1
|
Muzyka L, Winterhalter E, LoPresti MA, Scoville J, Bohnsack BL, Lam SK. Axenfeld-Rieger syndrome: A systematic review examining genetic, neurological, and neurovascular associations to inform screening. Heliyon 2023; 9:e18225. [PMID: 37539177 PMCID: PMC10395477 DOI: 10.1016/j.heliyon.2023.e18225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Axenfeld-Rieger Syndrome (ARS) is comprised of a group of autosomal dominant disorders that are each characterized by anterior segment abnormalities of the eye. Mutations in the transcription factors FOXC1 or PITX2 are the most well-studied genetic manifestations of this syndrome. Due to the rarity this syndrome, ARS-associated neurological manifestations have not been well characterized. The purpose of this systematic review is to characterize and describe ARS neurologic manifestations that affect the cerebral vasculature and their early and late sequelae. PRISMA guidelines were followed; studies meeting inclusion criteria were analyzed for study design, evidence level, number of patients, patient age, whether the patients were related, genotype, ocular findings, and nervous system findings, specifically neurostructural and neurovascular manifestations. 63 studies met inclusion criteria, 60 (95%) were case studies or case series. The FOXC1 gene was most commonly found, followed by COL4A1, then PITX2. The most commonly described structural neurological findings were white matter abnormalities in 26 (41.3%) of studies, followed by Dandy-Walker Complex 12 (19%), and agenesis of the corpus callosum 11 (17%). Neurovascular findings were examined in 6 (9%) of studies, identifying stroke, cerebral small vessel disease (CSVD), tortuosity/dolichoectasia of arteries, among others, with no mention of moyamoya. This is the first systematic review investigating the genetic, neurological, and neurovascular associations with ARS. Structural neurological manifestations were common, yet often benign, perhaps limiting the utility of MRI screening. Neurovascular abnormalities, specifically stroke and CSVD, were identified in this population. Stroke risk was present in the presence and absence of cardiac comorbidities. These findings suggest a relationship between ARS and neurovascular findings; however, larger scale studies are necessary inform therapeutic decisions.
Collapse
Affiliation(s)
- Logan Muzyka
- Dell Medical School at the University of Texas at Austin, Department of Neurosurgery, Austin, TX, United States
| | - Emily Winterhalter
- Northwestern University Feinberg School of Medicine, Department of Neurosurgery, Chicago, IL, United States
| | - Melissa A. LoPresti
- Northwestern University Feinberg School of Medicine, Department of Neurosurgery, Chicago, IL, United States
- Ann and Robert H Lurie Children's Hospital, Division of Pediatric Neurosurgery, Chicago, IL, United States
| | - Jonathan Scoville
- University of Utah School of Medicine, Department of Neurosurgery, Salt Lake City, UT, United States
| | - Brenda L. Bohnsack
- Northwestern University Feinberg School of Medicine, Department of Ophthalmology, Chicago, IL, United States
- Ann and Robert H Lurie Children's Hospital, Division of Ophthalmology, Chicago, IL, United States
- University of Rochester School of Medicine and Dentistry, Department of Neurosurgery, Rochester, NY, United States
| | - Sandi K. Lam
- Northwestern University Feinberg School of Medicine, Department of Neurosurgery, Chicago, IL, United States
- Ann and Robert H Lurie Children's Hospital, Division of Pediatric Neurosurgery, Chicago, IL, United States
| |
Collapse
|
2
|
Zhuo C, Tian H, Chen J, Li Q, Yang L, Zhang Q, Chen G, Cheng L, Zhou C, Song X. Associations of cognitive impairment in patients with schizophrenia with genetic features and with schizophrenia-related structural and functional brain changes. Front Genet 2022; 13:880027. [PMID: 36061201 PMCID: PMC9437456 DOI: 10.3389/fgene.2022.880027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cognitive impairment is highly prevalent in patients with major psychiatric disorders (MPDs), including schizophrenia (SCZ), bipolar disorder, major depressive disorder, in whom it can be highly disruptive to community functioning and worsen prognosis. Previously, genetic factors and cognitive impairments in MPD patients have been examined mostly in isolated circuits rather than in the whole brain. In the present study, genetic, neuroimaging, and psychometric approaches were combined to investigate the relationship among genetic factors, alterations throughout the brain, and cognitive impairments in a large cohort of patients diagnosed with SCZ, with a reference healthy control (HC) group. Single nucleotide polymorphisms (SNPs) in SCZ-risk genes were found to be strongly related to cognitive impairments as well as to gray matter volume (GMV) and functional connectivity (FC) alterations in the SCZ group. Annotating 136 high-ranking SNPs revealed 65 affected genes (including PPP1R16B, GBBR2, PDE4B, CANCNA1C, SLC12AB, SATB2, MAG12, and SATB2). Only one, a PDE4B SNP (rs1006737), correlated with GMV (r = 0:19 p = 0.015) and FC (r = 0.21, p = 0.0074) in SCZ patients. GMV and FC alterations correlated with one another broadly across brain regions. Moreover, the present data demonstrate three-way SNP-FC-GMV associations in patients with SCZ, thus providing clues regarding potential genetic bases of cognition impairments in SCZ. SNP-FC-GMV relationships correlated with visual learning and reasoning dimensions of cognition. These data provide evidence that SCZ-related cognitive impairments may reflect genetically underlain whole-brain structural and functional alterations.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Real Time Tracing of Brian Circuits in Psychiatry and Neurology (RTBNP_Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
- Digital Analysis Center of Psychiatry, Tianjin Fourth Center Hospital, Tianjin, China
- Department of Psychiatry and Neurology Imaging-Genetics and Comorbidity Laboratory (PNGC_Lab) of Tianjin Mental Health Center, Tianjin Anding Hospital, Tianjin, China
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Deep Learning Center of MRI and Genetics, Wenzhou Seventh People’s Hospital, Wenzhou, China
- *Correspondence: Chuanjun Zhuo, ; Xueqin Song,
| | - Hongjun Tian
- Department of Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Jiayue Chen
- Department of Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Qianchen Li
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Yang
- Department of Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Qiuyu Zhang
- Department of Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Langlang Cheng
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Chunhua Zhou
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Chuanjun Zhuo, ; Xueqin Song,
| |
Collapse
|
3
|
Kyriakou G. Synophrys: The societal implications of the bad ol' unibrow. Clin Dermatol 2021; 39:738-742. [PMID: 34809785 DOI: 10.1016/j.clindermatol.2020.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The complete or partial meeting of medial eyebrows at midline above the bridge of nose, forming a single band of hair, is known as synophrys or unibrow. With a few rare exceptions, when it may serve as a cutaneous marker lesion of several genetic disorders, with Cornelia De Lange syndrome being the commonest, synophrys is usually a normal variation. Although various cultures have prized synophrys as an attractive physical trait throughout history, in modern Western culture, the unibrow is frequently regarded as an undesirable and unappealing feature with negative connotations. Synophrys, derived from the Ancient Greek σύν (together, with) and ὀφρύς (eyebrow), meaning "with meeting eyebrows," refers to the complete or partial fusion of medial eyebrows at midline. The hair above the nasal bridge is often of the same color and thickness as the eyebrows, thus giving the appearance that they converge to form one uninterrupted line of hair, a single eyebrow.
Collapse
Affiliation(s)
- Georgia Kyriakou
- Department of Dermatology, University General Hospital of Patras, Rio, Greece.
| |
Collapse
|
4
|
Hosono K, Kawase K, Kurata K, Niimi Y, Saitsu H, Minoshima S, Ohnishi H, Yamamoto T, Hikoya A, Tachibana N, Fukao T, Yamamoto T, Hotta Y. A case of childhood glaucoma with a combined partial monosomy 6p25 and partial trisomy 18p11 due to an unbalanced translocation. Ophthalmic Genet 2020; 41:175-182. [PMID: 32223580 DOI: 10.1080/13816810.2020.1744019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background: Chromosomal deletion involving the 6p25 region results in a clinically recognizable syndrome characterized by anterior eye chamber anomalies with risk of glaucoma and non-ocular malformations (6p25 deletion syndrome). We report a newborn infant case of childhood glaucoma with a combination of partial monosomy 6p25 and partial trisomy 18p11 due to an unbalanced translocation.Materials and methods: The patient was a 0-year-old girl. Both eyes showed aniridia and left eye Peters anomaly with multiple malformations. To identify the chromosomal aberrations in the patient with clinically suspected 6p25 deletion syndrome, we performed cytogenetic analysis (G-banding and multicolor fluorescent in-situ hybridization) and array-based comparative genomic hybridization (array-CGH) analysis.Results: Cytogenetic analyses revealed a derivative chromosome 6 with its distal short arm replaced by an extra copy of the short arm of chromosome 18. Array-CGH analysis detected a 4.6-Mb deletion at 6pter to 6p25.1 and 8.9-Mb duplication at 18pter to 18p11.22. To determine the breakpoint of the unbalanced rearrangement at the single-base level, we performed a long-range PCR for amplifying the junctional fragment of the translocation breakpoint. By sequencing the junctional fragment, we defined the unbalanced translocation as g.chr6:pter_4594783delinschr18:pter_8911541.Conclusions: A phenotype corresponding to combined monosomy 6p25 and trisomy 18p11 presented as childhood glaucoma associated with non-acquired (congenital) ocular anomalies consist of aniridia and Peters anomaly and other systemic malformations. To the best of our knowledge, this is the first report which demonstrated the breakpoint sequence of an unbalanced translocation in a Japanese infant with childhood glaucoma.
Collapse
Affiliation(s)
- Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhide Kawase
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Niimi
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinsei Minoshima
- Department of Photomedical Genomics, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Takahiro Yamamoto
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Akiko Hikoya
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Nobutaka Tachibana
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tetsuya Yamamoto
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
5
|
Fang J, Xu C, Zille P, Lin D, Deng HW, Calhoun VD, Wang YP. Fast and Accurate Detection of Complex Imaging Genetics Associations Based on Greedy Projected Distance Correlation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:860-870. [PMID: 29990017 PMCID: PMC6043419 DOI: 10.1109/tmi.2017.2783244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recent advances in imaging genetics produce large amounts of data including functional MRI images, single nucleotide polymorphisms (SNPs), and cognitive assessments. Understanding the complex interactions among these heterogeneous and complementary data has the potential to help with diagnosis and prevention of mental disorders. However, limited efforts have been made due to the high dimensionality, group structure, and mixed type of these data. In this paper we present a novel method to detect conditional associations between imaging genetics data. We use projected distance correlation to build a conditional dependency graph among high-dimensional mixed data, then use multiple testing to detect significant group level associations (e.g., ROI-gene). In addition, we introduce a scalable algorithm based on orthogonal greedy algorithm, yielding the greedy projected distance correlation (G-PDC). This can reduce the computational cost, which is critical for analyzing large-volume of imaging genomics data. The results from our simulations demonstrate a higher degree of accuracy with GPDC than distance correlation, Pearson's correlation and partial correlation, especially when the correlation is nonlinear. Finally, we apply our method to the Philadelphia Neurodevelopmental data cohort with 866 samples including fMRI images and SNP profiles. The results uncover several statistically significant and biologically interesting interactions, which are further validated with many existing studies. The Matlab code is available at https://sites.google.com/site/jianfang86/gPDC.
Collapse
|
6
|
Feng W, Chakraborty A. Fragility Extraordinaire: Unsolved Mysteries of Chromosome Fragile Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:489-526. [PMID: 29357071 DOI: 10.1007/978-981-10-6955-0_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chromosome fragile sites are a fascinating cytogenetic phenomenon now widely implicated in a slew of human diseases ranging from neurological disorders to cancer. Yet, the paths leading to these revelations were far from direct, and the number of fragile sites that have been molecularly cloned with known disease-associated genes remains modest. Moreover, as more fragile sites were being discovered, research interests in some of the earliest discovered fragile sites ebbed away, leaving a number of unsolved mysteries in chromosome biology. In this review we attempt to recount some of the early discoveries of fragile sites and highlight those phenomena that have eluded intense scrutiny but remain extremely relevant in our understanding of the mechanisms of chromosome fragility. We then survey the literature for disease association for a comprehensive list of fragile sites. We also review recent studies addressing the underlying cause of chromosome fragility while highlighting some ongoing debates. We report an observed enrichment for R-loop forming sequences in fragile site-associated genes than genomic average. Finally, we will leave the reader with some lingering questions to provoke discussion and inspire further scientific inquiries.
Collapse
Affiliation(s)
- Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Arijita Chakraborty
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
7
|
Linhares ND, Svartman M, Rodrigues TC, Rosenberg C, Valadares ER. Subtelomeric 6p25 deletion/duplication: Report of a patient with new clinical findings and genotype–phenotype correlations. Eur J Med Genet 2015; 58:310-8. [DOI: 10.1016/j.ejmg.2015.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/28/2015] [Indexed: 01/02/2023]
|
8
|
Almalki A, Alston CL, Parker A, Simonic I, Mehta SG, He L, Reza M, Oliveira JM, Lightowlers RN, McFarland R, Taylor RW, Chrzanowska-Lightowlers ZM. Mutation of the human mitochondrial phenylalanine-tRNA synthetase causes infantile-onset epilepsy and cytochrome c oxidase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:56-64. [PMID: 24161539 PMCID: PMC3898479 DOI: 10.1016/j.bbadis.2013.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/30/2013] [Accepted: 10/17/2013] [Indexed: 11/24/2022]
Abstract
Mitochondrial aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in protein synthesis since they charge tRNAs with their cognate amino acids. Mutations in the genes encoding mitochondrial aaRSs have been associated with a wide spectrum of human mitochondrial diseases. Here we report the identification of pathogenic mutations (a partial genomic deletion and a highly conserved p. Asp325Tyr missense variant) in FARS2, the gene encoding mitochondrial phenylalanyl-tRNA synthetase, in a patient with early-onset epilepsy and isolated complex IV deficiency in muscle. The biochemical defect was expressed in myoblasts but not in fibroblasts and associated with decreased steady state levels of COXI and COXII protein and reduced steady state levels of the mt-tRNA(Phe) transcript. Functional analysis of the recombinant mutant p. Asp325Tyr FARS2 protein showed an inability to bind ATP and consequently undetectable aminoacylation activity using either bacterial tRNA or human mt-tRNA(Phe) as substrates. Lentiviral transduction of cells with wildtype FARS2 restored complex IV protein levels, confirming that the p.Asp325Tyr mutation is pathogenic, causing respiratory chain deficiency and neurological deficits on account of defective aminoacylation of mt-tRNA(Phe).
Collapse
Affiliation(s)
- Abdulraheem Almalki
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Charlotte L. Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Alasdair Parker
- Child Development Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Ingrid Simonic
- Medical Genetics Laboratories, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sarju G. Mehta
- Department of Medical Genetics, Addenbrookes Hospital, Cambridge, UK
| | - Langping He
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Mojgan Reza
- Biobank, Institute for Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Jorge M.A. Oliveira
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert N. Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Zofia M.A. Chrzanowska-Lightowlers
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
9
|
Genetic insights into the functional elements of language. Hum Genet 2013; 132:959-86. [PMID: 23749164 DOI: 10.1007/s00439-013-1317-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
Language disorders cover a wide range of conditions with heterologous and overlapping phenotypes and complex etiologies harboring both genetic and environmental influences. Genetic approaches including the identification of genes linked to speech and language phenotypes and the characterization of normal and aberrant functions of these genes have, in recent years, unraveled complex details of molecular and cognitive mechanisms and provided valuable insight into the biological foundations of language. Consistent with this approach, we have reviewed the functional aspects of allelic variants of genes which are currently known to be either causally associated with disorders of speech and language or impact upon the spectrum of normal language ability. We have also reviewed candidate genes associated with heritable speech and language disorders. In addition, we have evaluated language phenotypes and associated genetic components in developmental syndromes that, together with a spectrum of altered language abilities, manifest various phenotypes and offer details of multifactorial determinants of language function. Data from this review have revealed a predominance of regulatory networks involved in the control of differentiation and functioning of neurons, neuronal tracks and connections among brain structures associated with both cognitive and language faculties. Our findings, furthermore, have highlighted several multifactorial determinants in overlapping speech and language phenotypes. Collectively this analysis has revealed an interconnected developmental network and a close association of the language faculty with cognitive functions, a finding that has the potential to provide insight into linguistic hypotheses defining in particular, the contribution of genetic elements to and the modular nature of the language faculty.
Collapse
|