1
|
Hassanein EHM, Abdel-Reheim MA, Althagafy HS, Hemeda MS, Gad RA, Abdel-Sattar AR. Nifuroxazide attenuates indomethacin-induced renal injury by upregulating Nrf2/HO-1 and cytoglobin and suppressing NADPH-oxidase, NF-κB, and JAK-1/STAT3 signals. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3985-3994. [PMID: 37994949 DOI: 10.1007/s00210-023-02851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Indomethacin (INDO) is an NSAID with remarkable efficacy and widespread utilization for alleviating pain. Nevertheless, renal function impairment is an adverse reaction linked to INDO usage. Nifuroxazide (NFX), an oral nitrofuran antibiotic, is frequently employed as an intestinal anti-infective agent. Our study aimed to investigate the renoprotective effects of NFX against INDO-induced nephrotoxicity and explore the protection mechanisms. Four groups of rats were allocated to (I) the normal control, (II) the NFX-treated (50 mg/kg), (III) INDO control (20 mg/kg), and (IV) NFX + INDO. NFX attenuates renal impairment in INDO-induced renal injury, proved by decreasing serum levels of urea, creatinine, uric acid, and NGAL while the albumin was elevated. NFX mitigates renal oxidative stress by decreasing MDA levels and restoring the antioxidants' GSH and SOD levels mediated by upregulating Nrf2, HO-1, and cytoglobin pathways. NFX mitigated renal inflammation and effectively decreased MPO, IL-1β, and TNF-α levels in the rat's kidney mediated by significant downregulation of NADPH-oxidase and NF-κB expression and suppression of JAK-1 and STAT3 phosphorylation. NFX mitigates renal apoptosis by decreasing the expression of cleaved caspase-3 expression. In conclusion, NFX treatment prevents INDO nephrotoxicity by regulating Nrf2/HO-1, cytoglobin, NADPH-oxidase, NF-κB, and JAK-1/STAT3 signals.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62521, Egypt.
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed S Hemeda
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Rania A Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| | - Asmaa Ramadan Abdel-Sattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| |
Collapse
|
2
|
Salama RM, Omar MA. Anti-aging effect of nifuroxazide on skin changes of aged male rat models via modulating immunoreactivity of IL-6/NF-κB/Caspase-3. Morphologie 2023; 107:100605. [PMID: 37353466 DOI: 10.1016/j.morpho.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/25/2023]
Abstract
PURPOSE To evaluate nifuroxazide's (NIF's) anti-aging characteristics in a skin-aging rat model for the first time in order to create effective preventive measures and anti-aging skin therapies. MATERIALS AND METHODS Thirty randomly selected aged male rats were assorted into three equal groups; aged control group, treated NIF I, aged rats were treated with NIF (10mg/kg, orally once daily for 14 consecutive days), and treated NIF II, aged rats were treated with NIF (20mg/kg, orally once daily for 14 consecutive days). Skin samples were obtained from the dorsal skin of the aged male rats and processed for tissue biochemical MDA, histological (Hx&E and Masson's Trichrome stains), and immunohistochemical (IL-6, NF-κB, and caspase-3) analysis. RESULTS Group I aged male albino rat skin illustrated evident distorted epidermis and dermis, disorganization of collagen fibers with marked multiple spaces of collagen fibers loss in the dermis, marked reduction of total epidermal thickness and mean area percent of collagen fibers, elevated tissue MDA level and strong positive IL-6, NF-κB, and caspase-3 immune reaction. The anti-aging benefits of NIF on skin aging are demonstrated by a marked improvement in histological alterations in the form of a well-organized epidermis and dermis, most collagen fibers in the dermis appear closely packed, significant elevation of total epidermal thickness and mean area percent of collagen fibers, a significant decrease of tissue MDA level, and immunoexpression of the inflammatory markers, IL-6, and NF-κB, and the apoptotic marker caspase-3. CONCLUSIONS This study found that group III, which received 20mg/kg of NIF, experienced more pronounced and noticeable improvements in skin aging than group II, which received 10mg/kg of NIF.
Collapse
Affiliation(s)
- R M Salama
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - M A Omar
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
3
|
Fang X, Huang W, Sun Q, Zhao Y, Sun R, Liu F, Huang D, Zhang Y, Gao F, Wang B. Melatonin attenuates cellular senescence and apoptosis in diabetic nephropathy by regulating STAT3 phosphorylation. Life Sci 2023; 332:122108. [PMID: 37739161 DOI: 10.1016/j.lfs.2023.122108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/09/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
AIMS Melatonin is an endogenous hormone related to the regulation of biorhythm. Previous researchers have found that melatonin can ameliorate diabetic nephropathy (DN), but the mechanism remains to be elucidated. To discover the possible mechanism by which melatonin prevents DN, we investigated the potential effects of melatonin on signal transducer and activator of transcription 3 (STAT3) on the progression of cellular senescence and apoptosis. MAIN METHODS Cellular senescence, apoptosis and the underlying mechanism of melatonin were investigated both in vivo and in vitro. C57BL/6 mice were intraperitoneally injected with streptozotocin (STZ) to establish DN. For an in vitro model of DN, human renal cortex proximal epithelial tubule (HK-2) cells were exposed to high glucose conditions. KEY FINDINGS Melatonin inhibited the phosphorylation of STAT3, decreased the expression of senescence proteins p53, p21 and p16INK4A. Melatonin also downregulated the expression of apoptotic proteins, including cleaved PARP1, cleaved caspase-9 and -3. Melatonin treatment decreased the positive area of senescence-associated galactosidase (SA-β-gal) staining and the number of TUNEL-positive cells in kidneys of DN mice. In vitro, melatonin inhibited STAT3 phosphorylation and lowered cellular senescence and apoptosis markers, in a manner similar to the STAT3 inhibitor S3I-201. In addition, the inhibition effect of melatonin on cellular senescence and apoptosis in HK-2 cells was reversed by the usage of recombinant IL-6 (rIL-6), which can induce STAT3 phosphorylation. SIGNIFICANCE We, for the first time, demonstrate that melatonin inhibits STAT3 phosphorylation, which is involved in alleviating the cellular senescence and apoptosis in DN.
Collapse
Affiliation(s)
- Xinzhe Fang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Weiyi Huang
- Department of Clinical Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Qiang Sun
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yang Zhao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Rui Sun
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Fang Liu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
4
|
Liu Y, Wang W, Zhang J, Gao S, Xu T, Yin Y. JAK/STAT signaling in diabetic kidney disease. Front Cell Dev Biol 2023; 11:1233259. [PMID: 37635867 PMCID: PMC10450957 DOI: 10.3389/fcell.2023.1233259] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most important microvascular complication of diabetes and the leading cause of end-stage renal disease (ESRD) worldwide. The Janus kinase/signal transducer and activator of the transcription (JAK/STAT) signaling pathway, which is out of balance in the context of DKD, acts through a range of metabolism-related cytokines and hormones. JAK/STAT is the primary signaling node in the progression of DKD. The latest research on JAK/STAT signaling helps determine the role of this pathway in the factors associated with DKD progression. These factors include the renin-angiotensin system (RAS), fibrosis, immunity, inflammation, aging, autophagy, and EMT. This review epitomizes the progress in understanding the complicated explanation of the etiologies of DKD and the role of the JAK/STAT pathway in the progression of DKD and discusses whether it can be a potential target for treating DKD. It further summarizes the JAK/STAT inhibitors, natural products, and other drugs that are promising for treating DKD and discusses how these inhibitors can alleviate DKD to explore possible potential drugs that will contribute to formulating effective treatment strategies for DKD in the near future.
Collapse
Affiliation(s)
- Yingjun Liu
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenkuan Wang
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jintao Zhang
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuo Gao
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Xu
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghui Yin
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Althagafy HS, El-Aziz MA, Ibrahim IM, Abd-Alhameed EK, Hassanein EM. Pharmacological updates of nifuroxazide: Promising preclinical effects and the underlying molecular mechanisms. Eur J Pharmacol 2023; 951:175776. [PMID: 37192715 DOI: 10.1016/j.ejphar.2023.175776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
Nifuroxazide (NFX) is a safe nitrofuran antibacterial drug used clinically to treat acute diarrhea and infectious traveler diarrhea or colitis. Recent studies revealed that NFX displays multiple pharmacological effects, including anticancer, antioxidant, and anti-inflammatory effects. NFX has potential roles in inhibiting thyroid, breast, lung, bladder, liver, and colon cancers and osteosarcoma, melanoma, and others mediated by suppressing STAT3 as well as ALDH1, MMP2, MMP9, Bcl2 and upregulating Bax. Moreover, it has promising effects against sepsis-induced organ injury, hepatic disorders, diabetic nephropathy, ulcerative colitis, and immune disorders. These promising effects appear to be mediated by suppressing STAT3 as well as NF-κB, TLR4, and β-catenin expressions and effectively decreasing downstream cytokines TNF-α, IL-1β, and IL-6. Our review summarizes the available studies on the molecular biological mechanisms of NFX in cancer and other diseases and it is recommended to translate the studies in experimental animals and cultured cells and repurpose NFX in various diseases for scientific evidence based on human studies.
Collapse
Affiliation(s)
- Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - EmadH M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| |
Collapse
|
6
|
Nifuroxazide mitigates doxorubicin-induced cardiovascular injury: Insight into oxidative/NLRP3/GSDMD-mediated pyroptotic signaling modulation. Life Sci 2023; 314:121311. [PMID: 36549350 DOI: 10.1016/j.lfs.2022.121311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Doxorubicin (DOX) is a widely used powerful anthracycline for treatment of many varieties of malignancies; however its cumulative and dose-dependent cardio-toxicity has been limited its clinical use. In the current study, in vivo and in vitro (neonatal rat's cardiomyocytes) experiments were conducted to identify the impact of nifuroxazide (NIFU) on DOX-induced cardiomyopathy, vascular injury, and hemato-toxcity and plot the underlying regulatory mechanisms. Cardiovascular injury was induced in vivo by I.P. injection of an overall dose of DOX (21 mg/kg) administered (3.5 mg/kg) twice weekly for 21 days. NIFU (10 and 30 mg/kg) was administered orally once daily for 21 days, 1 week after DOX injection initiation. In vivo experiments confirmed NIFU to restore blood cells counts and hemoglobin concentration. Moreover, NIFU normalized the myocardial functional status as confirmed by ECG examination and myocardial injury markers; CK-MB, LDH, and AST. NIFU restored the balance between TAC and both of ROS and MDA and down-regulated the protein expression of TLR4, NF-kB, TXNIP, NLR-family pyrin domain containing 3 (NLRP3), caspase-1, IL-1β, and GSDMD-N terminal, with inhibition of the up-stream of NLRP3 and the down-stream DOX-induced pyroptosis. The in vitro assay confirmed well preserved cardiomyocytes' architecture, amelioration of NLRP3/IL-1 β-mediated cell pyroptosis, enhanced cell viability, and improved spontaneous beating. Moreover, NIFU normalized the disturbed aortic oxidant-antioxidant balance; enhanced eNOS- mediated endothelial relaxation, and down regulated IL-1β expression. Thus, NIFU may be proposed to serve as a cardioprotective agent to attenuate DOX-induced cardio-toxicity and vascular injury.
Collapse
|
7
|
Duan J, Zhang F, Lu M, Deng W, Zhai Y, Zhao Y, He L, Bai Z, Wang Y, Zhang C. Swietenine and swietenolide from Swietenia macrophylla king improve insulin secretion and attenuate apoptosis in H 2 O 2 induced INS-1 cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:2780-2792. [PMID: 36214338 DOI: 10.1002/tox.23636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/25/2022] [Accepted: 07/21/2022] [Indexed: 06/16/2023]
Abstract
Oxidative stress is an important factor that causes pancreatic β-cell dysfunction leading to the development and aggravation of diabetes. Swietenine (Stn) and swietenolide (Std) were isolated from the fruits of Swietenia macrophylla King and had the potential effects on treatment and prevention of diabetes. The aim of this study is to investigate the effects of Stn and Std on insulin secretion and apoptosis in H2 O2 induced insulinoma cell line (INS-1) cells. In the present study, INS-1 cells were treated with 300 μM H2 O2 for 4 h to establish the oxidative damage model. Cell apoptosis, insulin secretion, reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) levels, and Caspase-3 enzyme activity were measured via corresponding methods. Finally, pancreatic duodenal home box factor-1 (PDX-1), B cell lymphoma-2 (Bcl-2), and Bax protein expression were detected by western blot. Experimental results showed that Stn and Std could significantly improve the INS-1 cell viability, increase the secretion of insulin and reduce the ROS level in H2 O2 induced INS-1 cells. Furthermore, the SOD and GSH levels increased, and the MDA levels decreased compared with the model group after Stn and Std treatment. In addition, after treated with Stn and Std, cell apoptosis was improved, and the activity of Caspase 3 was also significantly inhibited. Meanwhile, Western blot results showed that Stn and Std could up-regulate the expression of PDX-1 protein, and affect the cell apoptosis pathway by up-regulating the expression of Bcl-2 protein and down-regulating the expression of Bax protein. In conclusion, Stn and Std can signifcantly improve the insulin secretion function, protect oxidative stress injury, and reduce apoptosis in H2 O2 induced INS-1 cells, which provides a research basis for Stn and Std to be new drug candidates for the treatment and prevention of diabetes.
Collapse
Affiliation(s)
- Jingyu Duan
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Fang Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Mengyuan Lu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wenhao Deng
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yutong Zhai
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yangqi Zhao
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Liangliang He
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhonghui Bai
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yongjian Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chunping Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Liu YP, Tian MY, Yang YD, Li H, Zhao TT, Zhu J, Mou FF, Cui GH, Guo HD, Shao SJ. Schwann cells-derived exosomal miR-21 participates in high glucose regulation of neurite outgrowth. iScience 2022; 25:105141. [PMID: 36204278 PMCID: PMC9529988 DOI: 10.1016/j.isci.2022.105141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/06/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
As a common complication of diabetes, the pathogenesis of diabetic peripheral neuropathy (DPN) is closely related to high glucose but has not been clarified. Exosomes can mediate crosstalk between Schwann cells (SC) and neurons in the peripheral nerve. Herein, we found that miR-21 in serum exosomes from DPN rats was decreased. SC proliferation was inhibited, cell apoptosis was increased, and the expression of miR-21 in cells and exosomes was downregulated when cultured in high glucose. Increasing miR-21 expression reversed these changes, while knockdown of miR-21 led to the opposite results. When co-cultured with exosomes derived from SC exposed to high glucose, neurite outgrowth was inhibited. On the contrary, neurite outgrowth was accelerated when incubated with exosomes rich in miR-21. We further demonstrated that the SC-derived exosomal miR-21 participates in neurite outgrowth probably through the AKT signaling pathway. Thus, SC-derived exosomal miR-21 contributes to high glucose regulation of neurite outgrowth. The miR-21 was decreased in serum exosomes and sciatic nerve of DPN rats High glucose inhibited SC viability and downregulated the expression of miR-21 Exosomes derived from SC cultured in high glucose inhibited the neurite outgrowth SC-derived exosomes rich in miR-21 accelerated the neurite outgrowth of neuron
Collapse
Affiliation(s)
- Yu-pu Liu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Ming-yue Tian
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-duo Yang
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Han Li
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-tian Zhao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Zhu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang-fang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-hong Cui
- Department of Neurology, Shanghai No. 9 People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
- Corresponding author
| | - Hai-dong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Corresponding author
| | - Shui-jin Shao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Corresponding author
| |
Collapse
|
9
|
The Use of Novel, Rapid Analytical Tools in the Assessment of the Stability of Tablets—A Pilot Analysis of Expired and Unexpired Tablets Containing Nifuroxazide. Processes (Basel) 2022. [DOI: 10.3390/pr10101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the analysis of finished pharmaceutical products, numerous innovative analytical techniques are often used, i.e., Raman spectroscopy, scanning electron microscopy, computer microtomography, directional hemispherical reflectance, and hyperspectral analyses. These techniques allow for the identification of changes in solid phases. Many advantages over other techniques can be attributed to these techniques, e.g., they are rapid, non-destructive, and comprehensive. They allow for the identification of changes occurring in solid phases. However, the above-mentioned methods are still not standard procedures in pharmaceutical research. The present study aimed to assess the possible usefulness of total directional hemispherical reflectance (THR), hyperspectral imaging, and computer microtomography to evaluate the stability of tablets containing nifuroxazide during storage. In the study, expired and unexpired coating tablets containing nifuroxazide (n = 10 each) were analyzed. In addition, four unexpired tablets were stored at 40°C over 3 months (stressed tablets). Reflectance was determined with seven wavelength bands from 335 nm to 2500 nm using an SOC-410 Directional Hemispherical Reflectometer (Surface Optics Corporation, San Diego, CA, USA). A Specim IQ hyperspectral camera (Spectral Imaging Ltd., Oulu, Finland) was used with a wavelength range of 400–1030 nm. Tablets were also scanned using X-ray microtomography (Phoenix vǀtomeǀx, GE Sensing & Inspection Technologies GmbH, Wunstorf, Germany). The results indicated that total reflectance was lower in expired tablets than in unexpired tablets in all spectral bands, except for 700–1100 nm and 1700–2500 nm. In turn, the stressed tablets showed higher THR values than expired tablets in all spectral bands, except for 1000–1700 nm. In addition, hyperspectral analysis of the homogeneity of the tablets, as well as X-ray microtomographic analysis of tablet density and coating thickness, indicated that these parameters differed significantly between the analyzed tablets.
Collapse
|
10
|
Song L, Cao X, Ji W, Zhao L, Yang W, Lu M, Yang J. Inhibition of STAT3 enhances UCP1 expression and mitochondrial function in brown adipocytes. Eur J Pharmacol 2022; 926:175040. [DOI: 10.1016/j.ejphar.2022.175040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
|
11
|
Hu X, Duan T, Wu Z, Tang C, Cao Z. Puerarin Inhibits the PERK-eIF2[Formula: see text]-ATF4-CHOP Pathway through Inactivating JAK2/STAT3 Signal in Pancreatic beta-Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1723-1738. [PMID: 34488550 DOI: 10.1142/s0192415x21500816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune and inflammatory disease with excessive loss of pancreatic islet [Formula: see text]-cells. Accumulating evidence indicated that endoplasmic reticulum (ER) stress played a critical role in [Formula: see text]-cells loss, leading to T1D. Therefore, promoting the survival of pancreatic [Formula: see text]cells would be beneficial for patients with T1D. Puerarin is a natural isoflavone that has been demonstrated to be able to decrease blood glucose in patients with T1D. However, it remains unknown whether puerarin improves ER stress to prevent [Formula: see text]-cells from apoptosis. Here, we sought to investigate the role of puerarin in ER stress-associated apoptosis and explore its underlying mechanism in the mouse insulinoma cell line (MIN6). Flow cytometry and cell counting kit-8 (CCK8) experiments showed that puerarin caused a significant increase in the viability of MIN6 cells injured by H2O2. Furthermore, the protein kinase R-like ER kinase (PERK) signal pathway, a critical branch of ER stress response, was found to be involved in this process. Puerarin inhibited the phosphorylation of PERK, subsequently suppressed the phosphorylation of eukaryotic initiation factor 2[Formula: see text] (eIF2[Formula: see text], then decreased the activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) expression, ultimately attenuating ER stress to prevent MIN6 cells from apoptosis. In addition, puerarin inhibited the activation of Janus kinase 2 (JAK2)/signal transducer and activators of transcription 3 (STAT3), which suppressed the PERK signal cascade with decreased ATF4 and CHOP levels. Taken together, our results firstly demonstrated that puerarin could prevent MIN6 cells from apoptosis at least in part by inhibiting the PERK-eIF2[Formula: see text]-ATF4-CHOP axis under ER stress conditions, which might be mediated by inactivation of the JAK2/STAT3 signal pathway. Therefore, investigating the mechanism underlying the effects of puerarin might highlight the potential roles of puerarin developing into an antidiabetic drug.
Collapse
Affiliation(s)
- Xiaobo Hu
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China.,The Key Laboratory of Ecological Environment and Critical Human Diseases, Prevention of Hunan Province Department of Education, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Tingting Duan
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China.,The Key Laboratory of Ecological Environment and Critical Human Diseases, Prevention of Hunan Province Department of Education, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Zhuan Wu
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China.,The Key Laboratory of Ecological Environment and Critical Human Diseases, Prevention of Hunan Province Department of Education, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Cifei Tang
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China.,The Key Laboratory of Ecological Environment and Critical Human Diseases, Prevention of Hunan Province Department of Education, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Zhaohui Cao
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China.,The Key Laboratory of Ecological Environment and Critical Human Diseases, Prevention of Hunan Province Department of Education, University of South China, Hengyang 421001, Hunan, P. R. China
| |
Collapse
|