheese-making process and represents a valuable source of nutrients, including vitamins, all essential amino acids and proteins with high quality and digestibility characteristics. Thanks to its different techno-functional characteristics, such as solubility, emulsification, gelling and foaming, it has been widely exploited in food manufacturing. Also, advances in processing technologies have enabled the industrial production of a variety of whey-based products exerting biological activities. The beneficial properties of whey proteins (WPs) include their documented effects on cardiovascular, digestive, endocrine, immune and nervous systems, and their putative role in the prevention and treatment of non-communicable diseases (NCDs). In this regard, research on their application for health enhancement, based on the optimization of product formulation and the development of pharmaceuticals, is highly relevant. Beyond the health and nutritionally relevant effects as in in vivo animal studies, the allergenicity of WPs and WP hydrolysates is also herein tackled and discussed, as well as their potential role as therapeutics for immune tolerance and so-called tolerogenic effects. Grounded on the WPs' health-promoting functions, this paper presents the latest research showing the potential of whey-derived peptides as an alternative strategy in NCD treatment. This work also reports a careful analysis of their current use, also revealing which obstacles limit their full exploitation, thus highlighting the future challenges in the field. Concluding, safety considerations, encompassing WP allergenicity, are also discussed, providing some insights on the role of WPs and peptides in milk allergen immunotolerance.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (A.L.); (L.C.); (W.S.); (F.D.B.)
| | - Anna Luparelli
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (A.L.); (L.C.); (W.S.); (F.D.B.)
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (A.L.); (L.C.); (W.S.); (F.D.B.)
| | - William Schirinzi
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (A.L.); (L.C.); (W.S.); (F.D.B.)
| | - Federica De Bellis
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (A.L.); (L.C.); (W.S.); (F.D.B.)
| | - Leonardo Smiriglia
- Parafarmacia Smiriglia Leonardo, Via San Giorgio 19/B, 70019 Bari, Italy;
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (A.L.); (L.C.); (W.S.); (F.D.B.)
| |
Collapse
|
2
|
Vijayanand M, Guru A, Shaik MR, Hussain SA, Issac PK. Assessing the therapeutic potential of KK14 peptide derived from Cyprinus Carpio in reducing intercellular ROS levels in oxidative Stress-Induced In vivo zebrafish larvae model: An integrated bioinformatics, antioxidant, and neuroprotective analysis. J Biochem Mol Toxicol 2024; 38:e70027. [PMID: 39467211 DOI: 10.1002/jbt.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
H2O2 is a significant reactive oxygen species (ROS) that hinders redox-mediated processes and contributes to oxidative stress and neurodegenerative disorders. Oxidative stress causes impairment of cell macromolecules, which results in cell dysfunction and neurodegeneration. Alzheimer's disease and other neurodegenerative diseases are serious conditions linked to oxidative stress. Antioxidant treatment approaches are a novel and successful strategy for decreasing neurodegeneration and reducing oxidative stress. This study explored the antioxidant and neuroprotective characteristics of KK14 peptide synthesized from LEAP 2B (liver-expressed antimicrobial peptide-2B) derived from Cyprinus carpio L. Molecular docking studies were used to assess the antioxidant properties of KK14. The peptide at concentrations 5-45 μM was examined by using in vitro and in vivo assessment. Analysis was done on the developmental and neuroprotective potential of KK14 peptide treatment in H2O2-exposed zebrafish larvae which showed Nonlethal deformities. KK14 improves antioxidant enzyme activity like catalase and superoxide dismutase. Furthermore, it reduces neuronal damage by lowering lipid peroxidation and nitric oxide generation while increasing acetylcholinesterase activity. It improved the changes in swimming behavior and the cognitive damage produced by exposure to H2O2. To further substantiate the neuroprotective potential of KK14, intracellular ROS levels in zebrafish larvae were assessed. This led to a reduction in ROS levels and diminished lipid peroxidation. The KK14 has upregulated the antioxidant genes against oxidative stress. Overall, this study proved the strong antioxidant activity of KK14, suggesting its potential as a strong therapeutic option for neurological disorders caused by oxidative stress.
Collapse
Affiliation(s)
- Madhumitha Vijayanand
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Praveen Kumar Issac
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Vijayanand M, Issac PK, Velayutham M, Shaik MR, Hussain SA, Guru A. Exploring the neuroprotective potential of KC14 peptide from Cyprinus carpio against oxidative stress-induced neurodegeneration by regulating antioxidant mechanism. Mol Biol Rep 2024; 51:990. [PMID: 39287730 DOI: 10.1007/s11033-024-09905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Oxidative stress, a condition characterized by excessive production of reactive oxygen species (ROS), can cause significant damage to cellular macromolecules, leading to neurodegeneration. This underscores the need for effective antioxidant therapies that can mitigate oxidative stress and its associated neurodegenerative effects. KC14 peptide derived from liver-expressed antimicrobial peptide-2 A (LEAP 2 A) from Cyprinus carpio L. has been identified as a potential therapeutic agent. This study focuses on the antioxidant and neuroprotective properties of the KC14 peptide is to evaluate its effectiveness against oxidative stress and neurodegeneration. METHODS The antioxidant capabilities of KC14 were initially assessed through in silico docking studies, which predicted its potential to interact with oxidative stress-related targets. Subsequently, the peptide was tested at concentrations ranging from 5 to 45 µM in both in vitro and in vivo experiments. In vivo studies involved treating H2O2-induced zebrafish larvae with KC14 peptide to analyze its effects on oxidative stress and neuroprotection. RESULTS KC14 peptide showed a protective effect against the developmental malformations caused by H2O2 stress, restored antioxidant enzyme activity, reduced neuronal damage, and lowered lipid peroxidation and nitric oxide levels in H2O2-induced larvae. It enhanced acetylcholinesterase activity and significantly reduced intracellular ROS levels (p < 0.05) dose-dependently. Gene expression studies showed up-regulation of antioxidant genes with KC14 treatment under H2O2 stress. CONCLUSIONS This study highlights the potent antioxidant activity of KC14 and its ability to confer neuroprotection against oxidative stress can provide a novel therapeutic agent for combating neurodegenerative diseases induced by oxidative stress.
Collapse
Affiliation(s)
- Madhumitha Vijayanand
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Manikandan Velayutham
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| |
Collapse
|
4
|
Kondrashina A, Mamone G, Giblin L, Lane JA. Infant Milk Formula Enriched in Dairy Cream Brings Its Digestibility Closer to Human Milk and Supports Intestinal Health in Pre-Clinical Studies. Nutrients 2024; 16:3065. [PMID: 39339664 PMCID: PMC11434767 DOI: 10.3390/nu16183065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Human breast milk (HBM) is the "gold standard" for infant nutrition. When breast milk is insufficient or unavailable, infant milk formula (IMF) can provide a safe and nutritious alternative. However, IMFs differ considerably from HBM in composition and health function. We compared the digestibility and potential health functions of IMF containing low cream (LC-) or high cream (HC-) with pooled HBM. After simulated infant digestion of these samples, the bioavailability of key nutrients and immunomodulatory activities were determined via cell-based in vitro assays. A Caenorhabditis elegans leaky gut model was established to investigate cream effects on gut health. Distinct differences were observed in peptide diversity and sequences released from HC-IMF compared with LC-IMF during simulated digestion (p < 0.05). Higher levels of free fatty acids were absorbed through 21-day differentiated Caco-2/HT-29MTX monolayers from HC-IMF, compared with LC-IMF and HBM (p < 0.05). Furthermore, the immune-modulating properties of HC-IMF appeared to be more similar to HBM than LC-IMF, as observed by comparable secretion of cytokines IL-10 and IL-1β from THP-1 macrophages (p > 0.05). HC-IMF also supported intestinal recovery in C. elegans following distortion versus LC-IMF (p < 0.05). These observations suggest that cream as a lipid source in IMF may provide added nutritional and functional benefits more aligned with HBM.
Collapse
Affiliation(s)
- Alina Kondrashina
- Health and Happiness (H&H) Group, H&H Research, Global Research and Technology Centre, Fermoy, P61 K202 Co. Cork, Ireland
| | - Gianfranco Mamone
- Institute of Food Science, National Research Council, 83100 Avellino, Italy
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 P302 Co. Cork, Ireland
| | - Jonathan A Lane
- Health and Happiness (H&H) Group, H&H Research, Global Research and Technology Centre, Fermoy, P61 K202 Co. Cork, Ireland
| |
Collapse
|
5
|
Kong X, Wang W, Zhong Y, Wang N, Bai K, Wu Y, Qi Q, Zhang Y, Liu X, Xie J. Recent advances in the exploration and discovery of SARS-CoV-2 inhibitory peptides from edible animal proteins. Front Nutr 2024; 11:1346510. [PMID: 38389797 PMCID: PMC10883054 DOI: 10.3389/fnut.2024.1346510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19), is spreading worldwide. Although the COVID-19 epidemic has passed its peak of transmission, the harm it has caused deserves our attention. Scientists are striving to develop medications that can effectively treat COVID-19 symptoms without causing any adverse reactions. SARS-CoV-2 inhibitory peptides derived from animal proteins have a wide range of functional activities in addition to safety. Identifying animal protein sources is crucial to obtaining SARS-CoV-2 inhibitory peptides from animal sources. This review aims to reveal the mechanisms of action of these peptides on SARS-CoV-2 and the possibility of animal proteins as a material source of SARS-CoV-2 inhibitory peptides. Also, it introduces the utilization of computer-aided design methods, phage display, and drug delivery strategies in the research on SARS-CoV-2 inhibitor peptides from animal proteins. In order to identify new antiviral peptides and boost their efficiency, we recommend investigating the interaction between SARS-CoV-2 inhibitory peptides from animal protein sources and non-structural proteins (Nsps) using a variety of technologies, including computer-aided drug approaches, phage display techniques, and drug delivery techniques. This article provides useful information for the development of novel anti-COVID-19 drugs.
Collapse
Affiliation(s)
- Xiaoyue Kong
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yizhi Zhong
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Kaiwen Bai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yi Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Qianhui Qi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yu Zhang
- Institute of Quality and Standard for Agriculture Products, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Xingquan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Junran Xie
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Santos I, Silva M, Grácio M, Pedroso L, Lima A. Milk Antiviral Proteins and Derived Peptides against Zoonoses. Int J Mol Sci 2024; 25:1842. [PMID: 38339120 PMCID: PMC10855762 DOI: 10.3390/ijms25031842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Milk is renowned for its nutritional richness but also serves as a remarkable reservoir of bioactive compounds, particularly milk proteins and their derived peptides. Recent studies have showcased several robust antiviral activities of these proteins, evidencing promising potential within zoonotic viral diseases. While several publications focus on milk's bioactivities, antiviral peptides remain largely neglected in reviews. This knowledge is critical for identifying novel research directions and analyzing potential nutraceuticals within the One Health context. Our review aims to gather the existing scientific information on milk-derived antiviral proteins and peptides against several zoonotic viral diseases, and their possible mechanisms. Overall, in-depth research has increasingly revealed them as a promising and novel strategy against viruses, principally for those constituting a plausible pandemic threat. The underlying mechanisms of the bioactivity of milk's proteins include inhibiting viral entry and attachment to the host cells, blocking replication, or even viral inactivation via peptide-membrane interactions. Their marked versatility and effectiveness stand out compared to other antiviral peptides and can support future research and development in the post-COVID-19 era. Overall, our review helps to emphasize the importance of potentially effective milk-derived peptides, and their significance for veterinary and human medicines, along with the pharmaceutical, nutraceutical, and dairy industry.
Collapse
Affiliation(s)
- Isabel Santos
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Mariana Silva
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
| | - Madalena Grácio
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal;
| | - Laurentina Pedroso
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Ana Lima
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| |
Collapse
|
7
|
Vijay B, Diwan B, Devkumar P, Shankar P, Vishnuprasad CN, Singh G, Kataria D, Shankar D. Nasal application of sesame oil-based Anu taila as 'biological mask' for respiratory health during COVID-19. J Ayurveda Integr Med 2023; 14:100773. [PMID: 37660545 PMCID: PMC10692365 DOI: 10.1016/j.jaim.2023.100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 09/05/2023] Open
Abstract
This article narrates the potential role of sesame oil-based Anu taila for respiratory health and the prevention of COVID-19. Ayurveda recommends the use of sesame oil and A. taila as a part of daily routine (dinacharya) for oral gargling and transnasal application (Nasya) for preventing upper respiratory tract infections. Recent studies on COVID-19 have elucidated the activity of certain fatty acids in restricting viral binding. Based on the evidence gathered from in-silico, pre-clinical, and pharmacological studies as well as references from classical textbooks of Ayurveda, this article infers that the transnasal application of sesame oil and/or A. taila could provide resilience/protection to the respiratory system. It can act as a 'biological mask' to prevent respiratory infections like COVID-19. Detailed pharmacological study can give fuller confirmation of our informed "inference" that A. taila offers a cost-effective intervention for the prevention of COVID-19 like infections of the upper respiratory tract.
Collapse
Affiliation(s)
- Bhavya Vijay
- Centre for Clinical Research and Education, The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Batul Diwan
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Poornima Devkumar
- Centre for Clinical Research and Education, The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Prasan Shankar
- Centre for Clinical Research and Education, The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Chethala N Vishnuprasad
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India.
| | - Gurmeet Singh
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Deepshikha Kataria
- Centre for Clinical Research and Education, The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India; Institute of Home Economics, University of Delhi, F4, Hauz Khas, New Delhi, India
| | - Darshan Shankar
- The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| |
Collapse
|
8
|
Rai C, Priyadarshini P. Whey protein hydrolysates improve high-fat-diet-induced obesity by modulating the brain-peripheral axis of GLP-1 through inhibition of DPP-4 function in mice. Eur J Nutr 2023; 62:2489-2507. [PMID: 37154934 DOI: 10.1007/s00394-023-03162-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE Obesity is a growing global health concern. Recent literature indicates a prominent role of glucagon-like peptide-1 (GLP-1) in glucose metabolism and food intake. The synergistic action of GLP-1 in the gut and brain is responsible for its satiety-inducing effect, suggesting that upregulation of active GLP-1 levels could be an alternative strategy to combat obesity. Dipeptidyl peptidase-4 (DPP-4) is an exopeptidase known to inactivate GLP-1, suggesting that its inhibition could be a crucial strategy for effectively extending the half-life of endogenous GLP-1. Peptides derived from partial hydrolysis of dietary proteins are gaining traction due to their inhibitory activity on DPP-4. METHODS Whey protein hydrolysate from bovine milk (bmWPH) was produced using simulated in situ digestion, purified using RP-HPLC, and characterized for DPP-4 inhibition. The antiadipogenic and antiobesity activity of bmWPH was then studied in 3T3-L1 preadipocytes and high-fat diet-induced obesity (HFD) mice model, respectively. RESULTS The dose-dependent inhibitory effect of bmWPH on the catalytic activity of DPP-4 was observed. Additionally, bmWPH suppressed adipogenic transcription factors and DPP-4 protein levels, leading to a negative effect on preadipocyte differentiation. In an HFD mice model, co-administration of WPH for 20 weeks downregulated adipogenic transcription factors, resulting in a concomitant reduction in whole body weight and adipose tissues. Mice fed with bmWPH also showed a marked reduction in DPP-4 levels in WAT, liver, and serum. Furthermore, HFD mice fed with bmWPH exhibited increased serum and brain GLP levels, which led to a significant decrease in food intake. CONCLUSION In conclusion, bmWPH reduces body weight in HFD mice by suppressing appetite through GLP-1, a satiety-inducing hormone, in both the brain and peripheral circulation. This effect is achieved through modulation of both the catalytic and non-catalytic activity of DPP-4.
Collapse
Affiliation(s)
- Chaitra Rai
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Poornima Priyadarshini
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Singh P, Hernandez‐Rauda R, Peña‐Rodas O. Preventative and therapeutic potential of animal milk components against COVID-19: A comprehensive review. Food Sci Nutr 2023; 11:2547-2579. [PMID: 37324885 PMCID: PMC10261805 DOI: 10.1002/fsn3.3314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/24/2023] [Indexed: 06/17/2023] Open
Abstract
The global pandemic of COVID-19 is considered one of the most catastrophic events on earth. During the pandemic, food ingredients may play crucial roles in preventing infectious diseases and sustaining people's general health and well-being. Animal milk acts as a super food since it has the capacity to minimize the occurrence of viral infections due to inherent antiviral properties of its ingredients. SARS-CoV-2 virus infection can be prevented by immune-enhancing and antiviral properties of caseins, α-lactalbumin, β-lactoglobulin, mucin, lactoferrin, lysozyme, lactoperoxidase, oligosaccharides, glycosaminoglycans, and glycerol monolaurate. Some of the milk proteins (i.e., lactoferrin) may work synergistically with antiviral medications (e.g., remdesivir), and enhance the effectiveness of treatment in this disease. Cytokine storm during COVID-19 can be managed by casein hydrolyzates, lactoferrin, lysozyme, and lactoperoxidase. Thrombus formation can be prevented by casoplatelins as these can inhibit human platelet aggregation. Milk vitamins (i.e., A, D, E, and B complexes) and minerals (i.e., Ca, P, Mg, Zn, and Se) can have significantly positive effects on boosting the immunity and health status of individuals. In addition, certain vitamins and minerals can also act as antioxidants, anti-inflammatory, and antivirals. Thus, the overall effect of milk might be a result of synergistic antiviral effects and host immunomodulator activities from multiple components. Due to multiple overlapping functions of milk ingredients, they can play vital and synergistic roles in prevention as well as supportive agents during principle therapy of COVID-19.
Collapse
Affiliation(s)
- Parminder Singh
- Department of Animal Husbandry AmritsarGovernment of PunjabAmritsarIndia
| | - Roberto Hernandez‐Rauda
- Laboratorio de Inocuidad de AlimentosUniversidad Doctor Andres BelloSan SalvadorEl Salvador, América Central
| | - Oscar Peña‐Rodas
- Laboratorio de Inocuidad de AlimentosUniversidad Doctor Andres BelloSan SalvadorEl Salvador, América Central
| |
Collapse
|
10
|
Guru A, Sudhakaran G, Almutairi MH, Almutairi BO, Juliet A, Arockiaraj J. β-cells regeneration by WL15 of cysteine and glycine-rich protein 2 which reduces alloxan induced β-cell dysfunction and oxidative stress through phosphoenolpyruvate carboxykinase and insulin pathway in zebrafish in-vivo larval model. Mol Biol Rep 2022; 49:11867-11879. [PMID: 36224446 DOI: 10.1007/s11033-022-07882-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pancreatic β-cells are susceptible to oxidative stress, leading to β-cell death and dysfunction due to enhanced ROS levels and type 2 diabetes. To inhibit the β-cells damages induced by the oxidative stress, the present study investigates the beneficial effect of various peptides (WL15, RF13, RW20, IW13 and MF18) of immune related proteins (cysteine and glycine-rich protein 2, histone acetyltransferase, vacuolar protein sorting associated protein 26B, serine threonine-protein kinase and CxxC zinc finger protein, respectively). Also, the molecular mechanism of WL15 from cysteine and glycine-rich protein 2 on β-cell regeneration was identified through PEPCK and insulin pathway. MATERIALS AND METHODS In this study, a total of five peptides including WL15, RF13, RW20, IW13, and MF18 were derived from immune-related proteins such as cysteine and glycine-rich protein 2, histone acetyltransferase, vacuolar protein sorting associated protein 26B, serine threonine-protein kinase and CxxC zinc finger protein, respectively. These protein sequences were obtained from an earlier constructed transcriptome database of a teleost Channa striatus. The identified peptides were evaluated for their antioxidant as well as antidiabetic activity. Based on the in silico analysis and in-vitro screening experiments, WL15 was predicted to have better antioxidant and antidiabetic activity among the five different peptides. Therefore, WL15 alone was further analyzed for apoptosis, antioxidant capacity, glucose metabolism, and gene expression performance, which was investigated on the alloxan (500 µM) induced zebrafish in vivo larval model. RESULTS The results showed alloxan exposure to zebrafish larvae for a day, the ROS was generated in the β-cells. Interestingly, WL15 treatment showed a protective effect by reducing the toxicity of alloxan exposed zebrafish larvae by increasing their survival and heart rate. Moreover, WL15 reduced the intracellular ROS level and apoptosis in alloxan-induced larvae. The superoxide anion and lipid peroxidation levels are also reduced by improving the glutathione content after the WL15 treatment. Besides, WL15 treatment increased the proliferation rate of β-cells and decreased the glucose level. Further, the gene expression studies revealed that WL15 treatment normalized the PEPCK expression while upregulating the insulin expression in alloxan exposed larvae. CONCLUSION Overall, the findings indicate that WL15 of cysteine and glycine-rich protein 2 can act as a potential antioxidant for type 2 diabetes patients in respect of improving β-cell regeneration.
Collapse
Affiliation(s)
- Ajay Guru
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Annie Juliet
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT), Thoraipakkam, Chennai, 600 097, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
11
|
Engineering Modified mRNA-Based Vaccine against Dengue Virus Using Computational and Reverse Vaccinology Approaches. Int J Mol Sci 2022; 23:ijms232213911. [PMID: 36430387 PMCID: PMC9698390 DOI: 10.3390/ijms232213911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue virus belonging to the family Flaviviridae and its four serotypes are responsible for dengue infections, which extend over 60 countries in tropical and subtropical areas of the world including Pakistan. During the ongoing dengue outbreak in Pakistan (2022), over 30,000 cases have been reported, and over 70 lives have been lost. The only commercialized vaccine against DENV, Dengvaxia, cannot be administered as a prophylactic measure to cure this infection due to various complications. Using machine learning and reverse vaccinology approaches, this study was designed to develop a tetravalent modified nucleotide mRNA vaccine using NS1, prM, and EIII sequences of dengue virus from Pakistani isolates. Based on high antigenicity, non-allergenicity, and toxicity profiling, B-cell epitope, cytotoxic T lymphocyte (CTL), and helper T lymphocyte (HTL) putative vaccine targets were predicted. Molecular docking confirmed favorable interactions between T-cell epitopes and their respective HLA alleles, while normal mode analysis validated high-affinity interactions of vaccine proteins with immune receptors. In silico immune simulations confirmed adequate immune responses to eliminate the antigen and generate memory. Codon optimization, physicochemical features, nucleotide modifications, and suitable vector availability further ensured better antigen expression and adaptive immune responses. We predict that this vaccine construct may prove to be a good vaccinal candidate against dengue virus in vitro as well.
Collapse
|
12
|
Kaplan M, Şahutoğlu AS, Sarıtaş S, Duman H, Arslan A, Pekdemir B, Karav S. Role of milk glycome in prevention, treatment, and recovery of COVID-19. Front Nutr 2022; 9:1033779. [PMID: 36424926 PMCID: PMC9680090 DOI: 10.3389/fnut.2022.1033779] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 08/23/2023] Open
Abstract
Milk contains all essential macro and micro-nutrients for the development of the newborn. Its high therapeutic and antimicrobial content provides an important function for the prevention, treatment, and recovery of certain diseases throughout life. The bioactive components found in milk are mostly decorated with glycans, which provide proper formation and modulate the biological functions of glycosylated compounds. The glycome of milk consists of free glycans, glycolipids, and N- and O- glycosylated proteins. Recent studies have shown that both free glycans and glycan-containing molecules have antiviral characteristics based on different mechanisms such as signaling, microbiome modulation, natural decoy strategy, and immunomodulatory action. In this review, we discuss the recent clinical studies and potential mechanisms of free and conjugated glycans' role in the prevention, treatment, and recovery of COVID-19.
Collapse
Affiliation(s)
- Merve Kaplan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | | | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Ayşenur Arslan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Burcu Pekdemir
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
13
|
Velayutham M, Haridevamuthu B, Elsadek MF, Rizwana H, Juliet A, Karuppiah KM, Arockiaraj J. S-adenosylmethionine synthase-derived GR15 peptide suppresses proliferation of breast cancer cells by upregulating the caspase-mediated apoptotic pathway: In vitro and in silico analyses. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102354. [DOI: 10.1016/j.jksus.2022.102354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
14
|
Mousavi S, Zare S, Mirzaei M, Feizi A. Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:2044282. [PMID: 36199815 PMCID: PMC9527439 DOI: 10.1155/2022/2044282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
Background Since the beginning of the novel coronavirus (SARS-CoV-2) disease outbreak, there has been an increasing interest in discovering potential therapeutic agents for this disease. In this regard, we conducted a systematic review through an overview of drug development (in silico, in vitro, and in vivo) for treating COVID-19. Methods A systematic search was carried out in major databases including PubMed, Web of Science, Scopus, EMBASE, and Google Scholar from December 2019 to March 2021. A combination of the following terms was used: coronavirus, COVID-19, SARS-CoV-2, drug design, drug development, In silico, In vitro, and In vivo. A narrative synthesis was performed as a qualitative method for the data synthesis of each outcome measure. Results A total of 2168 articles were identified through searching databases. Finally, 315 studies (266 in silico, 34 in vitro, and 15 in vivo) were included. In studies with in silico approach, 98 article study repurposed drug and 91 studies evaluated herbal medicine on COVID-19. Among 260 drugs repurposed by the computational method, the best results were observed with saquinavir (n = 9), ritonavir (n = 8), and lopinavir (n = 6). Main protease (n = 154) following spike glycoprotein (n = 62) and other nonstructural protein of virus (n = 45) was among the most studied targets. Doxycycline, chlorpromazine, azithromycin, heparin, bepridil, and glycyrrhizic acid showed both in silico and in vitro inhibitory effects against SARS-CoV-2. Conclusion The preclinical studies of novel drug design for COVID-19 focused on main protease and spike glycoprotein as targets for antiviral development. From evaluated structures, saquinavir, ritonavir, eucalyptus, Tinospora cordifolia, aloe, green tea, curcumin, pyrazole, and triazole derivatives in in silico studies and doxycycline, chlorpromazine, and heparin from in vitro and human monoclonal antibodies from in vivo studies showed promised results regarding efficacy. It seems that due to the nature of COVID-19 disease, finding some drugs with multitarget antiviral actions and anti-inflammatory potential is valuable and some herbal medicines have this potential.
Collapse
Affiliation(s)
- Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Zare
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Mirzaei
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
16
|
Bhavaniramya S, Sibiya A, Alothaim AS, Al Othaim A, Ramar V, Veluchamy A, Manikandan P, Vaseeharan B. Evaluating the structural and immune mechanism of Interleukin-6 for the investigation of goat milk peptides as potential treatments for COVID-19. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:101924. [PMID: 35233153 PMCID: PMC8875951 DOI: 10.1016/j.jksus.2022.101924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 11/27/2022]
Abstract
The function of Immune control, haematopoiesis, and inflammation all depend on the cytokine Interleukin 6 (IL-6), and higher expression of IL-6 is seen in COVID-19 and other diseases. The immune protein IL-6 activation is dependent on binding interactions with IL-6Rα, mIL-6R, and sIL-6R for its cellular function. Termination of these reaction could benefit for controlling the over-expression in COVID-19 patients and that may arise as inhibitors for controlling COVID-19. Traditionally, the goat milk has been prescribed as medicine in ayurvedic practice and through this work, we have explored the benefits of peptides from goat milk as IL-6 inhibitors, and it have the potential of inhibiting the over expression of IL-6 and control the COVID-19 disease. Computational experiments have shown that goat peptides had strong interactions with IL-6, with higher scoring profiles and energy efficiency ranging from −6.00 kcal/mol to −9.00 kcal/mol in docking score and −39.00 kcal/mol in binding energy. Especially the YLGYLEQLLR, VLVLDTDYK and AMKPWIQPK peptides from goat milk holds better scoring and shows strong interactions were identified as the most potential IL-6 inhibitor candidates in this study. Peptides from Goat proteins, which are capable of binding to the IL-6 receptor with strong binding conformations, have no negative effects on other immune system proteins.
Collapse
Affiliation(s)
- Sundaresan Bhavaniramya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Ashokkumar Sibiya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Abdulaziz S Alothaim
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Vanajothi Ramar
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli 620024, India
| | - Alaguraj Veluchamy
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Palanisamy Manikandan
- Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Greenlink Analytical and Research Laboratory, India Private Limited, Coimbatore 641 014, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
17
|
Tufan E, Sivas GG, Gürel-Gökmen B, Yılmaz-Karaoğlu S, Ercan D, Özbeyli D, Şener G, Tunali-Akbay T. Inhibitory effect of whey protein concentrate on SARS-CoV-2-targeted furin activity and spike protein-ACE2 binding in methotrexate-induced lung damage. J Food Biochem 2022; 46:e14039. [PMID: 34981557 DOI: 10.1111/jfbc.14039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022]
Abstract
This study aims to investigate the effects of whey proteins on SARS CoV-2 in methotrexate-induced lung tissue damage in rats. To determine the possible effects, rats were divided into four groups as control, control + whey, methotrexate (20 mg/kg, i.p.) and methotrexate + whey. Whey protein concentrate (2 g/kg, oral gavage) was administered for 10 days. Cytokine levels were measured and protein electrophoresis was carried out in serum samples. Lipid peroxidation, nitric oxide and glutathione level, and superoxide dismutase and glutathione S transferase activities were determined in lung samples. Inhibition of SARS CoV-2-targeted lung furin activity and SARS CoV-2 spike protein-angiotensin converting enzyme binding with whey protein concentrate were also measured in each group. In conclusion, whey protein concentrate improved methotrexate-induced lung damage and inhibited lung furin activity targeting SARS-CoV-2 S1/S2 site cleavage and SARS CoV-2 spike protein-angiotensin converting enzyme binding. Whey proteins are potential protective candidates that inhibit SARS CoV-2-related interactions, even in methotrexate-induced lung injury. PRACTICAL APPLICATIONS: Whey proteins have anticarcinogenic, antihypertensive, antioxidant, antibacterial, antiviral, and immunomodulating properties due to the protein, bioactive peptide, and essential amino acid content. Methotrexate is a folate antagonist and inhibits cell proliferation and purine synthesis. The combined use of whey protein concentrate and methotrexate may be an alternative in the development of new strategies to the treatment approaches against COVID-19. In addition, according to the results of this study, it is thought that the protective effect of whey proteins in healthy conditions before encountering the SARS CoV-2 may be higher than those who have never used it.
Collapse
Affiliation(s)
- Elif Tufan
- Department of Basic Medical Sciences, Dentistry Faculty, Marmara University, İstanbul, Turkey
| | - Güzin Göksun Sivas
- Department of Basic Medical Sciences, Dentistry Faculty, Marmara University, İstanbul, Turkey
| | - Begüm Gürel-Gökmen
- Department of Basic Medical Sciences, Dentistry Faculty, Marmara University, İstanbul, Turkey
| | - Sümeyye Yılmaz-Karaoğlu
- Department of Basic Medical Sciences, Dentistry Faculty, Marmara University, İstanbul, Turkey
| | - Dursun Ercan
- Department of Basic Medical Sciences, Dentistry Faculty, Marmara University, İstanbul, Turkey
| | - Dilek Özbeyli
- Vocational School of Health Services, Marmara University, İstanbul, Turkey
| | - Göksel Şener
- Vocational School of Health Services, Fenerbahce University, İstanbul, Turkey
| | - Tuğba Tunali-Akbay
- Department of Basic Medical Sciences, Dentistry Faculty, Marmara University, İstanbul, Turkey
| |
Collapse
|
18
|
Brahmi F, Vejux A, Ghzaiel I, Ksila M, Zarrouk A, Ghrairi T, Essadek S, Mandard S, Leoni V, Poli G, Vervandier-Fasseur D, Kharoubi O, El Midaoui A, Atanasov AG, Meziane S, Latruffe N, Nasser B, Bouhaouala-Zahar B, Masmoudi-Kouki O, Madani K, Boulekbache-Makhlouf L, Lizard G. Role of Diet and Nutrients in SARS-CoV-2 Infection: Incidence on Oxidative Stress, Inflammatory Status and Viral Production. Nutrients 2022; 14:2194. [PMID: 35683996 PMCID: PMC9182601 DOI: 10.3390/nu14112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Coronavirus illness (COVID-19) is an infectious pathology generated by intense severe respiratory syndrome coronavirus 2 (SARS-CoV-2). This infectious disease has emerged in 2019. The COVID-19-associated pandemic has considerably affected the way of life and the economy in the world. It is consequently crucial to find solutions allowing remedying or alleviating the effects of this infectious disease. Natural products have been in perpetual application from immemorial time given that they are attested to be efficient towards several illnesses without major side effects. Various studies have shown that plant extracts or purified molecules have a promising inhibiting impact towards coronavirus. In addition, it is substantial to understand the characteristics, susceptibility and impact of diet on patients infected with COVID-19. In this review, we recapitulate the influence of extracts or pure molecules from medicinal plants on COVID-19. We approach the possibilities of plant treatment/co-treatment and feeding applied to COVID-19. We also show coronavirus susceptibility and complications associated with nutrient deficiencies and then discuss the major food groups efficient on COVID-19 pathogenesis. Then, we covered emerging technologies using plant-based SARS-CoV-2 vaccine. We conclude by giving nutrient and plants curative therapy recommendations which are of potential interest in the COVID-19 infection and could pave the way for pharmacological treatments or co-treatments of COVID-19.
Collapse
Affiliation(s)
- Fatiha Brahmi
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
| | - Anne Vejux
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| | - Imen Ghzaiel
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Lab-NAFS ‘Nutrition-Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia;
| | - Mohamed Ksila
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Amira Zarrouk
- Lab-NAFS ‘Nutrition-Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia;
- Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Soukena Essadek
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Laboratory Neuroscience and Biochemistry, University of Hassan 1st, Settat 26000, Morocco;
| | - Stéphane Mandard
- Lipness Team and LipSTIC LabEx, UFR Sciences de Santé, INSERM/University of Bourgogne Franche-Comté LNC UMR1231, 21000 Dijon, France;
| | - Valerio Leoni
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale Brianza ASST-Brianza, Desio Hospital, Via Mazzini 1, 20833 Desio, Italy;
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, 10043 Orbassano (Turin), Italy;
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Omar Kharoubi
- Laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, University Oran 1 ABB, Oran 31000, Algeria;
| | - Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada;
- Faculty of Sciences and Techniques, Moulay Ismail University of Meknes, Errachidia 52000, Morocco
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Smail Meziane
- Institut Européen des Antioxydants, 1b Rue Victor de Lespinats, 54230 Neuves-Maison, France;
| | - Norbert Latruffe
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| | - Boubker Nasser
- Laboratory Neuroscience and Biochemistry, University of Hassan 1st, Settat 26000, Morocco;
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Biomolecules, Venoms and Theranostic Applications, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Khodir Madani
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
- Centre de Recherche en Technologie des Industries Agroalimentaires, Route de Targua Ouzemour, Bejaia 06000, Algeria
| | - Lila Boulekbache-Makhlouf
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
| | - Gérard Lizard
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| |
Collapse
|
19
|
Olvera-Rosales LB, Cruz-Guerrero AE, García-Garibay JM, Gómez-Ruíz LC, Contreras-López E, Guzmán-Rodríguez F, González-Olivares LG. Bioactive peptides of whey: obtaining, activity, mechanism of action, and further applications. Crit Rev Food Sci Nutr 2022; 63:10351-10381. [PMID: 35612490 DOI: 10.1080/10408398.2022.2079113] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive peptides derived from diverse food proteins have been part of diverse investigations. Whey is a rich source of proteins and components related to biological activity. It is known that proteins have effects that promote health benefits. Peptides derived from whey proteins are currently widely studied. These bioactive peptides are amino acid sequences that are encrypted within the first structure of proteins, which required hydrolysis for their release. The hydrolysis could be through in vitro or in vivo enzymatic digestion and using microorganisms in fermented systems. The biological activities associated with bio-peptides include immunomodulatory properties, antibacterial, antihypertensive, antioxidant and opioid, etc. These functions are related to general conditions of health or reduced risk of certain chronic illnesses. To determine the suitability of these peptides/ingredients for applications in food technology, clinical studies are required to evaluate their bioavailability, health claims, and safety of them. This review aimed to describe the biological importance of whey proteins according to the incidence in human health, their role as bioactive peptides source, describing methods, and obtaining technics. In addition, the paper exposes biochemical mechanisms during the activity exerted by biopeptides of whey, and their application trends.
Collapse
Affiliation(s)
- L B Olvera-Rosales
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - A E Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - J M García-Garibay
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
- Departamento de Ciencias de la Alimentación Lerma de Villada, Universidad Autónoma Metropolitana-Lerma, Edo. de México, México
| | - L C Gómez-Ruíz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - E Contreras-López
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - F Guzmán-Rodríguez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - L G González-Olivares
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| |
Collapse
|
20
|
Rational Discovery of Antiviral Whey Protein-Derived Small Peptides Targeting the SARS-CoV-2 Main Protease. Biomedicines 2022; 10:biomedicines10051067. [PMID: 35625804 PMCID: PMC9139167 DOI: 10.3390/biomedicines10051067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
In the present work, and for the first time, three whey protein-derived peptides (IAEK, IPAVF, MHI), endowed with ACE inhibitory activity, were examined for their antiviral activity against the SARS-CoV-2 3C-like protease (3CLpro) and Human Rhinovirus 3C protease (3Cpro) by employing molecular docking. Computational studies showed reliable binding poses within 3CLpro for the three investigated small peptides, considering docking scores as well as the binding free energy values. Validation by in vitro experiments confirmed these results. In particular, IPAVF exhibited the highest inhibitory activity by returning an IC50 equal to 1.21 μM; it was followed by IAEK, which registered an IC50 of 154.40 μM, whereas MHI was less active with an IC50 equal to 2700.62 μM. On the other hand, none of the assayed peptides registered inhibitory activity against 3Cpro. Based on these results, the herein presented small peptides are introduced as promising molecules to be exploited in the development of “target-specific antiviral” agents against SARS-CoV-2.
Collapse
|
21
|
Shukla P, Chopada K, Sakure A, Hati S. Current Trends and Applications of Food-derived Antihypertensive
Peptides for the Management of Cardiovascular Disease. Protein Pept Lett 2022; 29:408-428. [DOI: 10.2174/0929866529666220106100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/26/2021] [Accepted: 11/20/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Food derived Antihypertensive peptides is considered as a natural supplement for controlling the hypertension. Food protein not only serve as a macronutrient but also act as raw material for biosynthesis of physiologically active peptides. Food sources like milk and milk products, animal protein such as meat, chicken, fish, eggs and plant derived proteins from soy, rice, wheat, mushroom, pumpkins contain high amount of antihypertensive peptides. The food derived antihypertensive peptides has ability to supress the action of rennin and Angiotesin converting enzyme (ACE) which is mainly involved in regulation of blood pressure by RAS. The biosynthesis of endothelial nitric oxide synthase is also improved by ACE inhibitory peptides which increase the production of nitric oxide in vascular walls and encourage vasodilation. Interaction between the angiotensin II and its receptor is also inhibited by the peptides which help to reduce hypertension. This review will explore the novel sources and applications of food derived peptides for the management of hypertension.
Collapse
Affiliation(s)
- Pratik Shukla
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| | - Keval Chopada
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| | - Amar Sakure
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand- 388110, Gujarat,
India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| |
Collapse
|
22
|
Velayutham M, Sarkar P, Rajakrishnan R, Kuppusamy P, Juliet A, Arockiaraj J. Antiproliferation of MP12 derived from a fungus, Aphanomyces invadans virulence factor, cysteine-rich trypsin inhibitor on human laryngeal epithelial cells, and in vivo zebrafish embryo model. Toxicon 2022; 210:100-108. [PMID: 35217022 DOI: 10.1016/j.toxicon.2022.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 11/19/2022]
Abstract
Peptide-based drug development is an emerging and promising approach in cancer therapeutics. The present study focuses on understanding the mechanism of MP12 peptide (MDNHVCIPLCPP) derived from cysteine-rich trypsin inhibitor protein of virulence factor of pathogenic fungus Aphanomyces invadans. MP12 is involved in antiproliferative activity against the human laryngeal epithelial cell (Hep-2), demonstrated in this study. MP12 sequence showed a significant binding score and has multiple hydrogen bond interactions with the proteins that play a vital role in apoptotic pathways such as Bcl-2, caspase-3, caspase-7, and XIAP. Based on the bioinformatics characterization and molecular docking result, further study was focused on MP12 antiproliferative activity. The peptide showed a dose-dependent inhibition against Hep-2 cell line proliferation, analyzed over MTT and neutral red uptake assays. The IC50 value of the MP12 peptide was calculated based on the antiproliferative property (24.7 ± 0.34 μM). MP12 treated Hep-2 cells showed significant shrinkage in cell morphology compared to untreated cells, inhibiting the cell cycle. The gene expression analysis validated that the MP12 significantly upregulates the caspase-3, caspase-7, and caspase-9 genes. The developmental toxicity study using zebrafish embryos as in vivo model proved that the MP12 is nontoxic. Based on the obtained results, we proposed that the peptide MP12 derived from cysteine-rich trypsin inhibitor protein of virulence molecule of pathogenic fungus have a potential antiproliferative activity. However, further clinical trials need to be focused on the mechanism and therapeutic application against laryngeal cancer.
Collapse
Affiliation(s)
- Manikandan Velayutham
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Purabi Sarkar
- School of Allied Healthcare and Sciences, Jain Deemed-to-be University, Whitefield, Bangalore, 560 066, Karnataka, India
| | - R Rajakrishnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Palaniselvam Kuppusamy
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Annie Juliet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX, 78712, USA
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
23
|
Conventional and in silico approaches to select promising food-derived bioactive peptides: A review. Food Chem X 2022; 13:100183. [PMID: 35499000 PMCID: PMC9039911 DOI: 10.1016/j.fochx.2021.100183] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Seaweed and edible insects are considered new sources of bioactive peptides. Conventional approaches are necessary to validate the bioactivity of peptides. Bioinformatics tools accelerate the obtaining of bioactive peptides. The integrated approach is a promising strategy to obtain bioactive peptides.
The interest for food-derived bioactive peptides, either from common or unconventional sources, has increased due to their potential therapeutic effect against a wide range of diseases. The study of such bioactive peptides using conventional methods is a long journey, expensive and time-consuming. Hence, bioinformatic approaches, which can not only help to predict the formation of bioactive peptides from any known protein source, but also to analyze the protein structure/function relationship, have gained a new meaning in this scientific field. Therefore, this review aims to provides an overview of conventional characterization methods and the most recent advances in the field of in silico approaches for predicting and screening promising food-derived bioactive peptides.
Collapse
|
24
|
Gallo V, Giansanti F, Arienzo A, Antonini G. Antiviral properties of whey proteins and their activity against SARS-CoV-2 infection. J Funct Foods 2022; 89:104932. [PMID: 35003332 PMCID: PMC8723829 DOI: 10.1016/j.jff.2022.104932] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/17/2021] [Accepted: 01/02/2022] [Indexed: 12/16/2022] Open
Abstract
Native and chemically modified whey proteins and their peptide derivatives are encountering the interest of nutraceutical and pharmaceutical industries, due to the numerous properties, ranging from antimicrobial to immunological and antitumorigenic, that result in the possibility to employ milk and its protein components in a wide range of treatment and prevention strategies. Importantly, whey proteins were found to exert antiviral actions against different enveloped and non-enveloped viruses. Recently, the scientific community is focusing on these proteins, especially lactoferrin, since in vitro studies have demonstrated that they exert an important antiviral activity also against SARS-CoV-2. Up-to date, several studies are investigating the efficacy of lactoferrin and other whey proteins in vivo. Aim of this review is to shed light on the most relevant findings concerning the antiviral properties of whey proteins and their potential applications in human health, focussing on their application in prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Sciences, Roma Tre University, Rome 00146, Italy
| | - Francesco Giansanti
- Interuniversity Consortium INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila I-67100, Italy
| | - Alyexandra Arienzo
- Department of Sciences, Roma Tre University, Rome 00146, Italy
- Interuniversity Consortium INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
| | - Giovanni Antonini
- Department of Sciences, Roma Tre University, Rome 00146, Italy
- Interuniversity Consortium INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
| |
Collapse
|
25
|
Screening of potential spike glycoprotein / ACE2 dual antagonists against COVID-19 in silico molecular docking. J Virol Methods 2021; 301:114424. [PMID: 34896453 PMCID: PMC8660130 DOI: 10.1016/j.jviromet.2021.114424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/05/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
The novel coronavirus disease has spread rapidly and caused sustained pressure on economic and medical resources to many countries. Vaccines and effective drugs are needed to fight against the epidemic. Traditional Chinese Medicine (TCM) plays an important and effective role in the treatment of COVID-19. Therefore, the active components of TCM are potential structural basis for the discovery of antiviral drugs. Through screening by molecular docking, Oleanolic acid, Tryptanthrin, Chrysophanol and Rhein were found to have better spike protein and ACE2 inhibitory activity, which could block the invasion and recognition of SARS-CoV-2 at the same time, should be investigated as antiviral candidates.
Collapse
|
26
|
G Yathisha U, Srinivasa MG, Siddappa Bc R, P Mandal S, Dixit SR, Pujar GV, Bangera Sheshappa M. Isolation and characterization of ACE-I inhibitory peptides from ribbonfish for a potential inhibitor of the main protease of SARS-CoV-2: An in silico analysis. Proteins 2021; 90:982-992. [PMID: 34877713 DOI: 10.1002/prot.26291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/02/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022]
Abstract
Recently, multifunctional fish peptides (FWPs) have gained a lot of attention because of their different biological activities. In the present study, three angiotensin-I converting enzyme (ACE-I) inhibitory peptides [Ala-Pro-Asp-Gly (APDG), Pro-Thr-Arg (PTR), and Ala-Asp (AD)] were isolated and characterized from ribbonfish protein hydrolysate (RFPH) and described their mechanism of action on ACE activity. As per the results, peptide PTR showed ≈ 2 and 2.5-fold higher enzyme inhibitory activity (IC50 = 0.643 ± 0.0011 μM) than APDG (IC50 = 1.061 ± 0.0127 μM) and AD (IC50 = 2.046 ± 0.0130 μM). Based on experimental evidence, peptides were used for in silico analysis to check the inhibitory activity of the main protease (PDB: 7BQY) of SARS-CoV-2. The results of the study reveal that PTR (-46.16 kcal/mol) showed higher binding affinity than APDG (-36.80 kcal/mol) and AD (-30.24 kcal/mol) compared with remdesivir (-30.64 kcal/mol). Additionally, physicochemical characteristics of all the isolated peptides exhibited appropriate pharmacological properties and were found to be nontoxic. Besides, 20 ns molecular dynamic simulation study confirms the rigid nature, fewer confirmation variations, and binding stiffness of the peptide PTR with the main protease of SARS-CoV-2. Therefore, the present study strongly suggested that PTR is the perfect substrate for inhibiting the main protease of SARS-CoV-2 through the in silico study, and this potential drug candidate may promote the researcher for future wet lab experiments.
Collapse
Affiliation(s)
- Undiganalu G Yathisha
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Paneer Campus, Mangalore, India
| | - Mahendra Gowdru Srinivasa
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, India
| | - Revana Siddappa Bc
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, India
| | - Subankar P Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Sheshagiri R Dixit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - G V Pujar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Mamatha Bangera Sheshappa
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Paneer Campus, Mangalore, India
| |
Collapse
|
27
|
Mehra R, Kumar H, Kumar N, Ranvir S, Jana A, Buttar HS, Telessy IG, Awuchi CG, Okpala COR, Korzeniowska M, Guiné RP. Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
28
|
Gouda AS, Adbelruhman FG, Sabbah Alenezi H, Mégarbane B. Theoretical benefits of yogurt-derived bioactive peptides and probiotics in COVID-19 patients - A narrative review and hypotheses. Saudi J Biol Sci 2021; 28:5897-5905. [PMID: 34177317 PMCID: PMC8213517 DOI: 10.1016/j.sjbs.2021.06.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/02/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023] Open
Abstract
The world is currently facing a frightening coronavirus disease-2019 (COVID-19) epidemic. Severity of COVID-19 presentation is highly variable among infected individuals with increasingly recognized risk factors. Although observational studies suggested lower COVID-19 severity in populations consuming fermented foods, no controlled study investigated the role of diet. Yogurt, a fermented dairy product, exhibits interesting properties related to the presence of bioactive peptides and probiotics that may play a beneficial role in COVID-19 presentation and outcome. Peptides contained in yogurt are responsible for angiotensin-converting enzyme-inhibitory, bradykinin potentiating, antiviral, anti-inflammatory, antithrombotic, and antioxidant effects. The types and activity of these peptides vary widely depending on their amino acid sequence, on the probiotics used in yogurt production and on intestinal digestion. Additionally, probiotics used in yogurt exhibit direct angiotensin-converting enzyme-inhibitory, antiviral and immune boosting activities. Since COVID-19 pathogenesis involves angiotensin II accumulation and bradykinin deficiency, yogurt bioactive peptides appear as potentially beneficial. Therefore, epidemiological investigations and randomized controlled clinical trials to evaluate the exact role of yogurt consumption on COVID-19 manifestations and outcome should be encouraged.
Collapse
Affiliation(s)
- Ahmed S. Gouda
- National Egyptian Center for Toxicological Researches, Faculty of Medicine, Cairo University, Cairo, Egypt
- Poison Control and Forensic Chemistry Center, Northern Borders, Ministry of Health, Saudi Arabia
| | - Fatima G. Adbelruhman
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hamedah Sabbah Alenezi
- Poison Control and Forensic Chemistry Center, Northern Borders, Ministry of Health, Saudi Arabia
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, University of Paris, INSERM UMRS-1144, Paris, France
| |
Collapse
|
29
|
Vitamin K in COVID-19—Potential Anti-COVID-19 Properties of Fermented Milk Fortified with Bee Honey as a Natural Source of Vitamin K and Probiotics. FERMENTATION 2021. [DOI: 10.3390/fermentation7040202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vitamin K deficiency is evident in severe and fatal COVID-19 patients. It is associated with the cytokine storm, thrombotic complications, multiple organ damage, and high mortality, suggesting a key role of vitamin K in the pathology of COVID-19. To support this view, we summarized findings reported from machine learning studies, molecular simulation, and human studies on the association between vitamin K and SARS-CoV-2. We also investigated the literature for the association between vitamin K antagonists (VKA) and the prognosis of COVID-19. In addition, we speculated that fermented milk fortified with bee honey as a natural source of vitamin K and probiotics may protect against COVID-19 and its severity. The results reported by several studies emphasize vitamin K deficiency in COVID-19 and related complications. However, the literature on the role of VKA and other oral anticoagulants in COVID-19 is controversial: some studies report reductions in (intensive care unit admission, mechanical ventilation, and mortality), others report no effect on mortality, while some studies report higher mortality among patients on chronic oral anticoagulants, including VKA. Supplementing fermented milk with honey increases milk peptides, bacterial vitamin K production, and compounds that act as potent antioxidants: phenols, sulforaphane, and metabolites of lactobacilli. Lactobacilli are probiotic bacteria that are suggested to interfere with various aspects of COVID-19 infection ranging from receptor binding to metabolic pathways involved in disease prognosis. Thus, fermented milk that contains natural honey may be a dietary manipulation capable of correcting nutritional and immune deficiencies that predispose to and aggravate COVID-19. Empirical studies are warranted to investigate the benefits of these compounds.
Collapse
|
30
|
Behzadipour Y, Gholampour M, Pirhadi S, Seradj H, Khoshneviszadeh M, Hemmati S. Viral 3CL pro as a Target for Antiviral Intervention Using Milk-Derived Bioactive Peptides. Int J Pept Res Ther 2021; 27:2703-2716. [PMID: 34548852 PMCID: PMC8444528 DOI: 10.1007/s10989-021-10284-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 02/05/2023]
Abstract
Viruses of the picornavirus-like supercluster mainly achieve cleavage of polyproteins into mature proteins through viral 3-chymotrypsin proteases (3Cpro) or 3-chymotrypsin-like proteases (3CLpro). Due to the essential role in processing viral polyproteins, 3Cpro/3CLpro is a drug target for treating viral infections. The 3CLpro is considered the main protease (Mpro) of coronaviruses. In the current study, the SARS-CoV-2 Mpro inhibitory activity of di- and tri-peptides (DTPs) resulted from the proteolysis of bovine milk proteins was evaluated. A set of 326 DTPs were obtained from virtual digestion of bovine milk major proteins. The resulted DTPs were screened using molecular docking. Twenty peptides (P1–P20) showed the best binding energies (ΔGb < − 7.0 kcal/mol). Among these 20 peptides, the top five ligands, namely P1 (RVY), P3 (QSW), P17 (DAY), P18 (QSA), and P20 (RNA), based on the highest binding affinity and the highest number of interactions with residues in the active site of Mpro were selected for further characterization by ADME/Tox analyses. For further validation of our results, molecular dynamics simulation was carried out for P3 as one of the most favorable candidates for up to 100 ns. In comparison to N3, a peptidomimetic control inhibitor, high stability was observed as supported by the calculated binding energy of the Mpro-P3 complex (− 59.48 ± 4.87 kcal/mol). Strong interactions between P3 and the Mpro active site, including four major hydrogen bonds to HIS41, ASN142, GLU166, GLN189 residues, and many hydrophobic interactions from which the interaction with CYS145 as a catalytic residue is worth mentioning. Conclusively, milk-derived bioactive peptides, especially the top five selected peptides P1, P3, P17, P18, and P20, show promise as an antiviral lead compound.
Collapse
Affiliation(s)
- Yasaman Behzadipour
- Biotechnology Research Center, Shiraz University of Medical Sciences, PO. Box: 71345-1583, Shiraz, Iran
| | - Maryam Gholampour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Seradj
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- Biotechnology Research Center, Shiraz University of Medical Sciences, PO. Box: 71345-1583, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
31
|
Rubin M, Modai S, Rayman S, Kaplan KM, Mendelson E, Lichtenberg D. Antiviral properties of goat milk. CLINICAL NUTRITION OPEN SCIENCE 2021. [DOI: 10.1016/j.nutos.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Abstract
The COVID-19, an acute respiratory syndrome caused by SARS-CoV2 is a major catastrophic event of the twenty first century. Relentless efforts for the development of effective pharmaco-therapeutics are in progress but the respite is the development of effective vaccines. However, monotherapy might not always exhibit complete efficacy and may culminate in the rapid evolution of drug-resistant viral strains. Hence, simultaneous modulation of multiple druggable targets not only enhances therapeutic efficacy but also quell the prospects of mutant viruses. Currently, milk peptides have bloomed beyond just being a quintessential part of nutrition to prominent therapeutic implications in human health and diseases. Hence, we have focused on colostrum/milk peptides as they have already been acknowledged for their high potency, target specificity with significantly low or no side effects and bio-toleration. The results presented provide a conceptual strategy for the rational designing of prospective multitargeted peptide inhibitors for SARS-CoV2.
Collapse
|