1
|
Nohesara S, Mostafavi Abdolmaleky H, Pirani A, Pettinato G, Thiagalingam S. The Obesity-Epigenetics-Microbiome Axis: Strategies for Therapeutic Intervention. Nutrients 2025; 17:1564. [PMID: 40362873 PMCID: PMC12073275 DOI: 10.3390/nu17091564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Obesity (OB) has become a serious health issue owing to its ever-increasing prevalence over the past few decades due to its contribution to severe metabolic and inflammatory disorders such as cardiovascular disease, type 2 diabetes, and cancer. The unbalanced energy metabolism in OB is associated with substantial epigenetic changes mediated by the gut microbiome (GM) structure and composition alterations. Remarkably, experimental evidence also indicates that OB-induced epigenetic modifications in adipocytes can lead to cellular "memory" alterations, predisposing individuals to weight regain after caloric restriction and subsequently inducing inflammatory pathways in the liver. Various environmental factors, especially diet, play key roles in the progression or prevention of OB and OB-related disorders by modulating the GM structure and composition and affecting epigenetic mechanisms. Here, we will first focus on the key role of epigenetic aberrations in the development of OB. Then, we discuss the association between abnormal alterations in the composition of the microbiome and OB and the interplays between the microbiome and the epigenome in the development of OB. Finally, we review promising strategies, including prebiotics, probiotics, a methyl-rich diet, polyphenols, and herbal foods for the prevention and/or treatment of OB via modulating the GM and their metabolites influencing the epigenome.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA;
| | - Ahmad Pirani
- Mental Health Research Center, Psychosocial Health Research Institute, Iran University of Medical Sciences, Tehran 14535, Iran;
| | - Giuseppe Pettinato
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA;
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
2
|
Tian M, Zhu Y, Lu S, Qin Y, Li X, Wang T, Guo Y, Shi H, Qin D. Clinical efficacy of probiotic supplementation in the treatment of knee osteoarthritis: a meta-analysis. Front Microbiol 2025; 16:1526690. [PMID: 40276226 PMCID: PMC12020436 DOI: 10.3389/fmicb.2025.1526690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/11/2025] [Indexed: 04/26/2025] Open
Abstract
Background We aimed to systematically evaluate and analyze the clinical efficacy of oral probiotics in the treatment of knee osteoarthritis (KOA) based on the theory of "gut-joint axis." Methods We searched PubMed, The Cochrane Library, Embase, China Knowledge Network (CNKI), Wanfang Database, and Wipro Database (CQVIP) databases for clinical randomized controlled trials of oral probiotics for the treatment of KOA. The literature was organized by Note express software, and the quality of the included literature was evaluated according to the Cochrane systematic evaluation method, and meta-analysis was performed using RevMan 5.4 software. Results Five randomized controlled trials with 694 participants were included in this study, and the results of the meta-analysis showed that the observation group experienced significant reductions in the Western Ontario and McMaster Universities Osteoarthritis Index total score, visual analog score, and high-sensitivity C-reactive protein level compared to the control group, but did not show significant differences in improvement of stiffness and regulation of body weight. Conclusion Oral probiotics had an ameliorative effect on function, pain, and inflammatory response in patients with KOA, but our results need to be validated in future large-scale studies. Systematic review registration The website is https://www.crd.york.ac.uk/PROSPERO/.
Collapse
Affiliation(s)
- Miao Tian
- Kunming Municipal Hospital of Traditional Chinese Medicine, Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Youyang Zhu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shiyu Lu
- The People’s Hospital of Mengzi, The Affiliated Hospital of Yunnan University of Chinese Medicine, Mengzi, Honghe, China
| | - Yuliang Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xinyao Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Tao Wang
- Kunming Municipal Hospital of Traditional Chinese Medicine, Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ying Guo
- Kunming Municipal Hospital of Traditional Chinese Medicine, Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
3
|
Mohtashamian A, Mahabady M, Bagheri F, Barghchi H, Aminianfar A. Effects of canola oil on body weight and composition in adults: an updated systematic review and meta-analysis of 32 randomized controlled trials. Nutr J 2025; 24:55. [PMID: 40200305 PMCID: PMC11980287 DOI: 10.1186/s12937-025-01117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVE We aim to provide an overview and update the current documents regarding the effect of canola oil (CO) compared to other dietary oils on body weight and composition in adults. METHODS PubMed, Scopus, Google Scholar, and ISI Web of Science were searched until Sepetember 2024 for randomized clinical trials (RCTs) that assessed the effect of CO on anthropometric measures. RESULTS In this systematic review and meta-analysis thirty-two studies were included. CO consumption significantly increased WHR (MD: 0.003 cm, 95% CI: 0.001, 0.005, P value: 0.003) and significantly decreased BMI (mean difference (MD): -0.127 kg/m2, 95% C: -0.231, -0.024, P value: 0.016) However, it did not significantly affect other anthropometric measures (P > 0.05). Based on subgroup analysis, CO supplementation significantly reduced BW in studies on T2DM patients, with parallel design, on patients over 50 years old and with a dose of more than 30 g/d. It also significantly increased WC in trials with parallel design and on hyperlipidemia patients. In addition, CO supplementation significantly increased WHR in the majority of subgroups. CONCLUSIONS Compared to other oil supplementation, CO could decrease BW, BMI and increase WHR, and WC in general or subgroup analysis. Further studies are needed to provide additional insight into how canola oil affects BW and composition in adults.
Collapse
Affiliation(s)
- Abbas Mohtashamian
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Basic Science Research Institute, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad City, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad City, Iran
| | - Masoumeh Mahabady
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Basic Science Research Institute, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Bagheri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Basic Science Research Institute, Kashan University of Medical Sciences, Kashan, Iran
| | - Hanieh Barghchi
- Department of Clinical Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad City, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad City, Iran
- Department of Nutritional Sciences, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad City, Iran
| | - Azadeh Aminianfar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Basic Science Research Institute, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Ribeiro G, Schellekens H, Cuesta-Marti C, Maneschy I, Ismael S, Cuevas-Sierra A, Martínez JA, Silvestre MP, Marques C, Moreira-Rosário A, Faria A, Moreno LA, Calhau C. A menu for microbes: unraveling appetite regulation and weight dynamics through the microbiota-brain connection across the lifespan. Am J Physiol Gastrointest Liver Physiol 2025; 328:G206-G228. [PMID: 39811913 DOI: 10.1152/ajpgi.00227.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Appetite, as the internal drive for food intake, is often dysregulated in a broad spectrum of conditions associated with over- and under-nutrition across the lifespan. Appetite regulation is a complex, integrative process comprising psychological and behavioral events, peripheral and metabolic inputs, and central neurotransmitter and metabolic interactions. The microbiota-gut-brain axis has emerged as a critical mediator of multiple physiological processes, including energy metabolism, brain function, and behavior. Therefore, the role of the microbiota-gut-brain axis in appetite and obesity is receiving increased attention. Omics approaches such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics in appetite and weight regulation offer new opportunities for featuring obesity phenotypes. Furthermore, gut-microbiota-targeted approaches such as pre-, pro-, post-, and synbiotic, personalized nutrition, and fecal microbiota transplantation are novel avenues for precision treatments. The aim of this narrative review is 1) to provide an overview of the role of the microbiota-gut-brain axis in appetite regulation across the lifespan and 2) to discuss the potential of omics and gut microbiota-targeted approaches to deepen understanding of appetite regulation and obesity.
Collapse
Affiliation(s)
- Gabriela Ribeiro
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Harriët Schellekens
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Cristina Cuesta-Marti
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Ivie Maneschy
- Growth, Exercise, Nutrition and Development Research Group, Instituto Agroalimentario de Aragón, University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Shámila Ismael
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Amanda Cuevas-Sierra
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - J Alfredo Martínez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - Marta P Silvestre
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Cláudia Marques
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - André Moreira-Rosário
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Faria
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Luis A Moreno
- Growth, Exercise, Nutrition and Development Research Group, Instituto Agroalimentario de Aragón, University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Conceição Calhau
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Rondanelli M, Borromeo S, Cavioni A, Gasparri C, Gattone I, Genovese E, Lazzarotti A, Minonne L, Moroni A, Patelli Z, Razza C, Sivieri C, Valentini EM, Barrile GC. Therapeutic Strategies to Modulate Gut Microbial Health: Approaches for Chronic Metabolic Disorder Management. Metabolites 2025; 15:127. [PMID: 39997751 PMCID: PMC11857149 DOI: 10.3390/metabo15020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Numerous recent studies have suggested that the composition of the intestinal microbiota can trigger metabolic disorders, such as diabetes, prediabetes, obesity, metabolic syndrome, sarcopenia, dyslipidemia, hyperhomocysteinemia, and non-alcoholic fatty liver disease. Since then, considerable effort has been made to understand the link between the composition of intestinal microbiota and metabolic disorders, as well as the role of probiotics in the modulation of the intestinal microbiota. The aim of this review was to summarize the reviews and individual articles on the state of the art regarding ideal therapy with probiotics and prebiotics in order to obtain the reversion of dysbiosis (alteration in microbiota) to eubiosis during metabolic diseases, such as diabetes, prediabetes, obesity, hyperhomocysteinemia, dyslipidemia, sarcopenia, and non-alcoholic fatty liver diseases. This review includes 245 eligible studies. In conclusion, a condition of dysbiosis, or in general, alteration of the intestinal microbiota, could be implicated in the development of metabolic disorders through different mechanisms, mainly linked to the release of pro-inflammatory factors. Several studies have already demonstrated the potential of using probiotics and prebiotics in the treatment of this condition, detecting significant improvements in the specific symptoms of metabolic diseases. These findings reinforce the hypothesis that a condition of dysbiosis can lead to a generalized inflammatory picture with negative consequences on different organs and systems. Moreover, this review confirms that the beneficial effects of probiotics on metabolic diseases are promising, but more research is needed to determine the optimal probiotic strains, doses, and administration forms for specific metabolic conditions.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Sara Borromeo
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Ilaria Gattone
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Elisa Genovese
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Lazzarotti
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Leonardo Minonne
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessia Moroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Zaira Patelli
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Razza
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Sivieri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Eugenio Marzio Valentini
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| |
Collapse
|
6
|
Feitoza TG, de Lima Ponciano Costa B, Sampaio KB, Dos Santos Lima M, Garcia EF, de Albuquerque TMR, de Souza EL, Rodrigues NPA. An In Vitro Study of the Impacts of Sweet Potato Chips with Potentially Probiotic Levilactobacillus brevis and Lactiplantibacillus plantarum on Human Intestinal Microbiota : Impacts of potato chips with probiotics on intestinal microbiota. Probiotics Antimicrob Proteins 2025; 17:450-461. [PMID: 37792211 DOI: 10.1007/s12602-023-10168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
This study formulated sweet potato chips with powdered potentially probiotic Levilactobacillus brevis (SPLB) and Lactiplantibacillus plantarum (SPLP) and evaluated their impacts on human intestinal microbiota during 48 h of in vitro colonic fermentation. L. brevis and L. plantarum kept high viable cell counts (> 6 log CFU/g) on sweet potato chips after freeze-drying and during 60 days of storage. SPLB and SPLP had satisfactory quality parameters during 60 days of storage. SPLB and SPLP increased the relative abundance of Lactobacillus ssp./Enterococcus spp. (3.84-10.22%) and Bifidobacterium spp. (3.25-12.45%) and decreased the relative abundance of Bacteroides spp./Prevotella spp. (8.56-2.16%), Clostridium histolyticum (8.23-2.33%), and Eubacterium rectale/Clostridium coccoides (8.07-1.33%) during 48 h of in vitro colonic fermentation. SPLB and SPLP achieved high positive prebiotic indexes (> 8.24), decreased pH values and sugar contents, and increased lactic acid and short-chain fatty acid production, proving selective stimulatory effects on beneficial bacterial groups forming the intestinal microbiota. The results showed that SPLB and SPLP have good stability and high viable cell counts of L. brevis and L. plantarum when stored under room temperature and caused positive impacts on human intestinal microbiota, making them potentially probiotic non-dairy snack options.
Collapse
Affiliation(s)
- Tarsila Gonçalves Feitoza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Bárbara de Lima Ponciano Costa
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Karoliny Brito Sampaio
- Laboratory of Didactic Restaurant and Beverages, Department of Gastronomy, Center of Technology and Regional Development, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, PE, Brazil
| | - Estefânia Fernandes Garcia
- Laboratory of Didactic Restaurant and Beverages, Department of Gastronomy, Center of Technology and Regional Development, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil.
| | - Noádia Priscila Araújo Rodrigues
- Laboratory of Didactic Restaurant and Beverages, Department of Gastronomy, Center of Technology and Regional Development, Federal University of Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
7
|
Stachelska MA, Karpiński P, Kruszewski B. Health-Promoting and Functional Properties of Fermented Milk Beverages with Probiotic Bacteria in the Prevention of Civilization Diseases. Nutrients 2024; 17:9. [PMID: 39796443 PMCID: PMC11722897 DOI: 10.3390/nu17010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES There is scattered information in the scientific literature regarding the characterization of probiotic bacteria found in fermented milk beverages and the beneficial effects of probiotic bacteria on human health. Our objective was to gather the available information on the use of probiotic bacteria in the prevention of civilization diseases, with a special focus on the prevention of obesity, diabetes, and cancer. METHODS We carried out a literature review including the following keywords, either individually or collectively: lactic acid bacteria; probiotic bacteria; obesity; lactose intolerance; diabetes; cancer protection; civilization diseases; intestinal microbiota; intestinal pathogens. RESULTS This review summarizes the current state of knowledge on the use of probiotic bacteria in the prevention of civilization diseases. Probiotic bacteria are a set of living microorganisms that, when administered in adequate amounts, exert a beneficial effect on the health of the host and allow for the renewal of the correct quantitative and qualitative composition of the microbiota. Probiotic bacteria favorably modify the composition of the intestinal microbiota, inhibit the development of intestinal pathogens, prevent constipation, strengthen the immune system, and reduce symptoms of lactose intolerance. As fermented milk beverages are an excellent source of probiotic bacteria, their regular consumption can be a strong point in the prevention of various types of civilization diseases. CONCLUSIONS The presence of lactic acid bacteria, including probiotic bacteria in fermented milk beverages, reduces the incidence of obesity and diabetes and serves as a tool in the prevention of cancer diseases.
Collapse
Affiliation(s)
| | - Piotr Karpiński
- Faculty of Health Sciences, University of Lomza, Akademicka 14, 18-400 Łomża, Poland;
| | - Bartosz Kruszewski
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| |
Collapse
|
8
|
Sadeghi A, Daroudi R, Davari M, Gharib-Naseri Z, Jafarzadeh J, Tajvar M. Efficacy of Probiotics in Overweight and Obesity Control: An Umbrella Review and Subgroup Meta-Analysis. Probiotics Antimicrob Proteins 2024; 16:2316-2328. [PMID: 39320636 DOI: 10.1007/s12602-024-10363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 09/26/2024]
Abstract
Numerous primary and secondary studies have consistently demonstrated that probiotics, including lactobacillus and Bifidobacterium, possess a potential anti-obesity effect. However, it is worth noting that some studies have yielded contrasting results. Considering this, our study aims to present a comprehensive overview of published systematic reviews and meta-analyses, focusing on the efficacy and safety of probiotics in managing obesity. To achieve this objective, we conducted an umbrella review following the PRISMA protocol and Cochrane guidelines. We searched databases such as Embase, PubMed, Cochrane Library, and Google Scholar for relevant systematic reviews and meta-analyses published in English, without imposing any date restrictions. Our inclusion criteria encompassed studies evaluating the anti-obesity impact of probiotics, with a specific focus on changes in body mass index (BMI), fat mass percentage (FMP), body weight (BW), and body fat mass (BFM). These studies were meticulously reviewed by two independent reviewers. Our analysis included five systematic reviews and 18 meta-analyses that met the predefined inclusion and exclusion criteria. The meta-analyses revealed statistically significant reductions in the following parameters: BMI, a decrease of 0.30 kg/m2 (p < 0.00001, 95% CI - 0.36 to - 0.25); BFM, a reduction of 0.86 kg (p < 0.00001, 95% CI - 1.02 to - 0.71); BW, a decrease of 0.59 kg (p < 0.00001, 95% CI - 0.74 to - 0.44); and FMP, a substantial decline of 78% (p < 0.00001, 95% CI - 1.02 to - 0.54). In summary, our umbrella review suggests that existing evidence supports the potential benefits of probiotics in managing obesity and overweight. However, it is essential to acknowledge that the credibility of this evidence is somewhat limited due to the inclusion of studies with poor-quality designs and relatively small participant numbers. To establish the true efficacy of probiotics in obesity management, we recommend conducting robust studies involving larger participant cohorts.
Collapse
Affiliation(s)
- A Sadeghi
- Department of Health Management, Policy and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - R Daroudi
- Department of Health Management, Policy and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - M Davari
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Z Gharib-Naseri
- Department of Pharmacoeconomics and Pharmaceutical Management, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - J Jafarzadeh
- Department of Health Management, Policy and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - M Tajvar
- Department of Health Management, Policy and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Zhang K, Zhang Q, Qiu H, Ma Y, Hou N, Zhang J, Kan C, Han F, Sun X, Shi J. The complex link between the gut microbiome and obesity-associated metabolic disorders: Mechanisms and therapeutic opportunities. Heliyon 2024; 10:e37609. [PMID: 39290267 PMCID: PMC11407058 DOI: 10.1016/j.heliyon.2024.e37609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Microbial interactions are widespread and important processes that support the link between disease and microbial ecology. The gut microbiota is a major source of microbial stimuli that can have detrimental or beneficial effects on human health. It is also an endocrine organ that maintains energy homeostasis and host immunity. Obesity is a highly and increasingly prevalent metabolic disease and the leading cause of preventable death worldwide. An imbalance in the gut microbiome is associated with several diseases including obesity-related metabolic disorders. This review summarizes the complex association between the gut microbiome and obesity-associated metabolic diseases and validates the role and mechanisms of ecological dysregulation in the gut in obesity-associated metabolic disorders. Therapies that could potentially alleviate obesity-associated metabolic diseases by modulating the gut microbiota are discussed.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Qi Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
10
|
Merenstein DJ, Tancredi DJ, Karl JP, Krist AH, Lenoir-Wijnkoop I, Reid G, Roos S, Szajewska H, Sanders ME. Is There Evidence to Support Probiotic Use for Healthy People? Adv Nutr 2024; 15:100265. [PMID: 38977065 PMCID: PMC11342770 DOI: 10.1016/j.advnut.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Probiotics are typically marketed as foods and dietary supplements, categories for products intended to maintain health in generally healthy populations and which, unlike drugs, cannot claim to treat or cure disease. This review addresses the existing evidence that probiotics are beneficial to healthy people. Our approach was to perform a descriptive review of efficacy evidence that probiotics can prevent urinary, vaginal, gastrointestinal, and respiratory infections, and improve risk factors associated with cardiovascular health or reduce antibiotic use. Other endpoints such as mental, dental, or immune health were not specifically addressed. We concluded that there is sufficient evidence of efficacy and safety for clinicians and consumers to consider using specific probiotics for some indications - such as the use of probiotics to support gut function during antibiotic use or to reduce the risk of respiratory tract infections - for certain people. However, we did not find a sufficiently high level of evidence to support unconditional, population-wide recommendations for other preventive endpoints we reviewed for healthy people. Although evidence for some indications is suggestive of the preventive benefits of probiotics, additional research is needed.
Collapse
Affiliation(s)
- Daniel J Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Daniel J Tancredi
- Department of Pediatrics, University of California, Davis, CA, United States
| | - J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Alex H Krist
- Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Gregor Reid
- Departments of Microbiology and Immunology and Surgery, Western University, London, ON, Canada
| | - Stefan Roos
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, Uppsala, Sweden; Research & Development, BioGaia AB, Stockholm, Sweden
| | - Hania Szajewska
- Department of Paediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, United States.
| |
Collapse
|
11
|
Kazeminasab F, Miraghajani M, Mokhtari K, Karimi B, Rosenkranz SK, Santos HO. The effects of probiotic supplementation and exercise training on liver enzymes and cardiometabolic markers in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis of randomized clinical trials. Nutr Metab (Lond) 2024; 21:59. [PMID: 39090657 PMCID: PMC11293022 DOI: 10.1186/s12986-024-00826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver ailment worldwide, in which nonpharmacological strategies have a considerable role in the treatment. Probiotic supplementation as well as physical exercise can improve cardiometabolic parameters, but further research is needed to determine the effects of combined treatment versus exercise alone in managing NAFLD-associated biomarkers, primarily liver enzymes, lipid markers, and insulin resistance. OBJECTIVES This systematic review and meta-analysis aimed to evaluate the effects of probiotic supplementation, combined with exercise versus exercise alone, on liver enzymes and cardiometabolic markers in patients with NAFLD. METHODS A systematic review and meta-analysis of randomized clinical trials was performed by searching PubMed, Scopus, and Web of Science databases up to April 2024. The search was restricted to articles published in the English language and human studies. Random effects models were used to calculate weighted mean differences (WMD). RESULTS Pooled estimates (9 studies, 615 patients, intervention durations ranging from 8 to 48 weeks) revealed that probiotics plus exercise decreased aspartate transaminase (AST) [WMD=-5.64 U/L, p = 0.02], gamma-glutamyl transferase (GGT) [WMD=-7.09 U/L, p = 0.004], low-density lipoprotein (LDL) [WMD=-8.98 mg/dL, p = 0.03], total cholesterol (TC) [WMD=-16.97 mg/dL, p = 0.01], and homeostatic model assessment for insulin resistance (HOMA-IR) [WMD=-0.94, p = 0.005] significantly more than exercise only. However, probiotics plus exercise did not significantly change high-density lipoprotein (HDL) [WMD = 0.07 mg/dL, p = 0.9], fasting insulin [WMD=-1.47 µIU/mL, p = 0.4] or fasting blood glucose (FBG) [WMD=-1.57 mg/dL, p = 0.3] compared with exercise only. While not statistically significant, there were clinically relevant reductions in alanine aminotransferase (ALT) [WMD=-6.78 U/L, p = 0.1], triglycerides (TG) [WMD=-21.84 mg/dL, p = 0.1], and body weight (BW) [WMD=-1.45 kg, p = 0.5] for probiotics plus exercise compared with exercise only. The included studies exhibited significant heterogeneity for AST (I2 = 78.99%, p = 0.001), GGT (I2 = 73.87%, p = 0.004), LDL (I2 = 62.78%, p = 0.02), TC (I2 = 72.41%, p = 0.003), HOMA-IR (I2 = 93.86%, p = 0.001), HDL (I2 = 0.00%, p = 0.9), FBG (I2 = 66.30%, p = 0.01), ALT (I2 = 88.08%, p = 0.001), and TG (I2 = 85.46%, p = 0.001). There was no significant heterogeneity among the included studies for BW (I2 = 0.00%, p = 0.9). CONCLUSION Probiotic supplementation combined with exercise training elicited better results compared to exercise alone on liver enzymes, lipid profile, and insulin resistance in patients with NAFLD. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42023424290.
Collapse
Affiliation(s)
- Fatemeh Kazeminasab
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran.
| | - Maryam Miraghajani
- Department of Cancer Research Center, Shahid Beheshti of Medical Sciences, Tehran, Iran
| | - Khatereh Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Bahareh Karimi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sara K Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Para Street, 1720, Umuarama. Block 2H, Uberlandia, Minas Gerais, 38400-902, Brazil.
| |
Collapse
|
12
|
Wang X, Chen L, Zhang C, Shi Q, Zhu L, Zhao S, Luo Z, Long Y. Effect of probiotics at different intervention time on glycemic control in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1392306. [PMID: 39114293 PMCID: PMC11303337 DOI: 10.3389/fendo.2024.1392306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Background Type 2 diabetes mellitus(T2DM) is characterized by hyperglycemia. Gut microbiome adjustment plays a positive part in glucose regulation, which has become a hotspot. Probiotics have been studied for their potential to control the gut flora and to treat T2DM. However, the conclusion of its glucose-lowering effect is inconsistent based on different probiotic intervention times. Objectives To comprehensively evaluate how various probiotic intervention times affect glycemic control in people with T2DM. Methods We retrieved PubMed, Embase, Web of Science, and Cochrane Library on randomized controlled trials(RCTs)regarding the impact of probiotics on glycemic control in patients with T2DM from the inception to November 16, 2023. Separately, two researchers conducted a literature analysis, data extraction, and bias risk assessment of the involved studies. We followed the PRISMA guidelines, used RevMan 5.4 software for meta-analysis, and assessed the risk of bias by applying the Cochrane Handbook for Systematic Reviews 5.1.0. Results We included eight RCTs with 507 patients. Meta-analysis revealed that the use of probiotics might considerably reduce levels of glycosylated hemoglobin (HbA1c) {mean deviation (MD) = -0.33, 95% confidence interval (CI) (-0.59, -0.07), p = 0.01}, Insulin {standard mean deviation (SMD) = -0.48, 95% CI (-0.74, -0.22), p = 0.0003} and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR){SMD = -1.36, 95% CI (-2.30, -0.41), p = 0.005} than placebo group. No statistically significant differences were found regarding fasting blood glucose (FBG) and body mass index (BMI) {SMD = -0.39, 95% CI (-0.83, 0.05), p = 0.08}, {SMD = -0.40, 95% CI (-1.07, 0.27), p = 0.25}, respectively. Subgroup analyses, grouped by intervention times, showed that six to eight weeks of intervention improved HbA1c compared to the control group (p < 0.05), both six to eight weeks and 12-24 weeks had a better intervention effect on Insulin, and HOMA-IR (p < 0.05).In contrast, there was no statistically significant variation in the length between FBG and BMI regarding duration. Conclusion This meta-analysis found probiotics at different intervention times play a positive role in modulating glucose in T2DM, specifically for HbA1c in six to eight weeks, Insulin and HOMA-IR in six to eight weeks, and 12-24 weeks. To confirm our findings, further excellent large-sample research is still required. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42023483325.
Collapse
Affiliation(s)
- Xinghui Wang
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lu Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chunling Zhang
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qing Shi
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lei Zhu
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Sisi Zhao
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhiqin Luo
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yirun Long
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
13
|
Ojo DT, Brewer PC, Imeh-Nathaniel A, Imeh-Nathaniel S, Broughton PX, Nathaniel TI. Sex differences in clinical risk factors in obese ischemic stroke patients with a history of smoking. BMC Cardiovasc Disord 2024; 24:288. [PMID: 38816791 PMCID: PMC11138086 DOI: 10.1186/s12872-024-03952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Clinical risk factors associated obesity and smoking, as well as their combined effect, are not fully understood. This study aims to determine sex differences in risk factors in a population of acute ischemic stroke (AIS) patients who are obese and with a history of previous or current smoking. METHODS A retrospective analysis of risk factors in male and female AIS patients with baseline data of obesity and current or previous history of smoking, smoking, and obesity alone was determined. The primary predictor and outcome are risk factors associated with male and female AIS patients. Baseline risk factors were analyzed using a multivariate regression analysis to determine specific risk factors linked with the combined effect of obesity and current or previous history of smoking''. RESULTS Male obese AIS patients who are current or previous smokers were more likely to be older patients(OR = 1.024, 95% CI, 1.022-1.047, P = 0.033) that present with coronary artery disease (OR = 1.806, 95% CI, 1.028-3.174, P = 0.040), a history of alcohol use (OR = 2.873, 95% CI, 1.349-6.166, P = 0.006), elevated serum creatinine (OR = 4.724, 95% CI, 2.171-10.281, P < 0.001) and systolic blood pressure (OR = 1.029, 95% CI, 1.011-1.047, P < 0.002). Females were more associated with depression (OR = 0.432, 95% CI, 0.244-0.764, P = 0.004), previous TIA (OR = 0.319, 95% CI, 0.142-0.714, P < 0.005), and higher levels of HDL (OR = 0.938, 95% CI, 0.915-0.962, P < 0.001). CONCLUSION Our results reveal sex differences in risk factors in obese AIS patients with a current or past history of smoking. This finding emphasizes the need to develop management strategies to improve the care of obese AIS patients who are either current or former smokers.
Collapse
Affiliation(s)
- Dami T Ojo
- University of South Carolina School of Medicine-Greenville, Greenville, SC, 29605, USA
| | - Philip C Brewer
- University of South Carolina School of Medicine-Greenville, Greenville, SC, 29605, USA
| | | | | | - Philip X Broughton
- University of South Carolina School of Medicine-Greenville, Greenville, SC, 29605, USA
| | - Thomas I Nathaniel
- University of South Carolina School of Medicine-Greenville, Greenville, SC, 29605, USA.
| |
Collapse
|
14
|
Rasaei N, Heidari M, Esmaeili F, Khosravi S, Baeeri M, Tabatabaei-Malazy O, Emamgholipour S. The effects of prebiotic, probiotic or synbiotic supplementation on overweight/obesity indicators: an umbrella review of the trials' meta-analyses. Front Endocrinol (Lausanne) 2024; 15:1277921. [PMID: 38572479 PMCID: PMC10987746 DOI: 10.3389/fendo.2024.1277921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Background There is controversial data on the effects of prebiotic, probiotic, or synbiotic supplementations on overweight/obesity indicators. Thus, we aimed to clarify this role of biotics through an umbrella review of the trials' meta-analyses. Methods All meta-analyses of the clinical trials conducted on the impact of biotics on overweight/obesity indicators in general populations, pregnant women, and infants published until June 2023 in PubMed, Web of Sciences, Scopus, Embase, and Cochrane Library web databases included. The meta-analysis of observational and systematic review studies without meta-analysis were excluded. We reported the results by implementing the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flowchart. The Assessment of Multiple Systematic Reviews-2 (AMSTAR2) and Grading of Recommendations Assessment, Development, and Evaluation (GRADE) systems were used to assess the methodological quality and quality of evidence. Results Overall, 97 meta-analysis studies were included. Most studies were conducted on the effect of probiotics in both genders. Consumption of prebiotic: 8-66 g/day, probiotic: 104 -1.35×1015 colony-forming unit (CFU)/day, and synbiotic: 106-1.5×1011 CFU/day and 0.5-300 g/day for 2 to 104 weeks showed a favorable effect on the overweight/obesity indicators. Moreover, an inverse association was observed between biotics consumption and overweight/obesity risk in adults in most of the studies. Biotics did not show any beneficial effect on weight and body mass index (BMI) in pregnant women by 6.6×105-1010 CFU/day of probiotics during 1-25 weeks and 1×109-112.5×109 CFU/capsule of synbiotics during 4-8 weeks. The effect of biotics on weight and BMI in infants is predominantly non-significant. Prebiotics and probiotics used in infancy were from 0.15 to 0.8 g/dL and 2×106-6×109 CFU/day for 2-24 weeks, respectively. Conclusion It seems biotics consumption can result in favorable impacts on some anthropometric indices of overweight/obesity (body weight, BMI, waist circumference) in the general population, without any significant effects on birth weight or weight gain during pregnancy and infancy. So, it is recommended to intake the biotics as complementary medications for reducing anthropometric indices of overweight/obese adults. However, more well-designed trials are needed to elucidate the anti-obesity effects of specific strains of probiotics.
Collapse
Affiliation(s)
- Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Heidari
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepehr Khosravi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Huang H, Liu Y, Wen Z, Chen C, Wang C, Li H, Yang X. Gut microbiota in patients with prostate cancer: a systematic review and meta-analysis. BMC Cancer 2024; 24:261. [PMID: 38402385 PMCID: PMC10893726 DOI: 10.1186/s12885-024-12018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/18/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Increasing evidence indicates that gut microbiota are closely related to prostate cancer. This study aims to assess the gut microbiota composition in patients with prostate cancer compared to healthy participants, thereby advancing understanding of gut microbiota's role in prostate cancer. METHODS A systematic search was conducted across PubMed, Web of Science, and Embase databases, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The methodological quality of included studies was evaluated using the Newcastle-Ottawa Scale (NOS), and pertinent data were analyzed. The kappa score assessed interrater agreement. RESULTS This study encompassed seven research papers, involving 250 prostate cancer patients and 192 controls. The kappa was 0.93. Meta-analysis results showed that alpha-diversity of gut microbiota in prostate cancer patients was significantly lower than in the control group. In terms of gut microbiota abundance, the ratio of Proteobacteria, Bacteroidia, Clostridia, Bacteroidales, Clostridiales, Prevotellaceae, Lachnospiraceae, Prevotella, Escherichia-Shigella, Faecalibacterium, and Bacteroides was higher in prostate cancer patients. Conversely, the abundance ratio of Actinobacteria, Bacteroidetes, Firmicutes, Selenomonadales, Veillonella, and Megasphaera was higher in the control group. CONCLUSION Our study reveals differences in alpha-diversity and abundance of gut microbiota between patients with prostate cancer and controls, indicating gut microbiota dysbiosis in those with prostate cancer. However, given the limited quality and quantity of selected studies, further research is necessary to validate these findings.
Collapse
Affiliation(s)
- Haotian Huang
- Department of Urology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yang Liu
- Department of Urology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhi Wen
- Department of Urology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Caixia Chen
- Department of Urology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chongjian Wang
- Department of Urology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hongyuan Li
- Department of Urology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xuesong Yang
- Department of Urology, Afliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
16
|
Nazari A, Ghotbabadi ZR, Kazemi KS, Metghalchi Y, Tavakoli R, Rahimabadi RZ, Ghaheri M. The Effect of Berberine Supplementation on Glycemic Control and Inflammatory Biomarkers in Metabolic Disorders: An Umbrella Meta-analysis of Randomized Controlled Trials. Clin Ther 2024; 46:e64-e72. [PMID: 38016844 DOI: 10.1016/j.clinthera.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE Several meta-analyses reported berberine (BBR) supplementation improves glycemic parameters and inflammatory marker, but findings remain inconsistent. Therefore, this study was conducted. METHODS We systematically searched PubMed, Embase, Web of Science, Scopus, and Google Scholar to identify the relevant meta-analyses up to April 2023. FINDINGS BBR supplementation was effective in reducing fasting blood glucose (FBG) (ESWMD: -0.77; 95% CI: -0.90 to -0.63, and ESSMD: -0.65; 95% CI: -0.83 to -0.47), hemoglobin A1C (HbA1C) (ESWMD: -0.57; 95% CI: -0.68 to -0.46), homeostasis model assessment for insulin resistance (HOMA-IR) (ESWMD: -1.04; 95% CI: -1.66 to -0.42, and ESSMD: -0.71; 95% CI: -0.97 to -0.46), insulin (ESWMD: -1.00; 95% CI: -1.70 to -0.30, and ESSMD: -0.63; 95% CI: -0.94 to -0.32), interleukin (IL)-6 (ESSMD: -1.23; 95% CI: -1.61 to -0.85), tumor necrosis factor-α (TNF-α) (ESSMD: -1.04; 95% CI: -1.28 to -0.79), and C-reactive protein (CRP) (ESWMD: -0.62; 95% CI: -0.74 to -0.50, and ESSMD: -1.70; 95% CI: -2.21 to -1.19). IMPLICATIONS The finding of our umbrella showed that the supplementation of BBR could be effective in improving glycemic parameters and inflammatory marker in adults.
Collapse
Affiliation(s)
- Ahmad Nazari
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yalda Metghalchi
- Department of Pharmacoeconomics and Pharma Management, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Tavakoli
- Department of Radiology, Arak University of Medical Sciences, Arak, Iran
| | | | - Mohammad Ghaheri
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
17
|
Ahmad J, Khan I, Zengin G, Mahomoodally MF. The gut microbiome in the fight against obesity: The potential of dietary factors. FASEB J 2023; 37:e23258. [PMID: 37843880 DOI: 10.1096/fj.202300864rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
Obesity as a global public health burden has experienced a drastic growing trend recently. The management of obesity is challenging because of its complex etiology, and various factors are involved in its development, such as genetic and environmental factors. Different approaches are available to treat and/or manage obesity, including diet, physical activity, lifestyle changes, medications, and surgery. However, some of these approaches have inherent limitations and are closely associated with adverse effects. Therefore, probing into a novel/safe approach to treat and/or manage obesity is of fundamental importance. One such approach gaining renewed interest is the potential role of gut microbiota in obesity and its effectiveness in treating this condition. However, there is a dearth of comprehensive compilation of data on the potential role of the gut microbiome in obesity, particularly regarding dietary factors as a therapeutic approach. Therefore, this review aims to provide an updated overview of the role of gut microbiota in obesity, further highlighting the importance of dietary factors, particularly diet, prebiotics, and probiotics, as potential complementary and/or alternative therapeutic options. Moreover, the association of gut microbiota with obese or lean individuals has also been discussed.
Collapse
Affiliation(s)
- Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Imran Khan
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
18
|
Moreira ALG, Silva PHF, Salvador SL, Ishikawa KH, Ferreira GC, Tanus-Santos JE, Mayer MPA, de Souza SLS, Furlaneto FAC, Messora MR. Effects of probiotics in rats with experimental metabolic syndrome and periodontitis: An investigation of the intestine-adipose tissue axis. J Periodontol 2023; 94:1363-1375. [PMID: 37057371 DOI: 10.1002/jper.22-0721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND This study evaluated the systemic (intestine and adipose tissue) and local (periodontal tissues) impact of probiotic therapy in rats with metabolic syndrome (MS) associated or not with periodontitis (PE). METHODS Forty-eight rats received a high-fat diet for induction of MS for 16 weeks. They were subdivided into groups with (+) and without (-) PE, receiving (*) or not (**) receiving probiotics (PROB): MS (-**), MSP (-*), MSPE (+**), and MSPEP (+*). PROB administration (Bifidobacterium animalis subsp. lactis HN019) started on the 8th week of the study and PE was induced on the 14th week by placing ligature on the animals' lower first molars. Euthanasia occurred in the 16th week. Biomolecular, immunoenzymatic assays, and histomorphometric analyses were performed. The data obtained were statistically analyzed (ANOVA, Tukey, p < 0.05). RESULTS The MSPEP group exhibited reduced alveolar bone loss when compared with the MSPE group, as well as lower levels of hepatic steatosis and proteinuria (p < 0.05). In the intestinal environment, the MSPE group exhibited significantly lower villus height and crypt depth, as well as a greater increase in Bacillota when compared with the MSPEP group (p < 0.05). The MSPEP group showed lower adipokine gene expression (LEPR, NAMPT, and FABP4) in adipose tissue than the MSPE group (p < 0.05). CONCLUSION The probiotic B. lactis HN019 reduced the severity of experimental periodontitis and modulated the expression of lipogenic genes and intestinal morphological and microbiological parameters in rats with MS.
Collapse
Affiliation(s)
- André L G Moreira
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Pedro H F Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Sérgio L Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Karin H Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo -USP, Ribeirão Preto, São Paulo, Brazil
| | - José E Tanus-Santos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo -USP, Ribeirão Preto, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sérgio L S de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Flávia A C Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Michel R Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
19
|
Moreira ALG, Silva GA, Silva PHF, Salvador SL, Vicente RM, Ferreira GC, Tanus-Santos JE, Mayer MPA, Ishikawa KH, de Souza SLS, Furlaneto FAC, Messora MR. Bifidobacterium animalis subspecies lactis HN019 can reduce the sequelae of experimental periodontitis in rats modulating intestinal parameters, expression of lipogenic genes, and levels of hepatic steatosis. J Periodontal Res 2023; 58:1006-1019. [PMID: 37482954 DOI: 10.1111/jre.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE To determine whether Bifidobacterium animalis subspecies lactis HN019 (B. lactis HN019) can reduce the sequelae of experimental periodontitis (EP) in rats modulating systemic parameters. BACKGROUND This study evaluated the effects of probiotic therapy (PROB) in the prevention of local and systemic damage resulting from EP. METHODS Forty-eight rats were allocated into four groups: C (control), PROB, EP, and EP-PROB. PROB (1 × 1010 CFU/mL) administration lasted 8 weeks and PE was induced on the 7th week by placing ligature on the animals' lower first molars. All animals were euthanized in the 9th week of the experiment. Biomolecular analyses, RT-PCR, and histomorphometric analyses were performed. The data obtained were analyzed statistically (ANOVA, Tukey, p < .05). RESULTS The EP group had higher dyslipidemia when compared to the C group, as well as higher levels of insulin resistance, proteinuria levels, percentages of systolic blood pressure, percentage of fatty hepatocytes in the liver, and expression of adipokines was up-regulated (LEPR, NAMPT, and FABP4). All these parameters (except insulin resistance, systolic blood pressure, LEPR and FABP4 gene expression) were reduced in the EP-PROB group when compared to the EP group. The EP group had lower villus height and crypt depth, as well as a greater reduction in Bacteroidetes and a greater increase in Firmicutes when compared to the EP-PROB group. Greater alveolar bone loss was observed in the EP group when compared to the EP-PROB group. CONCLUSION Bifidobacterium lactis HN019 can reduce the sequelae of EP in rats modulating intestinal parameters, attenuating expression of lipogenic genes and hepatic steatosis.
Collapse
Affiliation(s)
- André L G Moreira
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Giselle A Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Pedro H F Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Sérgio L Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Raphael M Vicente
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Karin H Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sérgio Luís Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Flávia A C Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Michel R Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
20
|
Park JM, Lee SC, Ham C, Kim YW. Effect of probiotic supplementation on gastrointestinal motility, inflammation, motor, non-motor symptoms and mental health in Parkinson's disease: a meta-analysis of randomized controlled trials. Gut Pathog 2023; 15:9. [PMID: 36879342 PMCID: PMC9990363 DOI: 10.1186/s13099-023-00536-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Gut dysbiosis is hypothesized to cause PD; therefore, whether probiotics can be used as adjuvants in the treatment of PD is being actively investigated. AIMS We performed a systematic review and meta-analysis to evaluate the effectiveness of probiotic therapy in PD patients. METHODS PUBMED/MEDLINE, EMBASE, Cochrane, Scopus, PsycINFO and Web of Science databases were searched till February 20, 2023. The meta-analysis used a random effects model and the effect size was calculated as mean difference or standardized mean difference. We assessed the quality of the evidence using the Grade of Recommendations Assessment, Development and Evaluation (GRADE) approach. RESULTS Eleven studies involving 840 participants were included in the final analysis. This meta-analysis showed high-quality evidence of improvement in Unified PD Rating Scale Part III motor scale (standardized mean difference [95% confidence interval]) (- 0.65 [- 1.11 to - 0.19]), non-motor symptom (- 0.81 [- 1.12 to - 0.51]), and depression scale (- 0.70 [- 0.93 to -0.46]). Moderate to low quality evidence of significant improvement was observed in gastrointestinal motility (0.83 [0.45-1.10]), quality of life (- 1.02 [- 1.66 to - 0.37]), anxiety scale (- 0.72 [- 1.10 to - 0.35]), serum inflammatory markers (- 5.98 [- 9.20 to - 2.75]), and diabetes risk (- 3.46 [- 4.72 to - 2.20]). However, there were no significant improvements in Bristol Stool Scale scores, constipation, antioxidant capacity, and risk of dyslipidemia. In a subgroup analysis, probiotic capsules improved gastrointestinal motility compared to fermented milk. CONCLUSION Probiotic supplements may be suitable for improving the motor and non-motor symptoms of PD and reducing depression. Further research is warranted to determine the mechanism of action of probiotics and to determine the optimal treatment protocol.
Collapse
Affiliation(s)
- Jong Mi Park
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Sang Chul Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Chorom Ham
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
21
|
Lu J, Jin X, Yang S, Li Y, Wang X, Wu M. Immune mechanism of gut microbiota and its metabolites in the occurrence and development of cardiovascular diseases. Front Microbiol 2022; 13:1034537. [PMID: 36590426 PMCID: PMC9794627 DOI: 10.3389/fmicb.2022.1034537] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The risk of cardiovascular disease (CVD) is associated with unusual changes in the human gut microbiota, most commonly coronary atherosclerotic heart disease, hypertension, and heart failure. Immune mechanisms maintain a dynamic balance between the gut microbiota and the host immune system. When one side changes and the balance is disrupted, different degrees of damage are inflicted on the host and a diseased state gradually develops over time. This review summarizes the immune mechanism of the gut microbiota and its metabolites in the occurrence of common CVDs, discusses the relationship between gut-heart axis dysfunction and the progression of CVD, and lists the currently effective methods of regulating the gut microbiota for the treatment of CVDs.
Collapse
|
22
|
Zarezadeh M, Musazadeh V, Faghfouri AH, Sarmadi B, Jamilian P, Jamilian P, Tutunchi H, Dehghan P. Probiotic therapy, a novel and efficient adjuvant approach to improve glycemic status: An umbrella meta-analysis. Pharmacol Res 2022; 183:106397. [PMID: 35981707 DOI: 10.1016/j.phrs.2022.106397] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/16/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Probiotics exert several promoting effects on the glycemic status, however, the results of meta-analyses are inconsistent. we conducted an umbrella meta-analysis, across existing systematic reviews and meta-analyses of clinical trials to determine the definite effects of supplementation with probiotics on glycemic indices. METHODS A comprehensive systematic search of PubMed/Medline, Scopus, EMBASE, and Web of Science was carried out till August 2021. The random-effects model was employed to conduct meta-analysis. Meta-analysis studies of randomized clinical trials examining the impacts of probiotics supplementation on glycemic indices were qualified in the current umbrella meta-analysis. RESULTS 48 articles out of 693 in the literature search qualified for inclusion in the umbrella meta-analysis. Pooled effects of probiotics on fasting plasma glucose (FPG), hemoglobin A1C (HbA1c), homeostatic model assessment for insulin resistance (HOMA-IR), and insulin levels were reported in articles 45, 21, 35, and 33, respectively. The analysis indicated a significant decrease of FPG (ES= -0.51 mg/dL; 95% CI: -0.63, -0.38, p < 0.001), HbA1c (ES = -0.32 mg/dL; 95% CI: -0.44, -0.20, p < 0.001), HOMA-IR (ES= -0.56; 95% CI: -0.66, -0.47, p < 0.001), and insulin levels (ES= -1.09 IU/mL; 95% CI: -1.37, -0.81, p = 0.006) by probiotics supplementation. CONCLUSION Probiotics have amending effects on FPG, HbA1c, HOMA-IR, and insulin levels. A < 8-week period of probiotic supplementation in the moderate dosages (108 or 109 CFU) is an efficacious approach in improving glycemic parameters. Overall, probiotics could be recommended as an adjuvant anti-hyperglycemic agent.
Collapse
Affiliation(s)
- Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahareh Sarmadi
- Department of Nutrition sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Parsa Jamilian
- Keele University School of Medicine, Keele University, Staffordshire, UK
| | - Parmida Jamilian
- School of Pharmacy and Bio Engineering, Keele University, Staffordshire, UK
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|