1
|
Zhou S, Li T, Zhang W, Wu J, Hong H, Quan W, Qiao X, Cui C, Qiao C, Zhao W, Shen Y. The cGAS-STING-interferon regulatory factor 7 pathway regulates neuroinflammation in Parkinson's disease. Neural Regen Res 2025; 20:2361-2372. [PMID: 39359093 PMCID: PMC11759022 DOI: 10.4103/nrr.nrr-d-23-01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00026/figure1/v/2024-09-30T120553Z/r/image-tiff Interferon regulatory factor 7 plays a crucial role in the innate immune response. However, whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown. Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells. Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype. In addition, siRNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase, tumor necrosis factor α, CD16, CD32, and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1. Taken together, our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Shengyang Zhou
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Ting Li
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Wei Zhang
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Jian Wu
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hui Hong
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Wei Quan
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xinyu Qiao
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Chun Cui
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Chenmeng Qiao
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Weijiang Zhao
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yanqin Shen
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi Medicine School, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
2
|
Zeng X, Yuan Y, Li Y, Hu Z, Hu S. Deciphering the NLRP3 inflammasome in diabetic encephalopathy: Molecular insights and emerging therapeutic targets. Exp Neurol 2025; 391:115304. [PMID: 40383363 DOI: 10.1016/j.expneurol.2025.115304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 05/01/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Diabetic encephalopathy (DE) is a neurological complication characterized by neuroinflammation, cognitive impairment, and memory decline, with its pathogenesis closely linked to the activation of the NLRP3 inflammasome. As a central regulator of the innate immune system, the NLRP3 inflammasome plays a pivotal role in DE progression by mediating neuroinflammation, pyroptosis, mitochondrial dysfunction, oxidative stress, endoplasmic reticulum (ER) stress, and microglial polarization. This review systematically explores the molecular mechanisms by which the NLRP3 inflammasome contributes to DE, focusing on its role in neuroinflammatory cascades and neuronal damage, as well as the diabetes-associated physiological changes that exacerbate DE pathogenesis. Furthermore, we summarize emerging therapeutic strategies targeting the NLRP3 inflammasome, including small-molecule inhibitors and bioactive compounds derived from traditional herbal medicine, highlighting their potential for DE treatment. These findings not only advance our understanding of DE but also provide a foundation for developing NLRP3-targeted pharmacological interventions.
Collapse
Affiliation(s)
- Xinyi Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China; The First Clinical Medical College of Nanchang University, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yi Yuan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China; School of Huankui Academy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yujia Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
3
|
Zhao R, Jia N, Wu S, Wen J, Huang Y, Zhao C, Chen W. Therapeutic potential and limitation of condensed and hydrolyzed tannins in Parkinson's disease. Int J Biol Macromol 2025; 307:141814. [PMID: 40057098 DOI: 10.1016/j.ijbiomac.2025.141814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
Parkinson's disease is a complex neurodegenerative disorder characterized by neuroinflammation, mitochondrial dysfunction, and the accumulation of misfolded proteins such as α-synuclein. This review explores the therapeutic potential of tannins, particularly proanthocyanidins and hydrolyzable tannins from grape seeds, in alleviating Parkinson's disease pathology. Condensed tannins exhibit significant antioxidant properties, can cross the blood-brain barrier, reduce oxidative stress, upregulate antioxidant proteins, and prevent neuronal apoptosis. Hydrolyzable tannins, through their unique chemical structure, further help reduce neuroinflammation and improve mitochondrial function. Both types of tannins can modulate inflammatory responses and enhance mitochondrial integrity, addressing key aspects of Parkinson's disease pathogenesis. Tannins possess excellent neuroprotective effects, representing a promising therapeutic approach. However, due to their chemical nature and structural characteristics, the bioavailability of tannins in the human body remains low. Current methods to enhance their bioavailability are limited. Further exploration is needed to improve their bioavailability and strengthen their potential clinical applications. Based on this, new Parkinson's disease treatment strategies can be developed, warranting in-depth research and clinical validation.
Collapse
Affiliation(s)
- Runfan Zhao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nan Jia
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyang Wu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahui Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yajun Huang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Zhang X, Shi X, Liu Z. CircARID1B Promotes MPP +-Induced Death and Inflammation in Dopaminergic Neurons by Elevating MAVS Through Sequestering miR-143-3p. Cell Biochem Biophys 2025:10.1007/s12013-025-01705-6. [PMID: 40185987 DOI: 10.1007/s12013-025-01705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 04/07/2025]
Abstract
Increasing evidence has shown the involvement of abnormal circRNA in neurodegenerative disease progression, including Parkinson's disease (PD). Hence, this work focused on probing the function and mechanism of circARID1B on PD progression.1-Methyl-4-phenylpyridinium (MPP+)-induced human dopaminergic SK-N-AS neuroblastoma cell models were used to mimic PD injury in vitro. qRT-PCR and western blotting analyses were used to detect the levels of genes and proteins. Cell death was evaluated by cell counting kit-8 assay, flow cytometry, and lactate dehydrogenase (LDH) activity. Oxidative stress was analyzed by measuring the production of reactive oxygen species (ROS) and superoxide dismutase (SOD). Cell inflammation was determined by ELISA analysis. The binding between miR-143-3p and circARID1B or mitochondrial antiviral signaling protein (MAVS) was analyzed by dual-luciferase reporter and RNA immunoprecipitation assays. A high circARID1B expression was observed in MPP+ treated SK-N-AS cells. Functionally, circARID1B deficiency suppressed MPP+-induced apoptosis, LDH release, oxidative stress and inflammatory response in SK-N-AS cells. Mechanistically, circARID1B bound to miR-143-3p, which was reduced in SK-N-AS cells after MPP+ treatment. Moreover, miR-143-3p inhibition reversed the protective effects of circARID1B silencing on MPP+-treated SK-N-AS cells. Subsequently, we confirmed miR-143-3p directly targeted MAVS. MAVS was increased in SK-N-AS cells after MPP+ treatment. Moreover, MAVS overexpression abolished miR-143-3p up-regulation-induced inhibition of cell apoptosis, LDH release, oxidative stress and inflammation. CircARID1B deficiency suppressed MPP+-induced neural death and inflammation by miR-143-3p/MAVS axis, which may offer an improved understanding of PD progression and be useful for the development of circRNA-based therapy in PD.
Collapse
Affiliation(s)
- Xuejie Zhang
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Xuan Shi
- Department of Gastroenterology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Zhining Liu
- Department of Ultrasound, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning Province, China.
| |
Collapse
|
5
|
Liu Y, Qin K, Jiang C, Gao J, Hou B, Xie A. TMEM106B Knockdown Exhibits a Neuroprotective Effect in Parkinson's Disease via Decreasing Inflammation and Iron Deposition. Mol Neurobiol 2025; 62:1813-1825. [PMID: 39044012 PMCID: PMC11772555 DOI: 10.1007/s12035-024-04373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Parkinson's disease (PD) is closely related to iron accumulation and inflammation. Emerging evidence indicates that TMEM106B plays an essential role in PD. But whether TMEM106B could act on neuroinflammation and iron metabolism in PD has not yet been investigated. The aim of this study was to investigate the pathological mechanisms of inflammation and iron metabolism of TMEM106B in PD. 1-methyl-4-phenylpyridinium (MPP+)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced SH-SY5Y cells and mice were treated with LV-shTMEM106B and AAV-shTMEM106B to construct PD cellular and mouse models. Pole tests and open-field test (OFT) were performed to evaluate the locomotion of the mice. Immunohistochemistry and iron staining were used to detect TH expression and iron deposition in the SN. Iron staining was used to measure the levels of iron. Western blotting was used to detect the expression of inflammatory factors (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6)), NOD-like receptor protein 3 (NLRP3) inflammasome, divalent metal transporter 1 (DMT1), and Ferroportin1 (FPN1)). Knockdown of TMEM106B improved motor ability and rescued dopaminergic (DA) neuron loss. TMEM106B knockdown attenuated the increases of TNF-α, IL-6, NLRP3 inflammasome, and DMT1 expression in the MPP+ and MPTP-induced PD models. Furthermore, TMEM106B knockdown also increases the expression of FPN1. This study provides the first evidence that knockdown of TMEM106B prevents dopaminergic neurodegeneration by modulating neuroinflammation and iron metabolism.
Collapse
Affiliation(s)
- Yumei Liu
- Department of Neurology, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Kunpeng Qin
- Department of Neurology, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Chunyan Jiang
- Department of Neurology, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Jinzhao Gao
- Department of Neurology, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Binghui Hou
- Department of Neurology, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, China.
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, China.
| |
Collapse
|
6
|
Qi L, Liu S, Fang Q, Qian C, Peng C, Liu Y, Yang P, Wu P, Shan L, Cui Q, Hua Q, Yang S, Ye C, Yang W, Li P, Xu X. Ginsenoside Rg3 Restores Mitochondrial Cardiolipin Homeostasis via GRB2 to Prevent Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403058. [PMID: 39159293 PMCID: PMC11497058 DOI: 10.1002/advs.202403058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Indexed: 08/21/2024]
Abstract
Regulating cardiolipin to maintain mitochondrial homeostasis is a promising strategy for addressing Parkinson's disease (PD). Through a comprehensive screening and validation process involving multiple models, ginsenoside Rg3 (Rg3) as a compound capable of enhancing cardiolipin levels is identified. This augmentation in cardiolipin levels fosters mitochondrial homeostasis by bolstering mitochondrial unfolded protein response, promoting mitophagy, and enhancing mitochondrial oxidative phosphorylation. Consequently, this cascade enhances the survival of tyrosine hydroxylase positive (TH+) dopaminergic neurons, leading to an amelioration in motor performance within PD mouse models. Using limited proteolysis-small-molecule mapping combined with molecular docking analysis, it has confirmed Growth Factor Receptor-Bound Protein 2 (GRB2) as a molecular target for Rg3. Furthermore, these investigations reveal that Rg3 facilitates the interaction between GRB2 and TRKA (Neurotrophic Tyrosine Kinase, Receptor, Type 1), thus promotes EVI1 (Ecotropic Virus Integration Site 1 Protein Homolog) phosphorylation by ERK, subsequently increases CRLS1 (Cardiolipin Synthase 1) gene expression and boosts cardiolipin synthesis. The absence of GRB2 or CRLS1 significantly attenuates the beneficial effects of Rg3 on PD symptoms. Finally, Tenofovir Disoproxil Fumarate (TDF) that also promotes the binding between GRB2 and TRKA is further identified. The identified compounds, Rg3 and TDF, exhibit promising potential for the prevention of PD by bolstering cardiolipin expression and reinstating mitochondrial homeostasis.
Collapse
Affiliation(s)
- Li‐Feng‐Rong Qi
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Shuai Liu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
- Department of PharmacyThe Fourth Affiliated HospitalCenter for Innovative Traditional Chinese Medicine Target and New Drug ResearchInternational Institutes of MedicineZhejiang University School of MedicineYiwuZhejiang322000China
| | - Qiuyuan Fang
- Department of Biophysics and Department of Neurosurgery of the First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Cheng Qian
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Chao Peng
- National Facility for Protein Science in ShanghaiZhangjiang LabShanghai Advanced Research InstituteChinese Academy of ScienceShanghai201210China
- Shanghai Science Research CenterChinese Academy of SciencesShanghai201204China
| | - Yuci Liu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Peng Yang
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Ping Wu
- National Facility for Protein Science in ShanghaiZhangjiang LabShanghai Advanced Research InstituteChinese Academy of ScienceShanghai201210China
- Shanghai Science Research CenterChinese Academy of SciencesShanghai201204China
| | - Ling Shan
- Dept. Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesMeibergdreef 47Amsterdam1105BAthe Netherlands
| | - Qinghua Cui
- Department of Biomedical InformaticsSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Sciences of the Ministry of EducationCenter for Non‐Coding RNA MedicinePeking University Health Science Center BeijingBeijing100191China
| | - Qian Hua
- School of Life SciencesBeijing University of Chinese MedicineBeijing100029China
| | - Sen Yang
- Life Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Cunqi Ye
- Life Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Wei Yang
- Department of PharmacyThe Fourth Affiliated HospitalCenter for Innovative Traditional Chinese Medicine Target and New Drug ResearchInternational Institutes of MedicineZhejiang University School of MedicineYiwuZhejiang322000China
| | - Ping Li
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Xiaojun Xu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
- Department of PharmacyThe Fourth Affiliated HospitalCenter for Innovative Traditional Chinese Medicine Target and New Drug ResearchInternational Institutes of MedicineZhejiang University School of MedicineYiwuZhejiang322000China
| |
Collapse
|
7
|
Saadh MJ, Muhammad FA, Singh A, Mustafa MA, Al Zuhairi RAH, Ghildiyal P, Hashim G, Alsaikhan F, Khalilollah S, Akhavan-Sigari R. MicroRNAs Modulating Neuroinflammation in Parkinson's disease. Inflammation 2024:10.1007/s10753-024-02125-z. [PMID: 39162871 DOI: 10.1007/s10753-024-02125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Parkinson's disease (PD) is one of the most frequent age-associated neurodegenerative disorder. Presence of α-synuclein-containing aggregates in the substantia nigra pars compacta (SNpc) and loss of dopaminergic (DA) neurons are among the characteristic of PD. One of the hallmarks of PD pathophysiology is chronic neuroinflammation. Activation of glial cells and elevated levels of pro-inflammatory factors are confirmed as frequent features of the PD brain. Chronic secretion of pro-inflammatory cytokines by activated astrocytes and microglia exacerbates DA neuron degeneration in the SNpc. MicroRNAs (miRNAs) are among endogenous non-coding small RNA with the ability to perform post-transcriptional regulation in target genes. In that regard, the capability of miRNAs for modulating inflammatory signaling is the center of attention in many investigations. MiRNAs could enhance or limit inflammatory signaling, exacerbating or ameliorating the pathological consequences of extreme neuroinflammation. This review summarizes the importance of inflammation in the pathophysiology of PD. Besides, we discuss the role of miRNAs in promoting or protecting neural cell injury in the PD model by controlling the inflammatory pathway. Modifying the neuroinflammation by miRNAs could be considered a primary therapeutic strategy for PD.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Anamika Singh
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur,, Jamshedpur,, India, Jharkhand, 831001
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ghassan Hashim
- Department of Nursing, Al-Zahrawi University College, Karbala, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warszawa, Poland
| |
Collapse
|
8
|
Madan S, Kühnel L, Fröhlich H, Hofmann-Apitius M, Fluck J. Dataset of miRNA-disease relations extracted from textual data using transformer-based neural networks. Database (Oxford) 2024; 2024:baae066. [PMID: 39104284 PMCID: PMC11300841 DOI: 10.1093/database/baae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024]
Abstract
MicroRNAs (miRNAs) play important roles in post-transcriptional processes and regulate major cellular functions. The abnormal regulation of expression of miRNAs has been linked to numerous human diseases such as respiratory diseases, cancer, and neurodegenerative diseases. Latest miRNA-disease associations are predominantly found in unstructured biomedical literature. Retrieving these associations manually can be cumbersome and time-consuming due to the continuously expanding number of publications. We propose a deep learning-based text mining approach that extracts normalized miRNA-disease associations from biomedical literature. To train the deep learning models, we build a new training corpus that is extended by distant supervision utilizing multiple external databases. A quantitative evaluation shows that the workflow achieves an area under receiver operator characteristic curve of 98% on a holdout test set for the detection of miRNA-disease associations. We demonstrate the applicability of the approach by extracting new miRNA-disease associations from biomedical literature (PubMed and PubMed Central). We have shown through quantitative analysis and evaluation on three different neurodegenerative diseases that our approach can effectively extract miRNA-disease associations not yet available in public databases. Database URL: https://zenodo.org/records/10523046.
Collapse
Affiliation(s)
- Sumit Madan
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
| | - Lisa Kühnel
- Knowledge Management, German National Library of Medicine (ZB MED)—Information Centre for Life Sciences, Friedrich-Hirzebruch-Allee 4, Bonn 53115, Germany
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Postfach 10 01 31, Bielefeld, Nordrhein-Westfalen 33501, Germany
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Friedrich-Hirzebruch-Allee 6, Bonn 53113, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Friedrich-Hirzebruch-Allee 6, Bonn 53113, Germany
| | - Juliane Fluck
- Knowledge Management, German National Library of Medicine (ZB MED)—Information Centre for Life Sciences, Friedrich-Hirzebruch-Allee 4, Bonn 53115, Germany
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Postfach 10 01 31, Bielefeld, Nordrhein-Westfalen 33501, Germany
- Information management, Institute of Geodesy and Geoinformation, University of Bonn, Katzenburgweg 1a, Bonn 53115, Germany
| |
Collapse
|
9
|
Yang YL, Lin TK, Huang YH. MiR-29a efficiently suppresses the generation of reactive oxygen species and α-synuclein in a cellular model of Parkinson's disease by potentially targeting GSK-3β. Eur J Pharmacol 2024; 974:176615. [PMID: 38685306 DOI: 10.1016/j.ejphar.2024.176615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
MicroRNA-29a (miR-29a) has been suggested to serve a potential protective function against Parkinson's disease (PD); however, the exact molecular mechanisms remain elusive. This study explored the protective role of miR-29a in a cellular model of PD using SH-SY5Y cell lines through iTRAQ-based quantitative proteomic and biochemistry analysis. The findings showed that using a miR-29a mimic in SH-SY5Y cells treated with 1-methyl-4-phenylpyridinium (MPP+) significantly decreased cell death and increased mitochondrial membrane potential. It also reduced mitochondrial reactive oxygen species (ROS) and the production of α-synuclein. Subsequent heatmap analysis using iTRAQ-based quantitative proteomics revealed remarkably contrasting protein expression profiles for 882 genes when comparing the groups treated with miR-29a mimic plus MPP + against the control group treated solely with MPP+. The KEGG pathway analysis of these 882 genes indicated the substantial role of miR-29a in the PD pathway (P = 1.58x10-5) and highlighted its function in mitochondrial genes. Furthermore, treatment with a miR-29a mimic in SH-SY5Y cells reduced the levels of GSK-3β, phosphorylated GSK-3β, and cleaved caspase-7 following exposure to MPP+. The miR-29a mimic also upregulated the expressions of α-synuclein clearance proteins FYCO1 and Rab7 in this cellular PD model, thereby inhibiting the production of α-synuclein. Luciferase activity analysis confirmed the specific binding of miR-29a to the 3' untranslated region (3'UTR) of GSK-3β, leading to its repression. Our findings demonstrated miR-29a's neuroprotective role in mitochondrial function and highlighted its potential to inhibit ROS and α-synuclein production, offering possible therapeutic avenues for PD treatment.
Collapse
Affiliation(s)
- Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ying-Hsien Huang
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, and Chang, Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, and Chang, Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
| |
Collapse
|
10
|
Di Martino P, Marcozzi V, Bibbò S, Ghinassi B, Di Baldassarre A, Gaggi G, Di Credico A. Unraveling the Epigenetic Landscape: Insights into Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. Brain Sci 2024; 14:553. [PMID: 38928553 PMCID: PMC11202179 DOI: 10.3390/brainsci14060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) are examples of neurodegenerative movement disorders (NMDs), which are defined by a gradual loss of motor function that is frequently accompanied by cognitive decline. Although genetic abnormalities have long been acknowledged as significant factors, new research indicates that epigenetic alterations are crucial for the initiation and development of disease. This review delves into the complex interactions that exist between the pathophysiology of NMDs and epigenetic mechanisms such DNA methylation, histone modifications, and non-coding RNAs. Here, we examine how these epigenetic changes could affect protein aggregation, neuroinflammation, and gene expression patterns, thereby influencing the viability and functionality of neurons. Through the clarification of the epigenetic terrain underpinning neurodegenerative movement disorders, this review seeks to enhance comprehension of the underlying mechanisms of the illness and augment the creation of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Pierpaolo Di Martino
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
| | - Valentina Marcozzi
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
| | - Sandra Bibbò
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Gaggi
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Andrea Di Credico
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
11
|
Szwajca M, Kazek G, Śmierciak N, Mizera J, Pomierny-Chamiolo L, Szwajca K, Biesaga B, Pilecki M. GDNF and miRNA-29a as biomarkers in the first episode of psychosis: uncovering associations with psychosocial factors. Front Psychiatry 2024; 15:1320650. [PMID: 38645418 PMCID: PMC11027163 DOI: 10.3389/fpsyt.2024.1320650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Aim Schizophrenia involves complex interactions between biological and environmental factors, including childhood trauma, cognitive impairments, and premorbid adjustment. Predicting its severity and progression remains challenging. Biomarkers like glial cell line-derived neurotrophic factor (GDNF) and miRNA-29a may bridge biological and environmental aspects. The goal was to explore the connections between miRNAs and neural proteins and cognitive functioning, childhood trauma, and premorbid adjustment in the first episode of psychosis (FEP). Method This study included 19 FEP patients who underwent clinical evaluation with: the Childhood Trauma Questionnaire (CTQ), the Premorbid Adjustment Scale (PAS), the Positive and Negative Syndrome Scale (PANSS), and the Montreal Cognitive Assessment Scale (MoCA). Multiplex assays for plasma proteins were conducted with Luminex xMAP technology. Additionally, miRNA levels were quantitatively determined through RNA extraction, cDNA synthesis, and RT-qPCR on a 7500 Fast Real-Time PCR System. Results Among miRNAs, only miR-29a-3p exhibited a significant correlation with PAS-C scores (r = -0.513, p = 0.025) and cognitive improvement (r = -0.505, p = 0.033). Among the analyzed proteins, only GDNF showed correlations with MoCA scores at the baseline and after 3 months (r = 0.533, p = 0.0189 and r = 0.598, p = 0.007), cognitive improvement (r = 0.511, p = 0.025), and CTQ subtests. MIF concentrations correlated with the PAS-C subscale (r = -0.5670, p = 0.011). Conclusion GDNF and miR-29a-3p are promising as biomarkers for understanding and addressing cognitive deficits in psychosis. This study links miRNA and MIF to premorbid adjustment and reveals GDNF's unique role in connection with childhood trauma.
Collapse
Affiliation(s)
- Marta Szwajca
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kazek
- Department of Pharmacological Screening, Jagiellonian University Medical College, Krakow, Poland
| | - Natalia Śmierciak
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Józef Mizera
- Department of Toxicology, Jagiellonian University Medical College, Kraków, Poland
| | | | - Krzysztof Szwajca
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Beata Biesaga
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Maciej Pilecki
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
12
|
Zhang D, Zhang J, Wang Y, Wang G, Tang P, Liu Y, Zhang Y, Ouyang L. Targeting epigenetic modifications in Parkinson's disease therapy. Med Res Rev 2023; 43:1748-1777. [PMID: 37119043 DOI: 10.1002/med.21962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 01/10/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Parkinson's disease (PD) is a multifactorial disease due to a complex interplay between genetic and epigenetic factors. Recent efforts shed new light on the epigenetic mechanisms involved in regulating pathways related to the development of PD, including DNA methylation, posttranslational modifications of histones, and the presence of microRNA (miRNA or miR). Epigenetic regulators are potential therapeutic targets for neurodegenerative disorders. In the review, we aim to summarize mechanisms of epigenetic regulation in PD, and describe how the DNA methyltransferases, histone deacetylases, and histone acetyltransferases that mediate the key processes of PD are attractive therapeutic targets. We discuss the use of inhibitors and/or activators of these regulators in PD models or patients, and how these small molecule epigenetic modulators elicit neuroprotective effects. Further more, given the importance of miRNAs in PD, their contributions to the underlying mechanisms of PD will be discussed as well, together with miRNA-based therapies.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yuxi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Pan Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yun Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| |
Collapse
|
13
|
Meheronnisha SK, Thekkekkara D, Babu A, Tausif YM, Manjula SN. Novel therapeutic targets to halt the progression of Parkinson's disease: an in-depth review on molecular signalling cascades. 3 Biotech 2023; 13:218. [PMID: 37265542 PMCID: PMC10229523 DOI: 10.1007/s13205-023-03637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Recent research has focused mostly on understanding and combating the neurodegenerative mechanisms and symptoms of Parkinson's disease (PD). Moreover, developing novel therapeutic targets to halt the progression of PD remains a key focus for researchers. As yet, no agents have been found to have unambiguous evidence of disease-modifying actions in PD. The primary objective of this review is to summarize the promising targets that have recently been uncovered which include histamine 4 receptors, beta2 adrenergic receptor, phosphodiesterase 4, sphingosine-1-phosphate receptor subtype 1, angiotensin receptors, high-mobility group box 1, rabphilin-3A, purinergic 2Y type 12 receptor, colony-stimulating factor-1 receptor, transient receptor potential vanilloid 4, alanine-serine-cysteine transporter 2, G protein-coupled oestrogen receptor, a mitochondrial antiviral signalling protein, glucocerebrosidase, indolamine-2,3-dioxygenase-1, soluble epoxy hydroxylase and dual specificity phosphatase 6. We have also reviewed the molecular signalling cascades of those novel targets which cause the initiation and progression of PD and gathered some emerging disease-modifying agents that could slow the progression of PD. These approaches will assist in the discovery of novel target molecules, for curing disease symptoms and may provide a glimmer of hope for the treatment of PD. As of now, there is no drug available that will completely prevent the progression of PD by inhibiting the pathogenesis involved in PD, and thus, the newer targets and their inhibitors or activators are the major focus for researchers to suppress PD symptomatology. And the major limitations of these targets are the lack of clinical data and less number pre-clinical data, as we have majorly discussed the different targets which all have well reported for other disease pathogenesis. Thus, finding the disease-drug interactions, the molecular mechanisms, and the major side effects will be major challenges for the researchers.
Collapse
Affiliation(s)
- S. K. Meheronnisha
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| | - Dithu Thekkekkara
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| | - Amrita Babu
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| | - Y. Mohammed Tausif
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| | - S. N. Manjula
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| |
Collapse
|
14
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|