1
|
Lv C, Guo J, Luo R, Li Y, Qian B, Zou X, Wang T, Shen B, Sun W, Gao Y. Taurolidine inhibits influenza virus infection and prevents influenza-induced cytokine storm, vasoconstriction and lung damage. Cell Mol Life Sci 2025; 82:201. [PMID: 40369324 PMCID: PMC12078922 DOI: 10.1007/s00018-025-05636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/12/2025] [Accepted: 02/21/2025] [Indexed: 05/16/2025]
Abstract
Influenza virus causes worldwide outbreaks and seasonal epidemics, posing a severe threat to public health and social development. Effective prevention and treatment of influenza infections remain major challenge for global healthcare. In this study, we observed that taurolidine effectively inhibited the proliferation of several human or animal influenza virus strains and protected mice from lethal-infection. Taurolidine treatment decreased the viral titer in the lungs of infected mice, reduced the ratio of immune cells, and alleviated lung pathology. Additionally, taurolidine treatment attenuated the rise of blood pressure, pulse wave velocity, and pulmonary aortic thickness in a mouse model for influenza virus infection. We also found that taurolidine significantly decreased intracellular Ca2+ concentration and effectively alleviated pulmonary artery vasoconstriction during influenza virus infection. Mechanistically, we observed that vascular smooth muscle contraction signaling pathway was significantly enriched, and taurolidine inhibited the activation of the MLCK/p-MLC pathway. Taking together, these findings confirm the effectiveness of taurolidine as an antiviral agent and highlight its important roles in mitigating host immune cell infiltration and vasoconstriction induced by influenza virus infection.
Collapse
Affiliation(s)
- Chaoxiang Lv
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Jin Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- College of Life Sciences, Shandong Normal University, Jinan, 250358, China
| | - Rongbo Luo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yuanguo Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Bingshuo Qian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xiaopan Zou
- Breast and Thyroid Surgery, Jilin Province People's Hospital, Changchun, Jilin, 130021, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Beilei Shen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Weiyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
- College of Life Sciences, Shandong Normal University, Jinan, 250358, China.
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130122, China.
| |
Collapse
|
2
|
Feng Q, Liu F, Nie J, Yang Y, Li X, Wang S. The associations between dietary flavonoids intake and risk of depressive symptom in diabetic patients: Data from NHANES 2007-2008, 2009-2010, and 2017-2018. J Affect Disord 2024; 359:226-233. [PMID: 38768822 DOI: 10.1016/j.jad.2024.05.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND The increasing incidence of depressive symptoms in diabetic patients contributes to the global burden of disease, but few epidemiological studies have evaluated the relationship between dietary flavonoids intake and depressive symptoms in diabetic patients in American adults. OBJECTIVE This study intended to evaluate the associations of dietary flavonoids intake and depressive symptoms in diabetic patients in American adults. METHODS We conducted a cross-sectional analysis of 1993 adults aged ≥20 years old who participated in the 2007-2008, 2009-2010, and 2017-2018 National Health and Nutrition Examination Surveys (NHANES). Chi-square test and independent-sample t-test were used to compare subjects' characteristics. Logistic regression model was further used to analyze the relationship between dietary flavonoid intake and depressive symptoms in diabetic patients. Restricted cubic spline (RCS) analysis was used to investigate the non-linear relationship between dietary flavonoid intake and the prevalence of depressive symptoms in diabetic patients. The weighted quartile sum (WQS) regression was used to analyze the effect of 29 flavonoids monomers. RESULTS The results showed that the total flavonoid intake in the third quartile (OR, 0.635; 95 % CI,0.419-0.962; P, 0.032) was significantly associated with a reduced risk of depressive symptoms in diabetic patients compared with the lowest quartile. And there was a U-shaped association between dietary flavonoid intake and risk of depressive symptoms in diabetic patients. Top contributors of flavonoid monomers were eriodictyol, naringenin, and theaflavin-3'-gallate, accounting for a percentage of 30.83 %, 22.17 %, and 6.92 %, respectively. CONCLUSION Moderate (56.07-207.12 mg/day) dietary flavonoid intake was associated with a reduced risk of depressive symptoms in diabetic patients. The important flavonoid monomers were eriodictyol, naringenin, and theaflavin-3'-gallate.
Collapse
Affiliation(s)
- Qianqian Feng
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Fang Liu
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Jiaqi Nie
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yichi Yang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Xiaosong Li
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Suqing Wang
- School of Public Health, Wuhan University, Wuhan 430071, China; School of Nursing, Wuhan University, Wuhan 430071, China; Center for Chronic Disease Rehabilitation, School of Nursing, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Guo B, Wang H, Zhang Y, Wang C, Zhang H, Zhao Y, Qin J. Glycyrrhizin alleviates BoAHV-1-induced lung injury in guinea pigs by inhibiting the NF-κB/NLRP3 Signaling pathway and activating the Nrf2/HO-1 Signaling pathway. Vet Res Commun 2024; 48:2499-2511. [PMID: 38865040 DOI: 10.1007/s11259-024-10436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Varicellovirus bovinealpha 1 (BoAHV-1) is a significant pathogen responsible for respiratory disease in cattle, capable of inducing lung damage independently or co-infection with bacteria. The widespread spread of BoAHV-1 in cattle herds has caused substantial economic losses to the cattle industry. The pathogenic mechanisms of BoAHV-1 are often relevant to robust inflammatory responses, increased oxidative burden, and the initiation of apoptosis. Glycyrrhizin (GLY) is a small-molecule triterpenoid saponin compound obtained from the herb liquorice, which has a broad spectrum of pharmacological properties such as antiviral, anti-inflammatory, and antioxidant effects. Furthermore, GLY regulates lung physiology by modulating oxidative stress, inflammatory response, and cell apoptosis through interference with the NF-κB/NLRP3 and Nrf2/HO-1 Signaling pathways. However, the potential of GLY to mitigate lung injury induced by BoAHV-1 and its underlying mechanism remains unclear. Therefore, in this study, we investigated the protective effect of GLY against pulmonary injury induced by BoAHV-1 in a guinea pig model by reducing viral load and suppressing the inflammatory response, oxidative stress, and apoptosis. The results of this study demonstrated that GLY exerted a protective effect against BoAHV-1-induced lung injury in guinea pigs. Specifically, GLY reduced the levels of pro-inflammatory cytokines interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and interleukin (IL)-8 in guinea pig tissues while suppressing the expression of Caspase-1. Additionally, GLY reduced BoAHV-1 load and the number of TUNEL-positive lung cells in guinea pig lungs while inhibiting Caspase 3 protein expression. Furthermore, GLY significantly enhanced lung antioxidant capacity by increasing superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity while simultaneously reducing malondialdehyde (MDA) levels. Lung histological observation and score further validated the protective effect of GLY on BoAHV-1-induced lung injury. Furthermore, we observed that the expression of phosphorylated NF-κB p65 (p-NF-κB p65) and NLRP3 proteins in the lung tissue of BoAHV-1-infected guinea pigs decreased after GLY treatment while the expression of Nrf2 and HO-1 proteins increased. These results indicated that GLY inhibited the NF-κB/NLRP3 Signaling pathway and activated the Nrf2/HO-1 Signaling pathway during BoAHV-1 infection. Ultimately, our findings demonstrated that GLY alleviates BoAHV-1-induced inflammation response, oxidative stress, and cell apoptosis by inhibiting the NF-κB/NLRP3 Signaling pathway and activating the Nrf2/HO-1 Signaling pathway to protect guinea pigs from lung injury caused by BoAHV-1. Ultimately, our findings demonstrated that GLY alleviates BoAHV-1-induced inflammation response, oxidative stress, and cell apoptosis by inhibiting the NF-κB/NLRP3 Signaling pathway and activating the Nrf2/HO-1 Signaling pathway to protect guinea pigs from lung injury caused by BoAHV-1. Importantly, this study provides a compelling argument for the GLY in combating respiratory disease in cattle caused by BoAHV-1.
Collapse
Affiliation(s)
- Bing Guo
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, China
- Department of Veterinary Medicine, College of Animal Science and Technology, Hebei North University, Zhangjiakou, Hebei Province, China
| | - Haifeng Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Hebei North University, Zhangjiakou, Hebei Province, China
| | - Yue Zhang
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Chuanwen Wang
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Huaying Zhang
- Hebei Provincial Animal Science and Veterinary Institute, Shijiazhuang, Hebei Province, China
| | - Yian Zhao
- Zhangjiakou Rural Cooperative Economy Business Management Station, Zhangjiakou, Hebei Province, China
| | - Jianhua Qin
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, China.
| |
Collapse
|
4
|
Wang J, Ji J, Zhong Y, Meng W, Wan S, Ding X, Chen Z, Wu W, Jia K, Li S. Construction of recombinant fluorescent LSDV for high-throughput screening of antiviral drugs. Vet Res 2024; 55:33. [PMID: 38493160 PMCID: PMC10943802 DOI: 10.1186/s13567-024-01281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/29/2024] [Indexed: 03/18/2024] Open
Abstract
Lumpy skin disease virus (LSDV) infection is a major socio-economic issue that seriously threatens the global cattle-farming industry. Here, a recombinant virus LSDV-ΔTK/EGFP, expressing enhanced green fluorescent protein (EGFP), was constructed with a homologous recombination system and applied to the high-throughput screening of antiviral drugs. LSDV-ΔTK/EGFP replicates in various kidney cell lines, consistent with wild-type LSDV. The cytopathic effect, viral particle morphology, and growth performance of LSDV-ΔTK/EGFP are consistent with those of wild-type LSDV. High-throughput screening allowed to identify several molecules that inhibit LSDV-ΔTK/EGFP replication. The strong inhibitory effect of theaflavin on LSDV was identified when 100 antiviral drugs were screened in vitro. An infection time analysis showed that theaflavin plays a role in the entry of LSDV into cells and in subsequent viral replication stages. The development of this recombinant virus will contribute to the development of LSDV-directed antiviral drugs and the study of viral replication and mechanisms of action.
Collapse
Affiliation(s)
- Jingyu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Jinzhao Ji
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Yongcheng Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Wenxin Meng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Shaobin Wan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Xiaoqing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Zihan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Weiyong Wu
- Agriculture and Rural Affairs Bureau of Luocheng Mulao Autonomous County, Guangxi, China
| | - Kun Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China.
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China.
| |
Collapse
|
5
|
Stannard H, Koszalka P, Deshpande N, Desjardins Y, Baz M. Pre-Clinical Evaluation of the Antiviral Activity of Epigalocatechin-3-Gallate, a Component of Green Tea, against Influenza A(H1N1)pdm Viruses. Viruses 2023; 15:2447. [PMID: 38140688 PMCID: PMC10747412 DOI: 10.3390/v15122447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza antiviral drugs are important tools in our fight against both annual influenza epidemics and pandemics. Polyphenols are a group of compounds found in plants, some of which have demonstrated promising antiviral activity. Previous in vitro and mouse studies have outlined the anti-influenza virus effectiveness of the polyphenol epigallocatechin-3-gallate (EGCG); however, no study has utilised the ferret model, which is considered the gold-standard for influenza antiviral studies. This study aimed to explore the antiviral efficacy of EGCG in vitro and in ferrets. We first performed studies in Madin-Darby Canine Kidney (MDCK) and human lung carcinoma (Calu-3) cells, which demonstrated antiviral activity. In MDCK cells, we observed a selective index (SI, CC50/IC50) of 77 (290 µM/3.8 µM) and 96 (290 µM/3.0 µM) against A/California/07/2009 and A/Victoria/2570/2019 (H1N1)pdm09 influenza virus, respectively. Calu-3 cells demonstrated a SI of 16 (420 µM/26 µM) and 18 (420 µM/24 µM). Ferrets infected with A/California/07/2009 influenza virus and treated with EGCG (500 mg/kg/day for 4 days) had no change in respiratory tissue viral titres, in contrast to oseltamivir treatment, which significantly reduced viral load in the lungs of treated animals. Therefore, we demonstrated that although EGCG showed antiviral activity in vitro against influenza viruses, the drug failed to impair viral replication in the respiratory tract of ferrets.
Collapse
Affiliation(s)
- Harry Stannard
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
| | - Paulina Koszalka
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
| | - Nikita Deshpande
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Centre Nutrition, Santé et Societé (NUTRISS) Center, Faculté de Sciences de L’agriculture et de L’alimentation (FSAA), Université Laval, Quebec City, QC G1V 4L3, Canada
| | - Mariana Baz
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
6
|
Luo R, Lv C, Wang T, Deng X, Sima M, Guo J, Qi J, Sun W, Shen B, Li Y, Yue D, Gao Y. A potential Chinese medicine monomer against influenza A virus and influenza B virus: isoquercitrin. Chin Med 2023; 18:144. [PMID: 37919750 PMCID: PMC10621105 DOI: 10.1186/s13020-023-00843-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Influenza viruses, especially Influenza A virus and Influenza B virus, are respiratory pathogens and can cause seasonal epidemics and pandemics. Severe influenza viruses infection induces strong host-defense response and excessive inflammatory response, resulting in acute lung damage, multiple organ failure and high mortality. Isoquercitrin is a Chinese medicine monomer, which was reported to have multiple biological activities, including antiviral activity against HSV, IAV, SARS-CoV-2 and so on. Aims of this study were to assess the in vitro anti-IAV and anti-IBV activity, evaluate the in vivo protective efficacy against lethal infection of the influenza virus and searched for the more optimal method of drug administration of isoquercitrin. METHODS In vitro infection model (MDCK and A549 cells) and mouse lethal infection model of Influenza A virus and Influenza B virus were used to evaluate the antiviral activity of isoquercitrin. RESULTS Isoquercitrin could significantly suppress the replication in vitro and in vivo and reduced the mortality of mouse lethal infection models. Compared with virus infection group, isoquercitrin mitigated lung and multiple organ damage. Moreover, isoquercitrin blocked hyperproduction of cytokines induced by virus infection via inactivating NF-κB signaling. Among these routes of isoquercitrin administration, intramuscular injection is a better drug delivery method. CONCLUSION Isoquercitrin is a potential Chinese medicine monomer Against Influenza A Virus and Influenza B Virus infection.
Collapse
Affiliation(s)
- Rongbo Luo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Chaoxiang Lv
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xiuwen Deng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Mingwei Sima
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Jin Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jing Qi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- College of Life Sciences, Northeast Normal University, Changchun, 130021, China
| | - Weiyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Beilei Shen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yuanguo Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Donghui Yue
- School of Medical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|