1
|
Fang Y, Tan C, Zheng Z, Yang J, Tang J, Guo R, Silli EK, Chen Z, Chen J, Ge R, Liu Y, Wen X, Liang J, Zhu Y, Jin Y, Li Q, Wang Y. The function of microRNA related to cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Biochem Pharmacol 2025; 236:116849. [PMID: 40056941 DOI: 10.1016/j.bcp.2025.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignant tumor characterized by a poor prognosis. A prominent feature of PDAC is the rich and dense stroma present in the tumor microenvironment (TME), which significantly hinders drug penetration. Cancer-associated fibroblasts (CAFs), activated fibroblasts originating from various cell sources, including pancreatic stellate cells (PSCs) and mesenchymal stem cells (MSCs), play a critical role in PDAC progression and TME formation. MicroRNAs (miRNAs) are small, single-stranded non-coding RNA molecules that are frequently involved in tumorigenesis and progression, exhibiting either oncolytic or oncogenic activity. Increasing evidence suggests that aberrant expression of miRNAs can mediate interactions between cancer cells and CAFs, thereby providing novel therapeutic targets for PDAC treatment. In this review, we will focus on the potential roles of miRNAs that target CAFs or CAFs-derived exosomes in PDAC progression, highlighting the feasibility of therapeutic strategies aimed at restoring aberrantly expressed miRNAs associated with CAFs, offering new pathways for the clinical management of PDAC.
Collapse
Affiliation(s)
- Yaohui Fang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chunlu Tan
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenjiang Zheng
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianchen Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jiali Tang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruizhe Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Epiphane K Silli
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zhe Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jia Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruyu Ge
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yuquan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiuqi Wen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jingdan Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yunfei Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yutong Jin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Qian Li
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
2
|
Darmadi D, Aminov Z, Hjazi A, R R, Kazmi SW, Mustafa YF, Hosseen B, Sharma A, Alubiady MHS, Al-Abdeen SHZ. Investigation of the regulation of EGF signaling by miRNAs, delving into the underlying mechanism and signaling pathways in cancer. Exp Cell Res 2024; 442:114267. [PMID: 39313176 DOI: 10.1016/j.yexcr.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
The EGF receptors (EGFRs) signaling pathway is essential for tumorigenesis and progression of cancer. Emerging evidence suggests that miRNAs are essential regulators of EGF signaling, influencing various pathway components and tumor behavior. This article discusses the underlying mechanisms and clinical implications of miRNA-mediated regulation of EGF signaling in cancer. miRNAs utilize multiple mechanisms to exert their regulatory effects on EGF signaling. They can target EGF ligands, including EGF and TGF-directly, inhibiting their expression and secretion. In addition, miRNAs can modulate EGF signaling indirectly by targeting EGF receptors, downstream signaling molecules, and transcription factors implicated in regulating the EGF pathway. These miRNAs can disrupt the delicate equilibrium of EGF signaling, resulting in aberrant activation and fostering tumor cell proliferation, survival, angiogenesis, and metastasis. The dysregulation of the expression of specific miRNAs has been linked to clinical outcomes in numerous types of cancer. Specific profiles of miRNA expression have been identified as prognostic markers, reflecting tumor characteristics, invasiveness, metastatic potential, and therapeutic response. These miRNAs can serve as potential therapeutic targets for interventions that modulate EGF signaling and improve patient outcomes. Understanding the intricate relationship between miRNAs and EGF signaling in cancer can transform cancer diagnosis, prognosis, and treatment. The identification of specific miRNAs involved in the regulation of the EGF pathway opens the door to the development of targeted therapies and personalized medicine approaches. In addition, miRNA-based interventions promise to overcome therapeutic resistance and improve the efficacy of existing treatments. miRNAs are crucial regulators of EGF signaling in cancer, affecting tumor behavior and clinical outcomes. Further research is required to decipher the complex network of miRNA-mediated EGF signaling regulation and translate these findings into clinically applicable strategies for enhanced cancer treatment.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | - Beneen Hosseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | | | | |
Collapse
|
3
|
Jafari S, Motedayyen H, Javadi P, Jamali K, Moradi Hasan-Abad A, Atapour A, Sarab GA. The roles of lncRNAs and miRNAs in pancreatic cancer: a focus on cancer development and progression and their roles as potential biomarkers. Front Oncol 2024; 14:1355064. [PMID: 38559560 PMCID: PMC10978783 DOI: 10.3389/fonc.2024.1355064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most penetrative malignancies affecting humans, with mounting incidence prevalence worldwide. This cancer is usually not diagnosed in the early stages. There is also no effective therapy against PDAC, and most patients have chemo-resistance. The combination of these factors causes PDAC to have a poor prognosis, and often patients do not live longer than six months. Because of the failure of conventional therapies, the identification of key biomarkers is crucial in the early diagnosis, treatment, and prognosis of pancreatic cancer. 65% of the human genome encodes ncRNAs. There are different types of ncRNAs that are classified based on their sequence lengths and functions. They play a vital role in replication, transcription, translation, and epigenetic regulation. They also participate in some cellular processes, such as proliferation, differentiation, metabolism, and apoptosis. The roles of ncRNAs as tumor suppressors or oncogenes in the growth of tumors in a variety of tissues, including the pancreas, have been demonstrated in several studies. This study discusses the key roles of some lncRNAs and miRNAs in the growth and advancement of pancreatic carcinoma. Because they are involved not only in the premature identification, chemo-resistance and prognostication, also their roles as potential biomarkers for better management of PDAC patients.
Collapse
Affiliation(s)
- Somayeh Jafari
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Parisa Javadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kazem Jamali
- Emergency Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Anani Sarab
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
4
|
Vahabi M, Dehni B, Antomás I, Giovannetti E, Peters GJ. Targeting miRNA and using miRNA as potential therapeutic options to bypass resistance in pancreatic ductal adenocarcinoma. Cancer Metastasis Rev 2023; 42:725-740. [PMID: 37490255 PMCID: PMC10584721 DOI: 10.1007/s10555-023-10127-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with poor prognosis due to early metastasis, low diagnostic rates at early stages, and resistance to current therapeutic regimens. Despite numerous studies and clinical trials, the mortality rate for PDAC has shown limited improvement. Therefore, there is a pressing need to attain. a more comprehensive molecular characterization to identify biomarkers enabling early detection and evaluation of treatment response. MicroRNA (miRNAs) are critical regulators of gene expression on the post-transcriptional level, and seem particularly interesting as biomarkers due to their relative stability, and the ability to detect them in fixed tissue specimens and biofluids. Deregulation of miRNAs is common and affects several hallmarks of cancer and contribute to the oncogenesis and metastasis of PDAC. Unique combinations of upregulated oncogenic miRNAs (oncomiRs) and downregulated tumor suppressor miRNAs (TsmiRs), promote metastasis, characterize the tumor and interfere with chemosensitivity of PDAC cells. Here, we review several oncomiRs and TsmiRs involved in chemoresistance to gemcitabine and FOLFIRINOX in PDAC and highlighted successful/effective miRNA-based therapy approaches in vivo. Integrating miRNAs in PDAC treatment represents a promising therapeutic avenue that can be used as guidance for personalized medicine for PDAC patients.
Collapse
Affiliation(s)
- Mahrou Vahabi
- Department of Medical Oncology, Amsterdam UMC, location VUMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Bilal Dehni
- Department of Medical Oncology, Amsterdam UMC, location VUMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Inés Antomás
- Department of Medical Oncology, Amsterdam UMC, location VUMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, location VUMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam UMC, location VUMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands.
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
5
|
Bravo-Vázquez LA, Frías-Reid N, Ramos-Delgado AG, Osorio-Pérez SM, Zlotnik-Chávez HR, Pathak S, Banerjee A, Bandyopadhyay A, Duttaroy AK, Paul S. MicroRNAs and long non-coding RNAs in pancreatic cancer: From epigenetics to potential clinical applications. Transl Oncol 2023; 27:101579. [PMID: 36332600 PMCID: PMC9637816 DOI: 10.1016/j.tranon.2022.101579] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022] Open
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two relevant classes of non-coding RNAs (ncRNAs) that play a pivotal role in a number of molecular processes through different epigenetic regulatory mechanisms of gene expression. As a matter of fact, the altered expression of these types of RNAs leads to the development and progression of a varied range of multifactorial human diseases. Several recent reports elucidated that miRNA and lncRNAs have been implicated in pancreatic cancer (PC). For instance, dysregulation of such ncRNAs has been found to be associated with chemoresistance, apoptosis, autophagy, cell differentiation, tumor suppression, tumor growth, cancer cell proliferation, migration, and invasion in PC. Moreover, several aberrantly expressed miRNAs and lncRNAs have the potential to be used as biomarkers for accurate PC diagnosis. Additionally, miRNAs and lncRNAs are considered as promising clinical targets for PC. Therefore, in this review, we discuss recent experimental evidence regarding the clinical implications of miRNAs and lncRNAs in the pathophysiology of PC, their future potential, as well as the challenges that have arisen in this field of study in order to drive forward the design of ncRNA-based diagnostics and therapeutics for PC.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Natalia Frías-Reid
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Ana Gabriela Ramos-Delgado
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Sofía Madeline Osorio-Pérez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Hania Ruth Zlotnik-Chávez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila 4031, Philippines; Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046, Blindern, Oslo, Norway.
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico.
| |
Collapse
|
6
|
Xie H, Xu J, Xie Z, Xie N, Lu J, Yu L, Li B, Cheng L. Identification and Validation of Prognostic Model for Pancreatic Ductal Adenocarcinoma Based on Necroptosis-Related Genes. Front Genet 2022; 13:919638. [PMID: 35783277 PMCID: PMC9243220 DOI: 10.3389/fgene.2022.919638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors with a poor prognosis. Recently, necroptosis has been reported to participate in the progression of multiple tumors. However, few studies have revealed the relationship between necroptosis and PDAC, and the role of necroptosis in PDAC has not yet been clarified. Methods: The mRNA expression data and corresponding clinical information of PDAC patients were downloaded from the TCGA and GEO databases. The necroptosis-related genes (NRGs) were obtained from the CUSABIO website. Consensus clustering was performed to divide PDAC patients into two clusters. Univariate and LASSO Cox regression analyses were applied to screen the NRGs related to prognosis to construct the prognostic model. The predictive value of the prognostic model was evaluated by Kaplan-Meier survival analysis and ROC curve. Univariate and multivariate Cox regression analyses were used to evaluate whether the risk score could be used as an independent predictor of PDAC prognosis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and single-sample gene set enrichment analysis (ssGSEA) were used for functional enrichment analysis. Finally, using qRT-PCR examined NRGs mRNA expression in vitro. Results: Based on the TCGA database, a total of 22 differential expressed NRGs were identified, among which eight NRGs (CAPN2, CHMP4C, PLA2G4F, PYGB, BCL2, JAK3, PLA2G4C and STAT4) that may be related to prognosis were screened by univariate Cox regression analysis. And CAPN2, CHMP4C, PLA2G4C and STAT4 were further selected to construct the prognostic model. Kaplan-Meier survival analysis and ROC curve showed that there was a significant correlation between the risk model and prognosis. Univariate and multivariate Cox regression analyses showed that the risk score of the prognostic model could be used as an independent predictor. The model efficacy was further demonstrated in the GEO cohort. Functional analysis revealed that there were significant differences in immune status between high and low-risk groups. Finally, the qRT-PCR results revealed a similar dysregulation of NRGs in PDAC cell lines. Conclusion: This study successfully constructed and verified a prognostic model based on NRGs, which has a good predictive value for the prognosis of PDAC patients.
Collapse
Affiliation(s)
- Haoran Xie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingxian Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ni Xie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lanting Yu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiwen Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Baiwen Li, ; Li Cheng,
| | - Li Cheng
- Department of International Medical Care Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Baiwen Li, ; Li Cheng,
| |
Collapse
|
7
|
Xie H, Zhao Q, Yu L, Lu J, Peng K, Xie N, Ni J, Li B. Circular RNA circ_0047744 suppresses the metastasis of pancreatic ductal adenocarcinoma by regulating the miR-21/SOCS5 axis. Biochem Biophys Res Commun 2022; 605:154-161. [PMID: 35334414 DOI: 10.1016/j.bbrc.2022.03.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022]
Abstract
There is increasing evidence that circular RNAs (circRNAs) can serve as microRNA (miRNA) sponges to regulate metastasis of multiple tumors, including pancreatic ductal adenocarcinoma (PDAC). However, the role of the circRNA/miRNA regulatory network in metastasis of PDAC has not been elucidated. The purpose of this study is to explore the role of circ_0047744/miR-21/SOCS5 in the metastasis of PDAC. We found that circRNA_0047744 was weakly expressed in PDAC tissues and cell lines. The expression of circ_0047744 was negatively correlated with lymph node metastasis and positively correlated with overall survival in PDAC patients. Functionally, the overexpression of circ_0047744 suppressed cell migration and invasion in vitro and in vivo. Mechanistically, circ_0047744 could regulate SOCS5 expression by acting as a sponge of miR-21 to inhibit migration and invasion of PDAC cells. Our study demonstrates that circ_0047744 acts as an anti-oncogene to inhibit PDAC metastasis by regulating the miR-21/SOCS5 axis, indicating that circ_0047744 may be a potential novel therapeutic target for PDAC patients.
Collapse
Affiliation(s)
- Haoran Xie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China
| | - Qiuyan Zhao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China
| | - Lanting Yu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China
| | - Jiawei Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China
| | - Kui Peng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China
| | - Ni Xie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China.
| | - Baiwen Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China.
| |
Collapse
|
8
|
Wan S, Liu Z, Chen Y, Mai Z, Jiang M, Di Q, Sun B. MicroRNA-140-3p represses the proliferation, migration, invasion and angiogenesis of lung adenocarcinoma cells via targeting TYMS (thymidylate synthetase). Bioengineered 2021; 12:11959-11977. [PMID: 34818974 PMCID: PMC8810165 DOI: 10.1080/21655979.2021.2009422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MicroRNA (miR)-140-3p has been proved to repress lung adenocarcinoma (LUAD), and our study aims to further evaluate the mechanism. Bioinformatic analyses were performed. The viability, proliferation, migration, invasion and angiogenesis of transfected LUAD cells were all determined via Cell Counting Kit-8, colony formation, Scratch, Transwell, and tube formation assays. The targeting relationship between miR-140-3p and thymidylate synthetase (TYMS) was confirmed by dual-luciferase reporter assay. Relative expressions of miR-140-3p, TYMS, epithelial-to-mesenchymal transition- (E-cadherin, N-cadherin, vimentin), angiogenesis- (vascular endothelial growth factor (VEGF)), and apoptosis-related factors (cleaved caspase-3, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax)) were quantified by quantitative real-time polymerase chain reaction or Western blot. TYMS was high-expressed yet miR-140-3p was low-expressed in LUAD cells. Upregulation of miR-140-3p inhibited TYMS expression, viability, colony formation, migration, invasion, and tube length within LUAD cells, while downregulation of miR-140-3p did oppositely. Silenced TYMS, the downstream target gene of miR-140-3p, reversed the effects of miR-140-3p downregulation on TYMS expression, cell viability, colony formation, migration, invasion, and tube length as well as the metastasis-, apoptosis- and angiogenesis-related proteins in LUAD cells. Upregulation of miR-140-3p inhibited the proliferation, migration, invasion and angiogenesis of LUAD cells via targeting TYMS.
Collapse
Affiliation(s)
- Shanzhi Wan
- No.1 Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou City, Hebei Province, China
| | - Zhimin Liu
- Department of No. 1 Pediatrics, Cangzhou Hospital of Integrated TCM-WM, Cangzhou City, Hebei Province, China
| | - Yang Chen
- No.1 Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou City, Hebei Province, China
| | - Zhitao Mai
- No.1 Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou City, Hebei Province, China
| | - Mingming Jiang
- No.1 Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou City, Hebei Province, China
| | - Qingguo Di
- No.1 Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou City, Hebei Province, China
| | - Baohua Sun
- No.1 Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou City, Hebei Province, China
| |
Collapse
|
9
|
Xiong G, Pan S, Jin J, Wang X, He R, Peng F, Li X, Wang M, Zheng J, Zhu F, Qin R. Long Noncoding Competing Endogenous RNA Networks in Pancreatic Cancer. Front Oncol 2021; 11:765216. [PMID: 34760707 PMCID: PMC8573238 DOI: 10.3389/fonc.2021.765216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is a highly malignant disease characterized by insidious onset, rapid progress, and poor therapeutic effects. The molecular mechanisms associated with PC initiation and progression are largely insufficient, hampering the exploitation of novel diagnostic biomarkers and development of efficient therapeutic strategies. Emerging evidence recently reveals that noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and microRNAs (miRNAs), extensively participate in PC pathogenesis. Specifically, lncRNAs can function as competing endogenous RNAs (ceRNAs), competitively sequestering miRNAs, therefore modulating the expression levels of their downstream target genes. Such complex lncRNA/miRNA/mRNA networks, namely, ceRNA networks, play crucial roles in the biological processes of PC by regulating cell growth and survival, epithelial-mesenchymal transition and metastasis, cancer stem cell maintenance, metabolism, autophagy, chemoresistance, and angiogenesis. In this review, the emerging knowledge on the lncRNA-associated ceRNA networks involved in PC initiation and progression will be summarized, and the potentials of the competitive crosstalk as diagnostic, prognostic, and therapeutic targets will be comprehensively discussed.
Collapse
Affiliation(s)
- Guangbing Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shutao Pan
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikuan Jin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiang Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Peng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Zheng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Role of non-coding RNAs in tumor progression and metastasis in pancreatic cancer. Cancer Metastasis Rev 2021; 40:761-776. [PMID: 34591242 PMCID: PMC8556175 DOI: 10.1007/s10555-021-09995-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of cancer with an overall 5-year survival rate of less than 10%. The 1-year survival rate of patients with locally advanced or metastatic disease is abysmal. The aggressive nature of cancer cells, hypovascularization, extensive desmoplastic stroma, and immunosuppressive tumor microenvironment (TME) endows PDAC tumors with multiple mechanisms of drug resistance. With no obvious genetic mutation(s) driving tumor progression or metastatic transition, the challenges for understanding the biological mechanism(s) of these processes are paramount. A better understanding of the molecular and cellular mechanisms of these processes could lead to new diagnostic tools for patient management and new targets for therapeutic intervention. microRNAs (miRNAs) are an evolutionarily conserved gene class of short non-coding regulatory RNAs. miRNAs are an extensive regulatory layer that controls gene expression at the posttranscriptional level. This review focuses on preclinical models that functionally dissect miRNA activity in tumor progression or metastatic processes in PDAC. Collectively, these studies suggest an influence of miRNAs and RNA-RNA networks in the processes of epithelial to mesenchymal cell transition and cancer cell stemness. At a cell-type level, some miRNAs mainly influence cancer cell–intrinsic processes and pathways, whereas other miRNAs predominantly act in distinct cellular compartments of the TME to regulate fibroblast and immune cell functions and/or influence other cell types’ function via cell-to-cell communications by transfer of extracellular vesicles. At a molecular level, the influence of miRNA-mediated regulation often converges in core signaling pathways, including TGF-β, JAK/STAT, PI3K/AKT, and NF-κB.
Collapse
|