1
|
Li TL, Zhu NN, Zhao MX, Sun J, Yin Z, Xie P, Huang JH, Guo JP, Yuan HT, Li SX, Zhao-Liang S. Omentin-1 attenuates atrial fibrillation via Src/PI3K/Akt signaling-mediated anti-fibrotic effects in cardiac fibroblasts. Eur J Pharmacol 2025; 996:177588. [PMID: 40187594 DOI: 10.1016/j.ejphar.2025.177588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Atrial fibrillation (AF) is characterized by progressive atrial fibrosis, leading to increased morbidity and mortality. While the novel adipokine Omentin-1 demonstrates anti-fibrotic potential across organ systems, its role in AF pathogenesis remains unclear. This study investigates Omentin-1's therapeutic effects and the underlying mechanisms in angiotensin II (Ang II)-induced atrial fibrosis and AF. METHODS Atrial fibrosis was induced in C57BL/6 mice via continuous Ang II infusion for 4 weeks. Omentin-1 overexpression was achieved using adeno-associated virus serotype 2/9 (AAV2/9). AF susceptibility was assessed by programmed electrical stimulation, and atrial fibrosis was quantified using histological staining and Western blot analysis. Immunofluorescence co-localization assessed cell-type specific expression of Omentin-1, and proteomic analysis of atrial fibroblasts was conducted to explore molecular pathways involved. In vitro studies using primary fibroblasts were conducted to validate Omentin-1's effects. RESULTS Omentin-1 levels were significantly decreased in both serum and atrial tissue of Ang II-treated mice. Omentin-1 overexpression reduced AF inducibility, decreased atrial fibrosis, and improved left atrial strain parameters. Immunofluorescence showed that Omentin-1 predominantly localized to atrial fibroblasts. Mechanistically, Omentin-1 regulated collagen metabolism by targeting fibroblasts, with Src kinase acting as a critical mediator of fibroblast activation through the PI3K/Akt signaling pathway. CONCLUSION Omentin-1 attenuates atrial fibrosis and AF susceptibility through regulation of the Src/PI3K/Akt signaling pathway in atrial fibroblasts. These findings suggest that Omentin-1 may represent a potential therapeutic target for the prevention and treatment of AF.
Collapse
Affiliation(s)
- Tian-Lun Li
- Postgraduate School, Medical School of Chinese PLA, Beijing, China; Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Na-Na Zhu
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mao-Xiang Zhao
- Department of Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jiao Sun
- Postgraduate School, Medical School of Chinese PLA, Beijing, China; Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhao Yin
- Postgraduate School, Medical School of Chinese PLA, Beijing, China
| | - Peng Xie
- Nankai University Medical College, Tianjin, 300071, China
| | - Jin-Huan Huang
- Postgraduate School, Medical School of Chinese PLA, Beijing, China
| | - Jian-Ping Guo
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hong-Tao Yuan
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shi-Xing Li
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Shan Zhao-Liang
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China; Nankai University Medical College, Tianjin, 300071, China.
| |
Collapse
|
2
|
Yang Y, Zhao L, Gao F, Wu G, Luo Y, An M. Modulation of renal fibrosis-related signaling pathways by traditional Chinese medicine: molecular mechanisms and experimental evidence. Int Urol Nephrol 2025:10.1007/s11255-025-04532-z. [PMID: 40293615 DOI: 10.1007/s11255-025-04532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Renal fibrosis (RF), characterized by excessive deposition of extracellular matrix leading to tissue damage and scar formation, represents a refractory disease and a pivotal pathological basis for the progression to end-stage renal disease. The pathogenesis of RF is intricate, prominently implicating multiple key signaling pathways, including adenosine monophosphate-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), transforming growth factor-β1/small mother against decapentaplegic (TGF-β1/Smad), toll-like receptor 4/nuclear factor kappa B (TLR4/NF-κB), wingless integrated/β-catenin (Wnt/β-catenin), hypoxia-inducible factor-1α (HIF-1α), Hedgehog, and mitogen-activated protein kinase (MAPK). The current Western medical practices primarily rely on supportive and replacement therapies, which are often costly and suboptimal in efficacy. In contrast, traditional Chinese medicine (TCM), with its inherent advantages of multi-target, multi-pathway, and multi-effect modulation, emerges as a promising new strategy for RF treatment. However, a systematic, comprehensive, and detailed summary of these advancements remains absent. Therefore, this review consolidates the recent research progress on TCM modulation of RF-related signaling pathways, aiming to provide a theoretical foundation for further investigations into RF and the development of TCM interventions.
Collapse
Affiliation(s)
- Yufei Yang
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Longshan Zhao
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
- Department of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Fengli Gao
- Department of Pharmacy, Second Affiliated Hospital of Baotou Medical College, Baotou, 014030, China
| | - Guodong Wu
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Yiduo Luo
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Ming An
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
3
|
Zhang C, Chen L. 6-Methoxyflavone inhibits glycolytic energy metabolism in HeLa cells. BMC Cancer 2025; 25:719. [PMID: 40247232 PMCID: PMC12004806 DOI: 10.1186/s12885-025-14133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Enhanced glycolytic levels in cancer cells are a common characteristic of many cancer types. Modulation of glycolytic metabolism is crucial for enhancing the efficacy of cancer therapy. The specific role of 6-methoxyflavone in regulating glycolytic metabolism in cancer cells remains unclear. This study aimed to elucidate the impact of 6-methoxyflavone on glycolytic metabolism in cervical cancer cells and its clinical relevance. METHODS The tandem mass tag (TMT) proteomic analysis was used to identify significantly enriched biological processes and pathways in HeLa cells after treatment with 6-methoxyflavone. Additionally, the differential expression of glycolysis-related proteins was validated using parallel reaction monitoring (PRM) proteomics. Untargeted and targeted metabolomics analyses were used to identify differentially expressed glycolysis-related metabolites. Furthermore, alternative splicing, new transcripts, and domain analyses were used to detect the effects of 6-methoxyflavone on the structures of glycolysis-related genes and proteins. Subcellular localization, molecular docking, and non-covalent interaction analyses were used to detect the subcellular localization, affinity of 6-methoxyflavone for glycolysis-related proteins, and sites of non-covalent interactions. Clinical characteristics and immunological correlation analyses were used to elucidate the relationships between glycolysis-related genes and clinicopathological characteristics, survival, prognosis, and immune-related indicators of patients with cervical cancer. Finally, glycolysis stress tests and enzyme activity assays were used to verify the effect of 6-methoxyflavone on glycolysis in HeLa cells. RESULTS TMT and PRM proteomics, as well as untargeted and targeted metabolomics results, showed that 6-methoxyflavone downregulated the expression levels of glycolysis-related proteins and metabolites in HeLa cells, and that the structures and functions of glycolysis-related genes and proteins in the cytoplasm underwent changes. 6-Methoxyflavone had a good affinity for nine glycolysis-related proteins, all of which had non-covalent interaction sites. Clinical characteristics and immune correlation analyses showed relationships between 6-methoxyflavone and five clinical characteristics, survival prognosis, and four immune-related indicators in patients with cervical cancer. After treatment with 6-methoxyflavone, the basal glycolytic level, maximum glycolytic capacity, and glycolytic reserve of HeLa cells were downregulated. Additionally, 6-methoxyflavone inhibited the activity of pyruvate kinase. CONCLUSION 6-Methoxyflavone inhibited energy metabolism in HeLa cells through the glycolysis pathway. 6-Methoxyflavone may be related to five clinical characteristics, prognosis, tumor microenvironment, immune cells, immune checkpoints, and immunotherapy efficacy in patients with cervical cancer.
Collapse
Affiliation(s)
- Chaihong Zhang
- Department of Obstetrics and Gynecology, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an City, Shaanxi Province, 710000, China
| | - Lihong Chen
- Department of Obstetrics and Gynecology, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an City, Shaanxi Province, 710000, China.
| |
Collapse
|
4
|
Shi X, Yin H, Shi X. Bibliometric analysis of literature on natural medicines against chronic kidney disease from 2001 to 2024. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156410. [PMID: 39892309 DOI: 10.1016/j.phymed.2025.156410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/03/2025] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a globally common and progressive disease. There has been few bibliometric study to analyze the status, hot spots, and trends in the field of natural medicines (NMs) against CKD. PURPOSE To comprehensively understand the status, hot spots, and trends in the field of NMs against CKD. METHODS The documents concerning NMs against CKD are extracted from the Web of Science Core Collection database (WOSCC). The literature analysis was conducted using VOSviewer 1.6.20 and CiteSpace 6.3.R1 software. RESULTS In total, 641 publications were encompassed, which were produced by 3 548 authors and 823 organizations, 241 journals, and 56 countries/regions. The most productive author, institution, country, and journal were Li, Ping, Nanjing University of Chinese Medicine, China, and Journal of Ethnopharmacology, respectively. The first high-cited article was published in Medicinal Research Reviews with 457 citations authored by Huang and colleagues in 2007. Oxidative stress, anti-inflammatory, renal fibrosis, and gut microbiota were the emerging keywords. Rhubarb, Astragalus, Angelica, and Cordyceps, which contain anthraquinones, cordycepin, adenosine, or various polysaccharides, are promising NMs to prevent or treat CKD. CONCLUSION Currently, the main hot spot is the elucidation of cellular and molecular mechanisms using novel technologies such as network pharmacology, molecular docking, and experimental validation. Future studies are needed to focus on the inherent molecular mechanisms and clinical applications. In addition, potential side effects of the bioactive compounds cannot be ignored.
Collapse
Affiliation(s)
- Xiaoqing Shi
- Department of Nephrology, The First People's Hospital of Jingdezhen, Jiangxi Province, 333000, China
| | - Hongmei Yin
- School of Health, Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, Jiangxi Province, Nanchang, 330022, China.
| | - Xiaodan Shi
- School of Health, Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, Jiangxi Province, Nanchang, 330022, China.
| |
Collapse
|
5
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
6
|
Teng W, Zhou Z, Cao J, Guo Q. Recent Advances of Natural Pentacyclic Triterpenoids as Bioactive Delivery System for Synergetic Biological Applications. Foods 2024; 13:2226. [PMID: 39063310 PMCID: PMC11275325 DOI: 10.3390/foods13142226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Bioactive compounds have drawn much attention according to their various health benefits. However, poor dissolvability, low stability and limited bioavailability largely narrow their applications. Although a variety of nontoxic ingredients have been rapidly developed as vehicles to deliver bioactive compounds in the last few years, most of them are non-bioactive. Pentacyclic triterpenoids, owing to their unique self-assembly and co-assembly behaviors and different physiological functions, can construct bioactive carriers due to their higher biodegradability, biocompatibility and lower toxicity. In this paper, the basic classification, biological activities and physicochemical properties of pentacyclic triterpenoids were summarized. Additionally, applications of self-assembled and co-assembled pentacyclic triterpenoids as bioactive delivery systems to load bioactive components and future research directions were discussed. This study emphasizes the potential of pentacyclic triterpenoids as bioactive delivery systems, offering a new perspective for constructing self- or co-assemblies for further synergetic biological applications.
Collapse
Affiliation(s)
- Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Zixiao Zhou
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Qing Guo
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
7
|
Huang B, Yu Z, Cui D, Du F. MAPKAP1 orchestrates macrophage polarization and lipid metabolism in fatty liver-enhanced colorectal cancer. Transl Oncol 2024; 45:101941. [PMID: 38692197 PMCID: PMC11070763 DOI: 10.1016/j.tranon.2024.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/02/2024] [Accepted: 03/16/2024] [Indexed: 05/03/2024] Open
Abstract
Various factors, including fatty liver and macrophage alterations, influence colorectal cancer (CRC). This study explores the mechanistic role of fatty liver in CRC progression, focusing on macrophage polarization and lipid metabolism. A murine fatty liver model was created with a high-fat diet (HFD), and CRC was induced using AOM and DSS. Single-cell transcriptome sequencing (scRNA-seq) identified MAPKAP1 as a critical gene promoting CRC via M2 macrophage polarization and lipid metabolism reprogramming. Prognosis analysis on the TCGA-CRC dataset confirmed MAPKAP1's significance. In vitro and in vivo experiments demonstrated that EVs from fatty liver cells enhanced MAPKAP1 expression, accelerating CRC development and metastasis. HFD exacerbated CRC, but fatty acid inhibitors delayed progression. Fatty liver upregulates MAPKAP1, driving M2 macrophage polarization and lipid metabolism changes, worsening CRC. These findings suggest potential therapeutic strategies for CRC, particularly targeting lipid metabolism and macrophage-mediated tumor promotion.
Collapse
Affiliation(s)
- Bo Huang
- Department of Hypertension, The Affiliated Hospital of Guizhou Medical University, No.28, Guimedical Street, Yunyan District, Guiyang City, Guizhou Province, PR China.
| | - Zhenqiu Yu
- Department of Hypertension, The Affiliated Hospital of Guizhou Medical University, No.28, Guimedical Street, Yunyan District, Guiyang City, Guizhou Province, PR China.
| | - Dejun Cui
- Department of Gastroenterology, Guizhou Provincial People's Hospital, PR China.
| | - Fawang Du
- Department of Hypertension, The Affiliated Hospital of Guizhou Medical University, No.28, Guimedical Street, Yunyan District, Guiyang City, Guizhou Province, PR China
| |
Collapse
|
8
|
Yu W, Li J, Xiong Y, Wang J, Liu J, Baranenko D, Zhang Y, Lu W. Optimization of ultrasound-assisted extraction of Imperata cylindrica polysaccharides and evaluation of its anti-oxidant and amelioration of uric acid stimulated cell apoptosis. ULTRASONICS SONOCHEMISTRY 2024; 104:106844. [PMID: 38479187 PMCID: PMC10951092 DOI: 10.1016/j.ultsonch.2024.106844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 03/24/2024]
Abstract
An efficient, cost-effective and environmentally friendly ultrasound-assisted hot water method for Imperata cylindrica polysaccharide (ICPs) extraction was developed. According to the response surface results, the optimal ultrasonic time was 85 min, ultrasonic power was 192.75 W, temperature was 90.74 °C, liquid-solid ratio was 26.1, and polysaccharide yield was 28.50 %. The polysaccharide mainly consisted of arabinose (Ara), galactose (Gal), and glucose (Glc), with a molecular weight of 62.3 kDa. Ultrasound-assisted extraction of Imperata cylindrica polysaccharide (UICP) exhibited stronger anti-oxidant activity and ability to ameliorate cellular damage due to uric acid stimulation compared with traditional hot water extraction of Imperata cylindrica polysaccharide (ICPC-b). It also exhibited higher thermal stability, indicating its potential value for applications in the food industry.
Collapse
Affiliation(s)
- Wenchen Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing, China
| | - Jiangfei Li
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing, China
| | - Yi Xiong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing, China
| | - Junwen Wang
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing, China
| | - Jiaren Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Denis Baranenko
- School of Life Sciences, Faculty of Ecotechnologies, ITMO University, St. Petersburg. 197101, Russia
| | - Yingchun Zhang
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China.
| | - Weihong Lu
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China.
| |
Collapse
|
9
|
Han S, Yuan X, Zhao F, Manyande A, Gao F, Wang J, Zhang W, Tian X. Activation of LXRs alleviates neuropathic pain-induced cognitive dysfunction by modulation of microglia polarization and synaptic plasticity via PI3K/AKT pathway. Inflamm Res 2024; 73:157-174. [PMID: 38183431 DOI: 10.1007/s00011-023-01826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 01/08/2024] Open
Abstract
OBJECTIVE Cognitive dysfunction is a common comorbidity in patients with chronic pain. Activation of Liver X receptors (LXRs) plays a potential role in improving cognitive disorders in central nervous diseases. In this study, we investigated the role of LXRs in cognitive deficits induced by neuropathic pain. METHODS We established the spared nerve injury (SNI) model to investigate pain-induced memory dysfunction. Pharmacological activation of LXRs with T0901317 or inhibition with GSK2033 was applied. PI3K inhibitor LY294002 was administered to explore the underlying mechanism of LXRs. Changes in neuroinflammation, microglia polarization, and synaptic plasticity were assessed using biochemical technologies. RESULTS We found that SNI-induced cognitive impairment was associated with reduced LXRβ expression, increased M1-phenotype microglia, decreased synaptic proteins, and inhibition of PI3K/AKT signaling pathway in the hippocampus. Activation of LXRs using T0901317 effectively alleviated SNI-induced cognitive impairment. Additionally, T0901317 promoted the polarization of microglia from M1 to M2, reduced pro-inflammatory cytokines, and upregulated synaptic proteins in the hippocampus. However, administration of GSK2033 or LY294002 abolished these protective effects of T0901317 in SNI mice. CONCLUSIONS LXRs activation alleviates neuropathic pain-induced cognitive impairment by modulating microglia polarization, neuroinflammation, and synaptic plasticity, at least partly via activation of PI3K/AKT signaling in the hippocampus. LXRs may be promising targets for addressing pain-related cognitive deficits.
Collapse
Affiliation(s)
- Siyi Han
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, China
| | - Xiaoman Yuan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, China
| | - Fengtian Zhao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Feng Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, China
| | - Jie Wang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Wen Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, China.
| | - Xuebi Tian
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, China.
| |
Collapse
|