1
|
Liu L, Ma C, Ji J, Gao R, Li D. Role of antidiarrheal agents nifuroxazide in antitumor multi‑target anticancer, multi‑mechanism anticancer drug (Review). Oncol Lett 2025; 29:260. [PMID: 40230426 PMCID: PMC11995686 DOI: 10.3892/ol.2025.15006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/07/2025] [Indexed: 04/16/2025] Open
Abstract
Nifuroxazide (NFZ) is an antimicrobial drug, which has been found to be a promising antitumor agent in recent years. In addition to being a classic STAT3 inhibitor, NFZ can also act on IL-6 and exert an anti-tumor role through inflammatory factor pathways. It can also bind to target proteins of aldehyde dehydrogenase 1, one of the families of E-twenty-six transcription factors and ubiquitin-specific protease 21 to play an anti-tumor role in different pathways. NFZ is able to act on the tumor cell microenvironment to inhibit tumor angiogenesis and tumor cell migration, enhance tumor immune cells, increase the cytotoxicity of tumor cells and enhance the anti-tumor effect of other drugs. Furthermore, it has high safety with few toxic side effects. The anti-tumor mechanisms of NFZ were described in the current review, aiming to provide insight and a reference for future studies promoting the implementation of NFZ as an anti-tumor drug in the clinic.
Collapse
Affiliation(s)
- Liping Liu
- Oncology Department, Qingdao Endocrine and Diabetes Hospital, Qingdao, Shandong 266000, P.R. China
| | - Chengshan Ma
- Department of Orthopedic Surgery, Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Jinfeng Ji
- Oncology Department, Qingdao Endocrine and Diabetes Hospital, Qingdao, Shandong 266000, P.R. China
| | - Rong Gao
- Oncology Department, Qingdao Endocrine and Diabetes Hospital, Qingdao, Shandong 266000, P.R. China
| | - Deliang Li
- Emergency Department, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| |
Collapse
|
2
|
Rahimić J, Alibegović E, Lekić L, Boras MM, Džidić-Krivić A, Farhat EK, Sher EK. Evaluating Vancomycin Monotherapy and Dual Therapy with Nifuroxazide for Medium-Severe Clostridioides Difficile Infection. Antibiotics (Basel) 2025; 14:400. [PMID: 40298556 PMCID: PMC12024110 DOI: 10.3390/antibiotics14040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND All currently used therapeutic protocols and drugs for Clostridioides difficile infection (CDI) treatment do not have a satisfying success and usually cost a lot. OBJECTIVES To compare the efficacy of vancomycin monotherapy vs modified dual therapy with vancomycin + nifuroxazide as a therapeutic protocol for a medium-severe form of CDI. In addition, the effects of a modified therapeutic protocol with standard monotherapy on the number of stools and stool consistency in a medium-severe CDI will be compared. MATERIALS AND METHODS A prospective, randomized, controlled clinical trial that included 60 patients divided into two groups was conducted. One group of patients was treated with vancomycin monotherapy. The other group was treated with the modified therapeutic protocol (vancomycin + nifuroxazide). RESULTS The modified therapy with vancomycin + nifuroxazide demonstrated enhanced pharmacological efficacy in the management of CDI compared to the standard vancomycin monotherapy. Patients treated with dual therapy reported a significantly lower number of stools in first, second and third control; first control (4.47 ± 2.20 compared to 5.70 ± 1.91 in vancomycin group (p = 0.024)), second control (2.37 ± 0.85 compared to 3.13 ± 0.90 in vancomycin group (p = 0.001)), and third control (1.53 ± 0.51 compared to 1.80 ± 0.61 in vancomycin group (p = 0.035)). Also, the first and third controls noted significant improvements in stool consistency, measured as a decrease in the number of completely watery stools (p = 0.011 and p < 0.001, respectively). CONCLUSIONS Nifuroxazide and vancomycin have demonstrated accelerated improvement in patient status and hold promise as a novel dual therapeutic regimen for managing patients diagnosed with a medium-severe form of CDI.
Collapse
Affiliation(s)
- Jasna Rahimić
- Faculty of Medicine, European University Kallos, Tuzla, XVIII Hrvatske Brigade 8, 75000 Tuzla, Bosnia and Herzegovina;
- International Society of Engineering Science and Technology UK, Nottingham NG7 1GN, UK; (M.M.B.)
| | - Ervin Alibegović
- Department of Clinical Center, Tuzla University, 75000 Tuzla, Bosnia and Herzegovina
| | - Lana Lekić
- Faculty of Health Studies, University of Sarajevo, Stjepana Tomića 1, 71000 Sarajevo, Bosnia and Herzegovina
| | - Marijana Marković Boras
- International Society of Engineering Science and Technology UK, Nottingham NG7 1GN, UK; (M.M.B.)
- Department of Laboratory Diagnostic, University Clinical Hospital Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Amina Džidić-Krivić
- International Society of Engineering Science and Technology UK, Nottingham NG7 1GN, UK; (M.M.B.)
- Department of Neurology, Clinical Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Esma Karahmet Farhat
- Faculty of Food Technology, Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Emina Karahmet Sher
- International Society of Engineering Science and Technology UK, Nottingham NG7 1GN, UK; (M.M.B.)
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
3
|
Deng R, Huang G, Zhou J, Zeng K. PLASMA PROTEOME, METABOLOME MENDELIAN RANDOMIZATION IDENTIFIES SEPSIS THERAPEUTIC TARGETS. Shock 2025; 63:52-63. [PMID: 39194222 DOI: 10.1097/shk.0000000000002465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
ABSTRACT Background : The interrelation between the plasma proteome and plasma metabolome with sepsis presents a multifaceted dynamic that necessitates further research to elucidate the underlying causal mechanisms. Methods : Our investigation used public genome-wide association study data to explore the relationships among the plasma proteome, metabolome, and sepsis, considering different sepsis subgroup. Initially, two-sample Mendelian randomization established causal connections between the plasma proteome and metabolome with sepsis. Subsequently, multivariate and iterative Mendelian randomization analyses were performed to understand the complex interactions in plasma during sepsis. The validity of these findings was supported by thorough sensitivity analyses. Result : The study identified 25 plasma proteins that enhance risk and 34 that act as protective agents in sepsis. After P value adjustment (0.05/1306), ICAM5 emerged with a positive correlation to sepsis susceptibility ( P value = 2.14E-05, OR = 1.10, 95% CI = 1.05-1.15), with this significance preserved across three sepsis subgroup examined. Additionally, 29 plasma metabolites were recognized as risk factors, and 15 as protective factors for sepsis outcomes. After P value adjustment (0.05/997), elevated levels of 1,2,3-benzenetriol sulfate (2) was significantly associated with increased sepsis risk ( P value = 3.37E-05, OR = 1.18, 95% CI = 1.09-1.28). Further scrutiny revealed that this plasma metabolite notably augments the abundance of ICAM5 protein ( P value = 3.52E-04, OR = 1.11, 95% CI = 1.04-1.17), devoid of any detected heterogeneity, pleiotropy, or reverse causality. Mediated Mendelian randomization revealed ICAM5 mediated 11.9% of 1,2,3-benzenetriol sulfate (2)'s total effect on sepsis progression. Conclusion : This study details the causal link between the plasma proteome and metabolome with sepsis, highlighting the roles of ICAM5 and 1,2,3-benzenetriol sulfate (2) in sepsis progression, both independently and through crosstalk.
Collapse
Affiliation(s)
| | - Guiming Huang
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou City, Jiangxi Provence, China
| | - Juan Zhou
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, Ganzhou City, Jiangxi Provence, China
| | - Kai Zeng
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Ali GF, Hassanein EHM, Mohamed WR. Molecular mechanisms underlying methotrexate-induced intestinal injury and protective strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8165-8188. [PMID: 38822868 PMCID: PMC11522073 DOI: 10.1007/s00210-024-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.
Collapse
Affiliation(s)
- Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt.
| |
Collapse
|
5
|
Osman MM, El-Shaheny R, Ibrahim FA. Alfalfa biomass as a green source for the synthesis of N,S-CDs via microwave treatment. Application as a nano sensor for nifuroxazide in formulations and gastric juice. Anal Chim Acta 2024; 1319:342946. [PMID: 39122268 DOI: 10.1016/j.aca.2024.342946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/11/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Researchers have investigated different techniques for synthesis of carbon dots. These techniques include Arc discharge, laser ablation, oxidation, water/solvothermal, and chemical vapor deposition. However, these techniques suffer from some limitations like the utilization of gaseous charged particles, high current, high temperature, potent oxidizing agents, non-environmentally friendly carbon sources, and the generation of uneven particle size. Therefore, there was a significant demand for the adoption of a new technology that combines the environmentally friendly aspects of both bio-based carbon sourcing and synthesis technique. RESULTS Medicago sativa L (alfalfa)-derived N, S-CDs have been successfully synthesized via microwave irradiation. The N,S-CDs exhibit strong fluorescence (λex/em of 320/420 nm) with fluorescence quantum yield of 2.2 % and high-water solubility. The produced N,S-CDs were characterized using TEM, EDX, Zeta potential analysis, IR, UV-Visible, and fluorescence spectroscopy. The average diameter of the produced N, S-CDs was 4.01 ± 1.2 nm, and the Zeta potential was -24.5 ± 6.63 mv. The stability of the produced nano sensors was also confirmed over wide pH range, long time, and in presence of different ions. The synthesized N, S-CDs were employed to quantify the antibacterial drug, nifuroxazide (NFZ), by fluorescence quenching via inner filter effect mechanism. The method was linear with NFZ concentration ranging from 1.0 to 30.0 μM. LOD and LOQ were 0.16 and 0.49 μM, respectively. The method was applied to quantify NFZ in simulated gastric juice (SGJ) with % recovery 99.59 ± 1.4 in addition to pharmaceutical dosage forms with % recovery 98.75 ± 0.61 for Antinal Capsules® and 100.63 ± 1.54 for Antinal suspension®. The Method validation was performed in compliance with the criteria outlined by ICH. SIGNIFICANCE AND NOVELTY The suggested approach primarily centers on the first-time use of alfalfa, an ecologically sustainable source of dopped-CDs, and a cost-effective synthesis technique via microwave irradiation, which is characterized by low energy consumption, minimized reaction time, and the ability to control the size of the produced CDs. This is in line with the growing global recognition of the implementation of green analytical chemistry principles.
Collapse
Affiliation(s)
- Mohamed M Osman
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Rania El-Shaheny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Fawzia A Ibrahim
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
6
|
Vinogradova L, Lukin A, Komarova K, Zhuravlev M, Fadeev A, Chudinov M, Rogacheva E, Kraeva L, Gureev M, Porozov Y, Dogonadze M, Vinogradova T. Molecular Periphery Design Allows Control of the New Nitrofurans Antimicrobial Selectivity. Molecules 2024; 29:3364. [PMID: 39064943 PMCID: PMC11279955 DOI: 10.3390/molecules29143364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
A series of 13 new 3-substituted 5-(5-nitro-2-furyl)-1,2,4-oxadiazoles was synthesized from different aminonitriles. All compounds were screened in the disc diffusion test at a 100 μg/mL concentration to determine the bacterial growth inhibition zone presence and diameter, and then the minimum inhibitory concentrations (MICs) were determined for the most active compounds by serial dilution. The compounds showed antibacterial activity against ESKAPE bacteria, predominantly suppressing the growth of 5 species out of the panel. Some compounds had similar or lower MICs against ESKAPE pathogens compared to ciprofloxacin, nitrofurantoin, and furazidin. In particular, 3-azetidin-3-yl-5-(5-nitro-2-furyl)-1,2,4-oxadiazole (2h) inhibited S. aureus at a concentration lower than all comparators. Compound 2e (5-(5-nitro-2-furyl)-3-[4-(pyrrolidin-3-yloxy)phenyl]-1,2,4-oxadiazole) was active against Gram-positive ESKAPE pathogens as well as M. tuberculosis. Differences in the molecular periphery led to high selectivity for the compounds. The induced-fit docking (IFD) modeling technique was applied to in silico research. Molecular docking results indicated the targeting of compounds against various nitrofuran-associated biological targets.
Collapse
Affiliation(s)
- Lyubov Vinogradova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia (A.F.)
| | - Alexey Lukin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia (A.F.)
| | - Kristina Komarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia (A.F.)
| | - Maxim Zhuravlev
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia (A.F.)
| | - Artem Fadeev
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia (A.F.)
| | - Mikhail Chudinov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia (A.F.)
| | - Elizaveta Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, 197101 Saint Petersburg, Russia
| | - Lyudmila Kraeva
- Pasteur Institute of Epidemiology and Microbiology, 197101 Saint Petersburg, Russia
| | - Maxim Gureev
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
| | - Yuri Porozov
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
- Advitam Laboratory, Mihaila Shushkaloviћа 13, 11030 Belgrade, Serbia
| | - Marine Dogonadze
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, 191036 Saint Petersburg, Russia
| | - Tatiana Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, 191036 Saint Petersburg, Russia
| |
Collapse
|
7
|
Hassanein EHM, Abdel-Reheim MA, Althagafy HS, Hemeda MS, Gad RA, Abdel-Sattar AR. Nifuroxazide attenuates indomethacin-induced renal injury by upregulating Nrf2/HO-1 and cytoglobin and suppressing NADPH-oxidase, NF-κB, and JAK-1/STAT3 signals. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3985-3994. [PMID: 37994949 DOI: 10.1007/s00210-023-02851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Indomethacin (INDO) is an NSAID with remarkable efficacy and widespread utilization for alleviating pain. Nevertheless, renal function impairment is an adverse reaction linked to INDO usage. Nifuroxazide (NFX), an oral nitrofuran antibiotic, is frequently employed as an intestinal anti-infective agent. Our study aimed to investigate the renoprotective effects of NFX against INDO-induced nephrotoxicity and explore the protection mechanisms. Four groups of rats were allocated to (I) the normal control, (II) the NFX-treated (50 mg/kg), (III) INDO control (20 mg/kg), and (IV) NFX + INDO. NFX attenuates renal impairment in INDO-induced renal injury, proved by decreasing serum levels of urea, creatinine, uric acid, and NGAL while the albumin was elevated. NFX mitigates renal oxidative stress by decreasing MDA levels and restoring the antioxidants' GSH and SOD levels mediated by upregulating Nrf2, HO-1, and cytoglobin pathways. NFX mitigated renal inflammation and effectively decreased MPO, IL-1β, and TNF-α levels in the rat's kidney mediated by significant downregulation of NADPH-oxidase and NF-κB expression and suppression of JAK-1 and STAT3 phosphorylation. NFX mitigates renal apoptosis by decreasing the expression of cleaved caspase-3 expression. In conclusion, NFX treatment prevents INDO nephrotoxicity by regulating Nrf2/HO-1, cytoglobin, NADPH-oxidase, NF-κB, and JAK-1/STAT3 signals.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62521, Egypt.
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed S Hemeda
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Rania A Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| | - Asmaa Ramadan Abdel-Sattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| |
Collapse
|
8
|
Ren N, Wang WF, Zou L, Zhao YL, Miao H, Zhao YY. The nuclear factor kappa B signaling pathway is a master regulator of renal fibrosis. Front Pharmacol 2024; 14:1335094. [PMID: 38293668 PMCID: PMC10824958 DOI: 10.3389/fphar.2023.1335094] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Renal fibrosis is increasingly recognized as a global public health problem. Acute kidney injury (AKI) and chronic kidney disease (CKD) both result in renal fibrosis. Oxidative stress and inflammation play central roles in progressive renal fibrosis. Oxidative stress and inflammation are closely linked and form a vicious cycle in which oxidative stress induces inflammation through various molecular mechanisms. Ample evidence has indicated that a hyperactive nuclear factor kappa B (NF-ƙB) signaling pathway plays a pivotal role in renal fibrosis. Hyperactive NF-ƙB causes the activation and recruitment of immune cells. Inflammation, in turn, triggers oxidative stress through the production of reactive oxygen species and nitrogen species by activating leukocytes and resident cells. These events mediate organ injury through apoptosis, necrosis, and fibrosis. Therefore, developing a strategy to target the NF-ƙB signaling pathway is important for the effective treatment of renal fibrosis. This Review summarizes the effect of the NF-ƙB signaling pathway on renal fibrosis in the context of AKI and CKD (immunoglobulin A nephropathy, membranous nephropathy, diabetic nephropathy, hypertensive nephropathy, and kidney transplantation). Therapies targeting the NF-ƙB signaling pathway, including natural products, are also discussed. In addition, NF-ƙB-dependent non-coding RNAs are involved in renal inflammation and fibrosis and are crucial targets in the development of effective treatments for kidney disease. This Review provides a clear pathophysiological rationale and specific concept-driven therapeutic strategy for the treatment of renal fibrosis by targeting the NF-ƙB signaling pathway.
Collapse
Affiliation(s)
- Na Ren
- The First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wen-Feng Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Yan-Long Zhao
- Dialysis Department of Nephrology Hospital, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, Shaanxi, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Roquini V, Mengarda AC, Cajas RA, Martins-da-Silva MF, Godoy-Silva J, Santos GA, Espírito-Santo MCC, Pavani TFA, Melo VA, Salvadori MC, Teixeira FS, Rando DGG, de Moraes J. The Existing Drug Nifuroxazide as an Antischistosomal Agent: In Vitro, In Vivo, and In Silico Studies of Macromolecular Targets. Microbiol Spectr 2023; 11:e0139323. [PMID: 37409934 PMCID: PMC10434008 DOI: 10.1128/spectrum.01393-23] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
Schistosomiasis is a parasitic disease that afflicts approximately 250 million people worldwide. There is an urgent demand for new antiparasitic agents because praziquantel, the only drug available for the treatment of schistosomiasis, is not universally effective and may derail current progress toward the WHO goal of eliminating this disease as a public health problem by 2030. Nifuroxazide (NFZ), an oral nitrofuran antibiotic, has recently been explored to be repurposed for parasitic diseases. Here, in vitro, in vivo, and in silico studies were conducted to evaluate the activity of NFZ on Schistosoma mansoni. The in vitro study showed significant antiparasitic activity, with 50% effective concentration (EC50) and 90% effective concentration (EC90) values of 8.2 to 10.8 and 13.7 to 19.3 μM, respectively. NFZ also affected worm pairing and egg production and induced severe damage to the tegument of schistosomes. In vivo, a single oral dose of NFZ (400 mg/kg of body weight) to mice harboring either prepatent or patent S. mansoni infection significantly reduced the total worm burden (~40%). In patent infection, NFZ achieved a high reduction in the number of eggs (~80%), but the drug caused a low reduction in the egg burden of animals with prepatent infection. Finally, results from in silico target fishing methods predicted that serine/threonine kinases could be one of the potential targets for NFZ in S. mansoni. Overall, the present study revealed that NFZ possesses antischistosomal properties, mainly in terms of egg burden reduction in animals with patent S. mansoni infection. IMPORTANCE The increasing recognition of the burden imposed by helminthiasis, associated with the limited therapeutic arsenal, has led to initiatives and strategies to research and develop new drugs for the treatment of schistosomiasis. One of these strategies is drug repurposing, which considers low-risk compounds with potentially reduced costs and shorter time for development. In this study, nifuroxazide (NFZ) was evaluated for its anti-Schistosoma mansoni potential through in vitro, in vivo, and in silico studies. In vitro, NFZ affected worm pairing and egg production and induced severe damage to the tegument of schistosomes. In vivo, a single oral dose of NFZ (400 mg/kg) to mice harboring either prepatent or patent S. mansoni infection significantly reduced the total worm burden and egg production. In silico investigations have identified serine/threonine kinases as a molecular target for NFZ. Collectively, these results implied that NFZ might be a potential therapeutic candidate for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Vinícius Roquini
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Ana C. Mengarda
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Rayssa A. Cajas
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | | | - Julia Godoy-Silva
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Gustavo A. Santos
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Maria Cristina C. Espírito-Santo
- Laboratory of Immunopathology of Schistosomiasis (LIM-06), Department of Infectious and Parasitic Diseases, Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
- Laboratory of Helminthology, Institute of Tropical Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Thais F. A. Pavani
- Biological Chemistry Post-Graduate Course, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Vanusa A. Melo
- Biological Chemistry Post-Graduate Course, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Maria C. Salvadori
- Institute of Physics, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Daniela G. G. Rando
- Chemico-Pharmaceutical Research Group, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Josué de Moraes
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| |
Collapse
|