1
|
Castel J, Li G, Onimus O, Leishman E, Cani PD, Bradshaw H, Mackie K, Everard A, Luquet S, Gangarossa G. NAPE-PLD in the ventral tegmental area regulates reward events, feeding and energy homeostasis. Mol Psychiatry 2024; 29:1478-1490. [PMID: 38361126 DOI: 10.1038/s41380-024-02427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
The N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) catalyzes the production of N-acylethanolamines (NAEs), a family of endogenous bioactive lipids, which are involved in various biological processes ranging from neuronal functions to energy homeostasis and feeding behaviors. Reward-dependent behaviors depend on dopamine (DA) transmission between the ventral tegmental area (VTA) and the nucleus accumbens (NAc), which conveys reward-values and scales reinforced behaviors. However, whether and how NAPE-PLD may contribute to the regulation of feeding and reward-dependent behaviors has not yet been investigated. This biological question is of paramount importance since NAEs are altered in obesity and metabolic disorders. Here, we show that transcriptomic meta-analysis highlights a potential role for NAPE-PLD within the VTA→NAc circuit. Using brain-specific invalidation approaches, we report that the integrity of NAPE-PLD is required for the proper homeostasis of NAEs within the midbrain VTA and it affects food-reward behaviors. Moreover, region-specific knock-down of NAPE-PLD in the VTA enhanced food-reward seeking and reinforced behaviors, which were associated with increased in vivo DA release dynamics in response to both food- and non-food-related rewards together with heightened tropism towards food consumption. Furthermore, midbrain knock-down of NAPE-PLD, which increased energy expenditure and adapted nutrient partitioning, elicited a relative protection against high-fat diet-mediated body fat gain and obesity-associated metabolic features. In conclusion, these findings reveal a new key role of VTA NAPE-PLD in shaping DA-dependent events, feeding behaviors and energy homeostasis, thus providing new insights on the regulation of body metabolism.
Collapse
Affiliation(s)
- Julien Castel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Guangping Li
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Oriane Onimus
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Patrice D Cani
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Heather Bradshaw
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
- Gill Center for Biomolecular Science, Indiana University Bloomington, Bloomington, IN, USA
| | - Amandine Everard
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
- Institut universitaire de France (IUF), Paris, France.
| |
Collapse
|
2
|
Castel J, Li G, Oriane O, Leishman E, Cani PD, Bradshaw H, Mackie K, Everard A, Luquet S, Gangarossa G. NAPE-PLD in the ventral tegmental area regulates reward events, feeding and energy homeostasis. RESEARCH SQUARE 2023:rs.3.rs-3199777. [PMID: 37790425 PMCID: PMC10543029 DOI: 10.21203/rs.3.rs-3199777/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) catalyzes the production of N-acylethanolamines (NAEs), a family of endogenous bioactive lipids, which are involved in various biological processes ranging from neuronal functions to energy homeostasis and feeding behaviors. Reward-dependent behaviors depend on dopamine (DA) transmission between the ventral tegmental area (VTA) and the nucleus accumbens (NAc), which conveys reward-values and scales reinforced behaviors. However, whether and how NAPE-PLD may contribute to the regulation of feeding and reward-dependent behaviors has not yet been investigated. This biological question is of paramount importance since NAEs are altered in obesity and metabolic disorders. Here, we show that transcriptomic meta-analysis highlights a potential role for NAPE-PLD within the VTA®NAc circuit. Using brain-specific invalidation approaches, we report that the integrity of NAPE-PLD is required for the proper homeostasis of NAEs within the midbrain VTA and it affects food-reward behaviors. Moreover, region-specific knock-down of NAPE-PLD in the VTA enhanced food-reward seeking and reinforced behaviors, which were associated with increased in vivo DA release dynamics in response to both food and non-food-related rewards together with heightened tropism towards food consumption. Furthermore, midbrain knock-down of NAPE-PLD, which increased energy expenditure and adapted nutrient partitioning, elicited a relative protection against high-fat diet-mediated body fat gain and obesity-associated metabolic features. In conclusion, these findings reveal a new key role of VTA NAPE-PLD in shaping DA-dependent events, feeding behaviors and energy homeostasis, thus providing new insights on the regulation of body metabolism.
Collapse
Affiliation(s)
- Julien Castel
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Alsaafin A, Chenoweth MJ, Sylvestre MP, O'Loughlin J, Tyndale RF. Genetic variation in fatty acid amide hydrolase (FAAH): Associations with early drinking and smoking behaviors. Addict Behav 2023; 137:107545. [PMID: 36403489 DOI: 10.1016/j.addbeh.2022.107545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND The endocannabinoid system is implicated in psychiatric disorders and drug dependence. Within this system, fatty acid amide hydrolase (FAAH) metabolizes endocannabinoids. Individuals with A-group genotypes (C/A or A/A) of a common FAAH variant (rs324420; C > A; Pro129Thr) have slower enzymatic activity compared to C-group individuals (C/C genotype). Slow FAAH activity is differentially associated with alcohol and nicotine use. METHODS Among European-ancestry participants in the NDIT study (n = 249-607), genotype associations with past-year binge drinking in young adults were estimated in logistic regression models. In adolescents, hazard ratios (HR) were estimated from Cox proportional hazards models to assess the FAAH genotype group association with time to drinking initiation and attaining drinking frequency outcomes. HR were also used to assess genotype effect on time to smoking initiation and attaining early smoking milestones (e.g., first inhalation, ICD-10 dependence). RESULTS Compared to those in the C-group, those in the A-group had higher odds of binge drinking at ages 20 (Odds ratio (OR) = 2.16, 95 % CI 1.36-3.42) and 30 (OR = 1.61, 95 % CI 1.10-2.36). Time to initiation of drinking and daily drinking was faster in adolescents in the A-group (HR = 1.39, 95 % CI 1.09-1.77 and HR = 2.24, 95 % CI 1.05-4.76, respectively). Time to smoking initiation was faster in the A-group (HR = 1.20, 95 % CI 1.04-1.39); however, time to smoking milestones among adolescent smokers was not consistently different for the A- versus C-groups (HR = 0.43 to 1.13). CONCLUSIONS Slow FAAH activity (A-group) was associated with greater risks for binge drinking, drinking initiation and escalation, and cigarette smoking initiation, but had little impact on the escalation in cigarette smoking behaviors.
Collapse
Affiliation(s)
- Alaa Alsaafin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Meghan J Chenoweth
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Marie-Pierre Sylvestre
- Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Department of Social and Preventive Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Jennifer O'Loughlin
- Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Department of Social and Preventive Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|