1
|
Luo M, Shang L, Xie J, Zhou T, He C, Fisher D, Pronyuk K, Musabaev E, Hien NTT, Wang H, Zhao L. Current status and trend of global research on the pharmacological effects of emodin family: bibliometric study and visual analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6165-6178. [PMID: 39792164 DOI: 10.1007/s00210-024-03758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Emodin, as a natural active ingredient, has shown great application potential in the fields of medicine, food and cosmetics due to its unique pharmacological effects, such as anti-inflammatory, antioxidant, anti-cancer, etc. In recent years, with the development of science and technology and the increase of people's demand for natural medicine, emodin research has been paid more and more attention by the global scientific research community. The bibliometric analysis of emodin and the construction of knowledge map are still blank. We searched the publications of emodin related studies in the Web of Science Core Collection (WoSCC) database from 2004 to 2024 and conducted a bibliometric analysis. Data processing was done using the R packages Bibliometrix, VOSviewer and CiteSpace. The consensus identified 4,125 emodin related articles from multiple countries, with China being the main contributor. The number of publications in this field is increasing year by year. China Medical University, the Chinese Academy of Sciences, and Nanjing University of Traditional Chinese Medicine are all prominent research institutions in this field. The Journal of ethnopharmacology published the most articles on the subject. The total number of authors of these articles has reached 14,991, among which Yi Wang is the author with the most output and Xiaoxv Dong is the author with the most cited times. "emodin", "apoptosis", and "liver injury" were the main research focuses. Topics such as "pharmacology", "photodynamic therapy", "advancing drug discovery" and "gallbladder cancer cell" may represent emerging areas of research in medicine. The results of this study help to identify the latest research frontiers and hot topics, and provide a valuable reference for the study of emodin family.
Collapse
Affiliation(s)
- Miao Luo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Luorui Shang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiao Xie
- Health Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Zhou
- Department of Gastroenterology and Hepatology, Huanggang Hospital of Traditional Chinese Medicine, Huanggang, Hubei, China
| | - Chengyi He
- Department of Vascular Surgery, the Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - David Fisher
- Department of Medical Biosciences, Faculty of Natural Sciences, University of The Western Cape, Cape Town, South Africa
| | - Khrystyna Pronyuk
- Infectious Diseases Department, O.Bogomolets National Medical University, Kiev, Ukraine
| | - Erkin Musabaev
- The Research Institute of Virology, Ministry of Health, Tashkent, Uzbekistan
| | | | - Huan Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Cai ZY, Li SJ, Wang YQ. Integrated Serum Pharmacochemistry, Network Pharmacology, and Molecular Docking to Study the Mechanism of Rhubarb against Atherosclerosis. Curr Pharm Biotechnol 2025; 26:564-575. [PMID: 38847162 DOI: 10.2174/0113892010296117240531071301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 03/25/2025]
Abstract
BACKGROUND Atherosclerosis (AS) is a chronic inflammatory disease characterized by the accumulation of lipids, the formation of lesion plaques, and the narrowing of arterial lumens. Rhubarb has significant effects against AS, but there is a lack of analysis and exploration of the mechanism of action of the transitional components in serum containing rhubarb. OBJECTIVE This work aims to combine serum pharmacochemistry, network pharmacology, and molecular docking to explore active ingredients and mechanism of rhubarb against AS. METHOD Firstly, the components of rhubarb in blood samples were identified using HPLC-QTOF/ MS. The ingredients-targets-disease interaction network of rhubarb was constructed through network pharmacology. Then, molecular docking between the ingredients and the core targets was carried out using the Autodock Vina software. RESULTS Eleven active ingredients and five metabolites were preliminarily identified. The network pharmacology results showed that chrysophanol, resveratrol, and emodin might have potential pharmacological effects on AS. The PPI network showed that the key proteins were PTGS2, ESR1, PTGS1, and ELANE. GO analysis revealed that genes were mainly enriched in the inflammatory response and response to exogenous stimuli. Moreover, these genes were related to IL-17 signaling pathways, lipid and atherosclerosis, and other pathways. Molecular docking analyses showed that chrysophanol and emodin have strong binding affinities with the target proteins PTGS2 and PTGS1. CONCLUSION A comprehensive strategy combining serum pharmacochemistry with network pharmacology and molecular docking was employed to investigate the active ingredients and the mechanism of rhubarb in treating AS, which provided a basis for studying the pharmacological effects and action mechanisms of rhubarb.
Collapse
Affiliation(s)
- Zhi-Yan Cai
- Center of Scientific Research, Nanyang Medical College, Nanyang, 473061, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Shu-Jiao Li
- Center of Scientific Research, Nanyang Medical College, Nanyang, 473061, China
- Key Laboratory of Traditional Chinese Medicine Effector and Quality Control, Institute of Nanyang Geoherbs (Artemisia argyi), Nanyang Medical College, Nanyang, 473061, China
| | - Yu-Qing Wang
- Center of Scientific Research, Nanyang Medical College, Nanyang, 473061, China
- Key Laboratory of Traditional Chinese Medicine Effector and Quality Control, Institute of Nanyang Geoherbs (Artemisia argyi), Nanyang Medical College, Nanyang, 473061, China
| |
Collapse
|
3
|
Pasala PK, Raghupathi NK, Yaraguppi DA, Challa RR, Vallamkonda B, Ahmad SF, Chennamsetty Y, Kumari PK, DSNBK P. Potential preventative impact of aloe-emodin nanoparticles on cerebral stroke-associated myocardial injury by targeting myeloperoxidase: In supporting with In silico and In vivo studies. Heliyon 2024; 10:e33154. [PMID: 39022073 PMCID: PMC11253067 DOI: 10.1016/j.heliyon.2024.e33154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
The present study examined the potential neuroprotective effects of aloe-emodin (AE) nanoparticles on the cerebral stroke-associated target protein myeloperoxidase (MPO). We investigated the binding interactions between AE and MPO through molecular docking and molecular dynamics simulations. Molecular docking results indicated that AE exhibited a binding energy of -6.9 kcal/mol, whereas it was -7.7 kcal/mol for 2-{[3,5-bis(trifluoromethyl)benzyl]amino}-n-hydroxy-6-oxo-1,6-dihydropyrimidine-5-carboxamide (CCl). Furthermore, molecular dynamics studies demonstrated that AE possesses a stronger binding affinity (-57.137 ± 13.198 kJ/mol) than does CCl (-22.793 ± 30.727 kJ/mol), suggesting that AE has a more substantial inhibitory effect on MPO than does CCl. Despite the therapeutic potential of AE for neurodegenerative disorders, its bioavailability is limited within the body. A proposed hypothesis to enhance the bioavailability of AE is its conversion into aloe-emodin nanoparticles (AENP). The AENPs synthesized through a fabrication method were spherical with a consistent diameter of 104.4 ± 7.9 nm and a polydispersity index ranging from 0.525 to 0.586. In rats experiencing cerebral stroke, there was a notable increase in cerebral infarction size; abnormalities in electrocardiogram (ECG) and electroencephalogram (EEG) patterns; a decrease in brain and cardiac antioxidant activities; and an increase in myeloperoxidase levels compared to those in normal rats. Compared with AE treatment, AENP treatment significantly ameliorated cerebral infarction, normalized ECG and EEG patterns, enhanced brain and cardiac antioxidant activities, and reduced MPO levels in stroke rats. Histopathological evaluations revealed pronounced alterations in the rat hippocampus, with pyknotic nuclei, disarray and loosely packed cells, deterioration of cardiac muscle fibers, and extensive damage to cardiac myocytes, in contrast to those in normal rats. AENP treatment mitigated these pathological changes more effectively than AE treatment in both brain and cardiac cells. These findings support that AENP provides considerable protection against stroke-associated myocardial infarction.
Collapse
Affiliation(s)
- Praveen Kumar Pasala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapuramu, Andhra Pradesh, 515721, India
| | - Niranjan Kumar Raghupathi
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal, 518112, Andhra Pradesh, India
| | - Deepak A. Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubli, Karnataka, 580031, India
| | - Ranadheer Reddy Challa
- Department of Formulation and Development, Quotient Sciences, 3080 McCann Farm Dr, Garnet Valley, PA, 19060, USA
| | - Bhaskar Vallamkonda
- Department of Pharmaceutical Analysis, Odin Pharmaceutical LLC, Somerset, NJ, 08873, USA
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yeswanth Chennamsetty
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal, 518112, Andhra Pradesh, India
| | - P.V. Kamala Kumari
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam, India
| | - Prasanth DSNBK
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Hyderabad, 509301, India
| |
Collapse
|
4
|
Wu P, Xiao Y, Qing L, Mi Y, Tang J, Cao Z, Huang C. Emodin activates autophagy to suppress oxidative stress and pyroptosis via mTOR-ULK1 signaling pathway and promotes multi-territory perforator flap survival. Biochem Biophys Res Commun 2024; 704:149688. [PMID: 38387327 DOI: 10.1016/j.bbrc.2024.149688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Multi-territory perforator flap reconstruction has been proven effective in treating large skin and soft tissue defects in clinical settings. However, in view of that the multi-territory perforator flap is prone to partial postoperative necrosis, increasing its survival is the key to the success of reconstruction. In this study, we aimed to clarify the effect of emodin on multi-territory perforator flap survival. METHODS Flap survival was assessed by viability area analysis, infrared laser imaging detector, HE staining, immunohistochemistry, and angiography. Western blotting, immunofluorescence assays, and real-time fluorescent quantitative PCR were performed to detect the indicators of oxidative stress, pyroptosis and autophagy. RESULTS After emodin treatment, the multi-territory perforator flap showed a significantly increased survival rate, which was shown to be closely related to the inhibition of oxidative stress and pyroptosis and enhanced autophagy. Meanwhile, the use of autophagy inhibitor 3 MA was found to reverse the inhibitory effects of emodin on oxidative stress and pyroptosis and weaken the improving effect of emodin on flap survival, suggesting that autophagy plays a critical role in emodin-treated flaps. Interestingly, our mechanistic investigations revealed that the positive effect of emodin on multi-territory perforator flap was attributed to the mTOR-ULK1 signaling pathway activation. CONCLUSIONS Emodin can inhibit oxidative stress and pyroptosis by activating autophagy via the mTOR-ULK1 pathway, thereby improving the multi-territory perforator flap survival.
Collapse
Affiliation(s)
- Panfeng Wu
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Xiao
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liming Qing
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yanan Mi
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Juyu Tang
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zheming Cao
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Chengxiong Huang
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Li S, Ma Y, Chen W. Active ingredients of Erhuang Quzhi Granules for treating non-alcoholic fatty liver disease based on the NF-κB/NLRP3 pathway. Fitoterapia 2023; 171:105704. [PMID: 37858757 DOI: 10.1016/j.fitote.2023.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/25/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Erhuang Quzhi Granules (EQG), the Chinese herbal compound, has demonstrated significant clinical efficacy in treating non-alcoholic fatty liver disease (NAFLD). The mechanism of this treatment has been shown to involve the nuclear factor kappa B (NF-κB)/nod-like receptor thermal protein domain associated protein 3 (NLRP3) pathway. However, research on the material basis of EQG against NAFLD is still in its primary stages. Following these considerations, this study predicted and screened the active ingredients of EQG using the absorption, distribution, metabolism, and excretion (ADME) property evaluation tool and molecular docking. Then the levels of these active ingredients in EQG were measured using ultra-high-performance liquid chromatography (UHPLC). The efficacy of the active ingredients and their mechanisms were validated through both in vivo and in vitro experiments. The results indicate that the collected 12 components have favorable metabolic stability, are safe, and have drug-like properties. Aloe-emodin (AE), rhein (RH), curcumin (CUR), emodin (EM), and chrysophanol (CP) showed better binding affinity with TNF-α and Caspase-1 proteins. UHPLC analysis revealed that EQG contains AE, RH, CUR, EM, and CP. Cellular experiments proved that all these five ingredients reduce the accumulation of lipids and reactive oxygen species. In animal models of NAFLD, AE, and RH significantly improved the pathological symptoms of steatosis and fibrosis and reduced the levels of pro-inflammatory factors via the NF-κB/NLRP3 pathway. The results reveal the active ingredients of EQG for treating NAFLD based on the NF-κB/NLRP3 pathway and lay the foundation for the clinical promotion of EQG.
Collapse
Affiliation(s)
- Si Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Yue Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| |
Collapse
|
6
|
Hu Y, Zhang S, Lou H, Mikaye MS, Xu R, Meng Z, Du M, Tang P, Chen Z, Chen Y, Liu X, Du Z, Zhang Y. Aloe-Emodin Derivative, an Anthraquinone Compound, Attenuates Pyroptosis by Targeting NLRP3 Inflammasome in Diabetic Cardiomyopathy. Pharmaceuticals (Basel) 2023; 16:1275. [PMID: 37765083 PMCID: PMC10536457 DOI: 10.3390/ph16091275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is widely recognized as a major contributing factor to the development of heart failure in patients with diabetes. Previous studies have demonstrated the potential benefits of traditional herbal medicine for alleviating the symptoms of cardiomyopathy. We have chemically designed and synthesized a novel compound called aloe-emodin derivative (AED), which belongs to the aloe-emodin (AE) family of compounds. AED was formed by covalent binding of monomethyl succinate to the anthraquinone mother nucleus of AE using chemical synthesis techniques. The purpose of this study was to investigate the effects and mechanisms of AED in treating DCM. We induced type 2 diabetes in Sprague-Dawley (SD) rats by administering a high-fat diet and streptozotocin (STZ) injections. The rats were randomly divided into six groups: control, DCM, AED low concentration (50 mg/kg/day), AED high concentration (100 mg/kg/day), AE (100 mg/kg/day), and positive control (glyburide, 2 mg/kg/day) groups. There were eight rats in each group. The rats that attained fasting blood glucose of ˃16.7 mmol/L were considered successful models. We observed significant improvements in cardiac function in the DCM rats with both AED and AE following four weeks of intragastric treatment. However, AED had a more pronounced therapeutic effect on DCM compared to AE. AED exhibited an inhibitory effect on the inflammatory response in the hearts of DCM rats and high-glucose-treated H9C2 cells by suppressing the pyroptosis pathway mediated by the nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain 3 (NLRP3) inflammasome. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes showed a significant enrichment in the NOD-like receptor signaling pathway compared to the high-glucose group. Furthermore, overexpression of NLRP3 effectively reversed the anti-pyroptosis effects of AED in high-glucose-treated H9C2 cells. This study is the first to demonstrate that AED possesses the ability to inhibit myocardial pyroptosis in DCM. Targeting the pyroptosis pathway mediated by the NLRP3 inflammasome could provide a promising therapeutic strategy to enhance our understanding and treatment of DCM.
Collapse
Affiliation(s)
- Yingying Hu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Shuqian Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Han Lou
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Monayo Seth Mikaye
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Run Xu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ziyu Meng
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Menghan Du
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Pingping Tang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Zhouxiu Chen
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Yongchao Chen
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Xin Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin 150081, China
| | - Zhimin Du
- Institute of Clinical Pharmacology, The Second Affliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China
- Department of Clinical Pharmacology College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Yong Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin 150081, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin 150086, China
| |
Collapse
|
7
|
Yan N, Wang S, Gao H, Chen J, Cao J, Wei P, Li X, Yu Y, Wang Y, Niu Y, Wang Y, Liu S, Jin G. Neuroprotective effect of aloe emodin against Huntington's disease-like symptoms in R6/1 transgenic mice. Food Funct 2023. [PMID: 37191091 DOI: 10.1039/d3fo00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Aloe emodin is a natural anthraquinone derived from aloe or rhubarb, showing anti-renal fibrosis, anti-atherosclerosis and anti-cancer effects. Aloe emodin also shows neuroprotective effects in ischemic stroke rats. Naturally, anthraquinone derivatives generally have the effect of inhibiting the transforming growth factor-β1 (TGF-β1) pathway. There is an increase in the calcium/calmodulin-dependent protein kinase II (CaMKII) and TGF-β1 levels in both Huntington's disease (HD) patients' brains and HD transgenic mice. Thus, we hypothesized that aloe emodin may inhibit the phosphorylation of CaMKII (p-CaMKII) and TGF-β1/sma- and mad-related protein (Smad) signaling in the brain, further preventing motor and cognitive dysfunction. Aloe emodin was orally administered to 10- to 20-week-old HD R6/1 transgenic mice. Aloe emodin improved the motor coordination of R6/1 transgenic mice in the rotarod test and attenuated visual recognition impairment in the novel object recognition test. Aloe emodin downregulated levels of the mutant huntingtin protein, p-CaMKII and TGF-β1, but not the TGF-β2 or TGF-β3 levels, in the brains of R6/1 mice. Aloe emodin could also inhibit neuronal apoptosis in the hippocampus of R6/1 mice. Altogether, these results indicated that aloe emodin prevents several HD-like symptoms through the inhibition of CaMKII/Smad and TGF-β1/Smad signaling in mice.
Collapse
Affiliation(s)
- Nan Yan
- School of Medical Applied Technology, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Shuai Wang
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Haotian Gao
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Jiaqi Chen
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Jiahui Cao
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P.R. China.
| | - Pengsheng Wei
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Xue Li
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Ying Yu
- Liaoning Medical Device Test Institute, Shenyang, 110171, P.R. China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Yalin Niu
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Yijie Wang
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Shuyuan Liu
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P.R. China.
- Key Laboratory of Behavioral and Cognitive Neuroscience of Liaoning Province, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Ge Jin
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P.R. China.
- Key Laboratory of Behavioral and Cognitive Neuroscience of Liaoning Province, Shenyang Medical College, Shenyang, 110034, P.R. China
| |
Collapse
|
8
|
Zhang Y, Weng J, Huan L, Sheng S, Xu F. Mitophagy in atherosclerosis: from mechanism to therapy. Front Immunol 2023; 14:1165507. [PMID: 37261351 PMCID: PMC10228545 DOI: 10.3389/fimmu.2023.1165507] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023] Open
Abstract
Mitophagy is a type of autophagy that can selectively eliminate damaged and depolarized mitochondria to maintain mitochondrial activity and cellular homeostasis. Several pathways have been found to participate in different steps of mitophagy. Mitophagy plays a significant role in the homeostasis and physiological function of vascular endothelial cells, vascular smooth muscle cells, and macrophages, and is involved in the development of atherosclerosis (AS). At present, many medications and natural chemicals have been shown to alter mitophagy and slow the progression of AS. This review serves as an introduction to the field of mitophagy for researchers interested in targeting this pathway as part of a potential AS management strategy.
Collapse
Affiliation(s)
- Yanhong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiajun Weng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Luyao Huan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Song Sheng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|