1
|
Czylok MA, Prokopiuk M, Meller K, Zawadzka M, Mazurkiewicz-Bełdzińska M. Unusual Phenotypic Variability in Paroxysmal Dystonia Associated with Rare ATP1A3 Mutation: A Case Report and Review. J Child Neurol 2025:8830738251327707. [PMID: 40208079 DOI: 10.1177/08830738251327707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Paroxysmal dyskinesias, marked by sudden involuntary movements, poses diagnostic challenges because of its heterogeneous nature and overlap with other movement disorders. Genetic factors, especially variants in the ATP1A3 gene, have been linked to various neurologic conditions, including paroxysmal dystonia. We report a 5-year-old patient with a rare ATP1A3 gene variant (c.2309T>G, p.(Leu770Arg)), previously documented in only 1 other patient. Unlike the earlier report, the patient presented distinct clinical features, with a focus on dystonia rather than hemiplegia and no intellectual impairment. This phenotypic variability highlights the challenges in diagnosis and treatment. We discuss differential diagnoses, including Alternating Hemiplegia of Childhood, and emphasize the need for comprehensive genetic testing and multidisciplinary care. Our study advocates for further research to better understand the spectrum of ATP1A3-related disorders and enhance diagnostic accuracy and patient management in paroxysmal dystonia.
Collapse
Affiliation(s)
- Martyna A Czylok
- Department of Developmental Neurology, Medical University of Gdansk, Gdansk, Poland
| | - Milena Prokopiuk
- Department of Developmental Neurology, Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Meller
- Department of Developmental Neurology, Medical University of Gdansk, Gdansk, Poland
| | - Marta Zawadzka
- Department of Developmental Neurology, Medical University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
2
|
Harvey S, Allen NM, Byrne S, Lynch B, McSweeney N, Neville S, O'Mahony O, O'Regan M, O'Rourke D, Reade E, Webb D, King MD, Gorman KM. Pediatric paroxysmal movement disorders - A clinical epidemiological study in an Irish cohort. Eur J Paediatr Neurol 2025; 55:70-78. [PMID: 40132247 DOI: 10.1016/j.ejpn.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/12/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Paroxysmal movement disorders (PxMD) are characterized by episodic involuntary movements and include paroxysmal dyskinesias (PD) and episodic ataxias (EA). Although reported in the medical literature since 1892, the exact prevalence in children is unknown. OBJECTIVES To determine the prevalence and clinical characteristics of PxMD in the pediatric population in the Republic of Ireland. METHODS Cross-sectional cohort study across pediatric neurology services in the Republic of Ireland incorporating retrospective chart, telephone and clinical reviews. RESULTS Seventy-nine cases met the inclusion criteria (PD = 37, EA = 38, Alternating Hemiplegia of Childhood = 4). Point prevalence for all PxMD was 6.5 cases per 100,000 persons aged less than 18 years (PD 3/100,000, EA 3.1/100,000, Alternating Hemiplegia of Childhood 0.3/100,000). Sixty-four cases were clinically reviewed by the research team (PD = 33, EA = 31). A cause was identified in 38 % (24/64). The highest investigation yield was from single-gene testing (38 %, 9/24) followed by gene panels (25 %, 11/44). Variable evolution patterns were seen. In PD, 55 % (18/33) resolved and 30 % (10/33) improved. This was due to medication in 61 % (20/33), trigger avoidance in 6 % (2/33) and spontaneous remission in 18 % (6/33). In EA, 45 % (14/31) resolved and 42 % (13/31) improved, with spontaneous remission or improvement in 48 % (17/33). DISCUSSION This study adds to the PxMD knowledge base by determining PxMD prevalence in a pediatric population for the first time. This prevalence is higher than previous adult population estimates. An aetiology was identified in one-third. A large proportion can expect symptom improvement either with medications, trigger avoidance or spontaneous remission over time.
Collapse
Affiliation(s)
- Susan Harvey
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Nicholas M Allen
- Department of Paediatrics, University of Galway, Ireland; Department of Paediatrics, Galway University Hospital, Galway, Ireland
| | - Susan Byrne
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| | - Bryan Lynch
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Niamh McSweeney
- Department of Paediatric Neurology, Cork University Hospital, Cork, Ireland
| | - Siobhan Neville
- Department of Paediatrics, University Hospital Limerick, Limerick, Ireland; School of Medicine, University of Limerick, Limerick, Ireland
| | - Olivia O'Mahony
- Department of Paediatric Neurology, Cork University Hospital, Cork, Ireland
| | - Mary O'Regan
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| | - Declan O'Rourke
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Elaine Reade
- Department of Paediatrics, Galway University Hospital, Galway, Ireland
| | - David Webb
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| | - Mary D King
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland
| | - Kathleen M Gorman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Ruan DD, Zou J, Liao LS, Ji MD, Wang RL, Zhang JH, Zhang L, Gao MZ, Chen Q, Yu HP, Wei W, Li YF, Li H, Lin F, Luo JW, Lin XF. In vitro study of ATP1A3 p.Ala275Pro mutant causing alternating hemiplegia of childhood and rapid-onset dystonia-parkinsonism. Front Neurosci 2024; 18:1415576. [PMID: 39145297 PMCID: PMC11322359 DOI: 10.3389/fnins.2024.1415576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction We previously reported that ATP1A3 c.823G>C (p.Ala275Pro) mutant causes varying phenotypes of alternative hemiplegia of childhood and rapid-onset dystonia-parkinsonism in the same family. This study aims to investigate the function of ATP1A3 c.823G>C (p.Ala275Pro) mutant at the cellular and zebrafish models. Methods ATP1A3 wild-type and mutant Hela cell lines were constructed, and ATP1A3 mRNA expression, ATP1A3 protein expression and localization, and Na+-K+-ATPase activity in each group of cells were detected. Additionally, we also constructed zebrafish models with ATP1A3 wild-type overexpression (WT) and p.Ala275Pro mutant overexpression (MUT). Subsequently, we detected the mRNA expression of dopamine signaling pathway-associated genes, Parkinson's disease-associated genes, and apoptosisassociated genes in each group of zebrafish, and observed the growth, development, and movement behavior of zebrafish. Results Cells carrying the p.Ala275Pro mutation exhibited lower levels of ATP1A3 mRNA, reduced ATP1A3 protein expression, and decreased Na+-K+-ATPase activity compared to wild-type cells. Immunofluorescence analysis revealed that ATP1A3 was primarily localized in the cytoplasm, but there was no significant difference in ATP1A3 protein localization before and after the mutation. In the zebrafish model, both WT and MUT groups showed lower brain and body length, dopamine neuron fluorescence intensity, escape ability, swimming distance, and average swimming speed compared to the control group. Moreover, overexpression of both wild-type and mutant ATP1A3 led to abnormal mRNA expression of genes associated with the dopamine signaling pathway and Parkinson's disease in zebrafish, and significantly upregulated transcription levels of bad and caspase-3 in the apoptosis signaling pathway, while reducing the transcriptional level of bcl-2 and the bcl-2/bax ratio. Conclusion This study reveals that the p.Ala275Pro mutant decreases ATP1A3 protein expression and Na+/K+-ATPase activity. Abnormal expression of either wild-type or mutant ATP1A3 genes impairs growth, development, and movement behavior in zebrafish.
Collapse
Affiliation(s)
- Dan-dan Ruan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jing Zou
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Li-sheng Liao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou, China
| | - Ming-dong Ji
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ruo-li Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, China
| | - Jian-hui Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Li Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Mei-zhu Gao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Qian Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hong-ping Yu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wen Wei
- Department of Rehabilitation Medicine, Ganzhou Municipal Hospital, Ganzhou, China
| | - Yun-fei Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, China
| | - Hong Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Fan Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Jie-wei Luo
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xin-fu Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Pediatrics Department, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
4
|
Sentmanat MK, Papadopoulou MT, Prange L, Fons C, De Grandis E, Vezyroglou A, Boggs A, Su S, Comajuan M, Wuchich J, Jóhannesson S, Huaynate JA, Stagnaro M, Megvinov A, Patel S, Arzimanoglou A, Vavassori R, Panagiotakaki E, Mikati MA. Development and testing of methods to record and follow up spells in patients with alternating hemiplegia of childhood. Eur J Paediatr Neurol 2023; 46:98-107. [PMID: 37562161 DOI: 10.1016/j.ejpn.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Developing methods to record Alternating Hemiplegia of Childhood (AHC) spells is essential for clinical trials and patient care. OBJECTIVES Test the following hypotheses: 1) Video-library training improves participants' ability to correctly identify AHC spells. 2) A custom-designed event-calendar with weekly reviews results in consistent documentation of such events over time. 3) Use of an electronic diary (e-Diary) to register events is a useful tool. METHODS 1) A video-library of AHC type spells was developed along with specific training; the effect of the training was tested in 36 caregivers. 2) An event-calendar was similarly developed and provided to 5 caregivers with weekly videoconference meetings for 8 weeks. 3) An e-Diary was developed and offered to 33 patients; time of usage and caregivers' feedback (telephone interview) were analyzed. RESULTS 1) Video-library training: Wilcoxon test showed improvement in caregiver identification of spells (p = 0.047), Cohen's Kappa demonstrated high degree of agreement between caregivers'-experts' classifications (>0.9). 2) Event-calendar: 96.42% of entries had complete information; this did not change during follow up (p = 0.804). 3) e-Diary: whereas 52% of respondents used the e-Diary when offered (duration: 10.5 ± 8.1 months), 96.3% indicated they would use it in future studies. Those who used it for 13 months, were very likely to use it during the rest of that year. CONCLUSIONS Video-library training improved spell identification. Calendar with weekly reviews resulted in a sustained and consistent record keeping. Caregivers' e-Diary feedback was encouraging with long-term usage in many. These approaches could be helpful for AHC and, potentially, in similar disorders.
Collapse
Affiliation(s)
- Maria K Sentmanat
- Duke University Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Durham, NC, USA
| | - Maria T Papadopoulou
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, University Hospitals of Lyon (HCL), Lyon, France; EpiCARE-ERN Full Member, Italy
| | - Lyndsey Prange
- Duke University Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Durham, NC, USA
| | - Carmen Fons
- EpiCARE-ERN Full Member, Italy; Department of Child Neurology, Sant Joan de Déu Children's Hospital, Barcelona, Spain
| | - Elisa De Grandis
- EpiCARE-ERN Full Member, Italy; Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Aikaterini Vezyroglou
- Department of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, London, UK
| | - April Boggs
- Duke University Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Durham, NC, USA
| | - Samantha Su
- Duke University Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Durham, NC, USA
| | - Marion Comajuan
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, University Hospitals of Lyon (HCL), Lyon, France; EpiCARE-ERN Full Member, Italy
| | | | | | | | - Michela Stagnaro
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Andrey Megvinov
- Euro Mediterranean Institute of Science and Technology I.E.ME.S.T., Palermo, Italy
| | - Shital Patel
- Duke University Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Durham, NC, USA
| | - Alexis Arzimanoglou
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, University Hospitals of Lyon (HCL), Lyon, France; EpiCARE-ERN Full Member, Italy
| | - Rosaria Vavassori
- EpiCARE-ERN Full Member, Italy; Euro Mediterranean Institute of Science and Technology I.E.ME.S.T., Palermo, Italy; Association AHC18+ e.V., Germany
| | - Eleni Panagiotakaki
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, University Hospitals of Lyon (HCL), Lyon, France; EpiCARE-ERN Full Member, Italy
| | - Mohamad A Mikati
- Duke University Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Durham, NC, USA; Department of Neurobiology, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Zou S, Lan YL, Gong Y, Chen Z, Xu C. The role of ATP1A3 gene in epilepsy: We need to know more. Front Cell Neurosci 2023; 17:1143956. [PMID: 36866063 PMCID: PMC9972585 DOI: 10.3389/fncel.2023.1143956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
The ATP1A3 gene, which encodes the Na+/K+-ATPase α3 catalytic subunit, plays a crucial role in both physiological and pathological conditions in the brain, and mutations in this gene have been associated with a wide variety of neurological diseases by impacting the whole infant development stages. Cumulative clinical evidence suggests that some severe epileptic syndromes have been linked to mutations in ATP1A3, among which inactivating mutation of ATP1A3 has been intriguingly found to be a candidate pathogenesis for complex partial and generalized seizures, proposing ATP1A3 regulators as putative targets for the rational design of antiepileptic therapies. In this review, we introduced the physiological function of ATP1A3 and summarized the findings about ATP1A3 in epileptic conditions from both clinical and laboratory aspects at first. Then, some possible mechanisms of how ATP1A3 mutations result in epilepsy are provided. We think this review timely introduces the potential contribution of ATP1A3 mutations in both the genesis and progression of epilepsy. Taken that both the detailed mechanisms and therapeutic significance of ATP1A3 for epilepsy are not yet fully illustrated, we think that both in-depth mechanisms investigations and systematic intervention experiments targeting ATP1A3 are needed, and by doing so, perhaps a new light can be shed on treating ATP1A3-associated epilepsy.
Collapse
Affiliation(s)
- Shuang Zou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu-Long Lan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Yu-Long Lan ✉
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China,Cenglin Xu ✉
| |
Collapse
|
6
|
Ananthavarathan P, Kamourieh S. Alternating hemiplegia of childhood. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:221-227. [PMID: 38043964 DOI: 10.1016/b978-0-12-823356-6.00005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Alternating hemiplegia of childhood (AHC) is characterized by recurrent episodes of hemiplegia which may alternate sides between attacks. The condition is associated with severe neurodevelopmental disorder presenting in early infancy, and may encompass a wide range of other paroxysmal manifestations (e.g., dystonia, nystagmus, dysautonomia) and pervasive neurological disabilities (e.g., developmental delay, learning disabilities, choreoathetosis, and ataxia). Epileptic seizures are particularly common among patients with AHC. Diagnosis is usually based on history and clinical grounds using the Aicardi criteria. Mutations in the ATP1A3 gene are implicated in the disease pathology of the condition, as well as several other neurodevelopmental disorders, suggesting AHC forms part of a spectrum of overlapping clinical syndromes rather than a distinct clinical entity per se. Management of patients with AHC includes the rapid induction of sleep during paroxysmal attacks and the avoidance of identified triggers. Pharmacotherapeutic treatments have a role in managing epileptic seizures, as well as in the prevention of paroxysmal attacks wherein flunarizine remains the treatment of choice.
Collapse
Affiliation(s)
- Piriyankan Ananthavarathan
- Department of Neurology, Headache and Facial Pain Group, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Salwa Kamourieh
- Department of Neurology, Headache and Facial Pain Group, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom.
| |
Collapse
|
7
|
OKAZAKI Y, SASAKI T, KAWAI K, HOSOMOTO K, SASADA S, YASUHARA T, AKIYAMA T, HANAOKA Y, DATE I. Two Cases of Monozygotic Twins with Early-onset Isolated (DYT1) Dystonia Effectively Treated with Bilateral Globus Pallidus Internus Stimulation. NMC Case Rep J 2022; 9:307-312. [PMID: 36263189 PMCID: PMC9534566 DOI: 10.2176/jns-nmc.2022-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Early-onset isolated (DYT1) dystonia is one of the most common forms of primary dystonia in childhood, and deep brain stimulation of the globus pallidus internus (GPi-DBS) is a highly effective treatment for it. However, the effectiveness of GPi-DBS in monozygotic twins with DYT1 dystonia has never been reported globally. Here, we report the cases of monozygotic twins with DYT1 dystonia who were treated using GPi-DBS, and we include a literature review. The younger brother showed an abnormal gait, with external rotation of the right lower leg at 6 years old. The symptoms gradually became so severe that he had difficulty walking on his own at 9 years of age. Treatment with levodopa-carbidopa partially resolved his symptoms, but most of the symptoms remained. Meanwhile, the older brother developed dystonia in both upper limbs at 8 years of age, with gradual symptom progression. At 13 years of age, they were diagnosed with DYT1 dystonia. Bilateral GPi-DBS was performed in both patients at 16 years of age. Their symptoms remarkably improved after surgery. The Burke-Fahn-Marsden dystonia rating scale (BFMDRS) movement score was reduced from 52 to 2 points for the younger brother and from 35 to 1 point for the older brother. Even if monozygotic twins have the same genes, the onset and severity of symptoms might vary in accordance with differences in epigenomic profiles. However, GPi-DBS treatment was very effective for the two cases; thus, we should consider the surgical interventions for each patient.
Collapse
Affiliation(s)
- Yosuke OKAZAKI
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Tatsuya SASAKI
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Kouji KAWAI
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Kakeru HOSOMOTO
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Susumu SASADA
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Takao YASUHARA
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Tomoyuki AKIYAMA
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | | | - Isao DATE
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| |
Collapse
|
8
|
Ng HWY, Ogbeta JA, Clapcote SJ. Genetically altered animal models for ATP1A3-related disorders. Dis Model Mech 2021; 14:272403. [PMID: 34612482 PMCID: PMC8503543 DOI: 10.1242/dmm.048938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within the past 20 years, particularly with the advent of exome sequencing technologies, autosomal dominant and de novo mutations in the gene encoding the neurone-specific α3 subunit of the Na+,K+-ATPase (NKA α3) pump, ATP1A3, have been identified as the cause of a phenotypic continuum of rare neurological disorders. These allelic disorders of ATP1A3 include (in approximate order of severity/disability and onset in childhood development): polymicrogyria; alternating hemiplegia of childhood; cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing loss syndrome; relapsing encephalopathy with cerebellar ataxia; and rapid-onset dystonia-parkinsonism. Some patients present intermediate, atypical or combined phenotypes. As these disorders are currently difficult to treat, there is an unmet need for more effective therapies. The molecular mechanisms through which mutations in ATP1A3 result in a broad range of neurological symptoms are poorly understood. However, in vivo comparative studies using genetically altered model organisms can provide insight into the biological consequences of the disease-causing mutations in NKA α3. Herein, we review the existing mouse, zebrafish, Drosophila and Caenorhabditis elegans models used to study ATP1A3-related disorders, and discuss their potential contribution towards the understanding of disease mechanisms and development of novel therapeutics.
Collapse
Affiliation(s)
- Hannah W Y Ng
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jennifer A Ogbeta
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.,European Network for Research on Alternating Hemiplegia (ENRAH), 1120 Vienna, Austria
| |
Collapse
|
9
|
Moya-Mendez ME, Ogbonna C, Ezekian JE, Rosamilia MB, Prange L, de la Uz C, Kim JJ, Howard T, Garcia J, Nussbaum R, Truty R, Callis TE, Funk E, Heyes M, Dear GDL, Carboni MP, Idriss SF, Mikati MA, Landstrom AP. ATP1A3-Encoded Sodium-Potassium ATPase Subunit Alpha 3 D801N Variant Is Associated With Shortened QT Interval and Predisposition to Ventricular Fibrillation Preceded by Bradycardia. J Am Heart Assoc 2021; 10:e019887. [PMID: 34459253 PMCID: PMC8649289 DOI: 10.1161/jaha.120.019887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Pathogenic variation in the ATP1A3‐encoded sodium‐potassium ATPase, ATP1A3, is responsible for alternating hemiplegia of childhood (AHC). Although these patients experience a high rate of sudden unexpected death in epilepsy, the pathophysiologic basis for this risk remains unknown. The objective was to determine the role of ATP1A3 genetic variants on cardiac outcomes as determined by QT and corrected QT (QTc) measurements. Methods and Results We analyzed 12‐lead ECG recordings from 62 patients (male subjects=31, female subjects=31) referred for AHC evaluation. Patients were grouped according to AHC presentation (typical versus atypical), ATP1A3 variant status (positive versus negative), and ATP1A3 variant (D801N versus other variants). Manual remeasurements of QT intervals and QTc calculations were performed by 2 pediatric electrophysiologists. QTc measurements were significantly shorter in patients with positive ATP1A3 variant status (P<0.001) than in patients with genotype‐negative status, and significantly shorter in patients with the ATP1A3‐D801N variant than patients with other variants (P<0.001). The mean QTc for ATP1A3‐D801N was 344.9 milliseconds, which varied little with age, and remained <370 milliseconds throughout adulthood. ATP1A3 genotype status was significantly associated with shortened QTc by multivariant regression analysis. Two patients with the ATP1A3‐D801N variant experienced ventricular fibrillation, resulting in death in 1 patient. Rare variants in ATP1A3 were identified in a large cohort of genotype‐negative patients referred for arrhythmia and sudden unexplained death. Conclusions Patients with AHC who carry the ATP1A3‐D801N variant have significantly shorter QTc intervals and an increased likelihood of experiencing bradycardia associated with life‐threatening arrhythmias. ATP1A3 variants may represent an independent cause of sudden unexplained death. Patients with AHC should be evaluated to identify risk of sudden death.
Collapse
Affiliation(s)
- Mary E Moya-Mendez
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Chiagoziem Ogbonna
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Jordan E Ezekian
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Michael B Rosamilia
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Lyndsey Prange
- Department of Pediatrics Division of Neurology Duke University School of Medicine Durham NC
| | - Caridad de la Uz
- Department of Pediatrics Division of Cardiology Johns Hopkins School of Medicine Baltimore MD
| | - Jeffrey J Kim
- Department of Pediatrics Section of Cardiology Baylor College of Medicine Houston TX
| | - Taylor Howard
- Department of Pediatrics Section of Cardiology Baylor College of Medicine Houston TX
| | | | | | | | | | - Emily Funk
- Duke University School of NursingAssistant Clinical ProfessorDuke University Durham NC
| | - Matthew Heyes
- Duke University School of NursingAssistant Clinical ProfessorDuke University Durham NC
| | - Guy de Lisle Dear
- Department of Anesthesia Duke University School of Medicine Durham NC
| | - Michael P Carboni
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Salim F Idriss
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Mohamad A Mikati
- Department of Pediatrics Division of Neurology Duke University School of Medicine Durham NC
| | - Andrew P Landstrom
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC.,Department of Cell Biology Duke University School of Medicine Durham NC
| |
Collapse
|
10
|
Jiao S, Johnson K, Moreno C, Yano S, Holmgren M. Comparative description of the mRNA expression profile of Na + /K + -ATPase isoforms in adult mouse nervous system. J Comp Neurol 2021; 530:627-647. [PMID: 34415061 PMCID: PMC8716420 DOI: 10.1002/cne.25234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/16/2021] [Accepted: 08/16/2021] [Indexed: 11/09/2022]
Abstract
Mutations in genes encoding Na+ /K+ -ATPase α1, α2, and α3 subunits cause a wide range of disabling neurological disorders, and dysfunction of Na+ /K+ -ATPase may contribute to neuronal injury in stroke and dementia. To better understand the pathogenesis of these diseases, it is important to determine the expression patterns of the different Na+ /K+ -ATPase subunits within the brain and among specific cell types. Using two available scRNA-Seq databases from the adult mouse nervous system, we examined the mRNA expression patterns of the different isoforms of the Na+ /K+ -ATPase α, β and Fxyd subunits at the single-cell level among brain regions and various neuronal populations. We subsequently identified specific types of neurons enriched with transcripts for α1 and α3 isoforms and elaborated how α3-expressing neuronal populations govern cerebellar neuronal circuits. We further analyzed the co-expression network for α1 and α3 isoforms, highlighting the genes that positively correlated with α1 and α3 expression. The top 10 genes for α1 were Chn2, Hpcal1, Nrgn, Neurod1, Selm, Kcnc1, Snrk, Snap25, Ckb and Ccndbp1 and for α3 were Sorcs3, Eml5, Neurod2, Ckb, Tbc1d4, Ptprz1, Pvrl1, Kirrel3, Pvalb, and Asic2.
Collapse
Affiliation(s)
- Song Jiao
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Kory Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Cristina Moreno
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Sho Yano
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Miguel Holmgren
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Biondo ED, Spontarelli K, Ababioh G, Méndez L, Artigas P. Diseases caused by mutations in the Na +/K + pump α1 gene ATP1A1. Am J Physiol Cell Physiol 2021; 321:C394-C408. [PMID: 34232746 DOI: 10.1152/ajpcell.00059.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human cell survival requires function of the Na+/K+ pump; the heteromeric protein that hydrolyzes ATP to extrude Na+ and import K+ across the plasmalemma, thereby building and maintaining these ions' electrochemical gradients. Numerous dominant diseases caused by mutations in genes encoding for Na+/K+ pump catalytic (α) subunit isoforms highlight the importance of this protein. Here, we review literature describing disorders caused by missense mutations in ATP1A1, the gene encoding the ubiquitously expressed α1 isoform of the Na+/K+ pump. These various maladies include primary aldosteronism with secondary hypertension, an endocrine syndrome, Charcot-Marie-Tooth disease, a peripheral neuropathy, complex spastic paraplegia, another neuromuscular disorder, as well as hypomagnesemia accompanied by seizures and cognitive delay, a condition affecting the renal and central nervous systems. This article focuses on observed commonalities among these mutations' functional effects, as well as on the special characteristics that enable each particular mutation to exclusively affect a certain system, without affecting others. In this respect, it is clear how somatic mutations localized to adrenal adenomas increase aldosterone production without compromising other systems. However, it remains largely unknown how and why some but not all de novo germline or familial mutations (where the mutant must be expressed in numerous tissues) produce a specific disease and not the other diseases. We propose hypotheses to explain this observation and the approaches that we think will drive future research on these debilitating disorders to develop novel patient-specific treatments by combining the use of heterologous protein-expression systems, patient-derived pluripotent cells, and gene-edited cell and mouse models.
Collapse
Affiliation(s)
- Elisa D Biondo
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Kerri Spontarelli
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Giovanna Ababioh
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Lois Méndez
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
12
|
Mikati MA, Panagiotakaki E, Arzimanoglou A. Revision of the diagnostic criteria of alternating hemiplegia of childhood. Eur J Paediatr Neurol 2021; 32:A4-A5. [PMID: 33975787 DOI: 10.1016/j.ejpn.2021.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, And Department of Neurobiology, Duke University, USA
| | - Eleni Panagiotakaki
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| | - Alexis Arzimanoglou
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France; Department of Child Neurology and Epilepsy Research Unit, Member of the ERN EpiCARE, Hospital San Juan de Dios, Barcelona, Spain.
| |
Collapse
|
13
|
Stępień A, Maślanko K, Krawczyk M, Rekowski W, Kostera-Pruszczyk A. Gross Motor Function Disorders in Patients with Alternating Hemiplegia of Childhood. JOURNAL OF MOTHER AND CHILD 2020; 24:24-32. [PMID: 33074178 PMCID: PMC8518102 DOI: 10.34763/jmotherandchild.2020241.1935.000003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Alternating hemiplegia of Childhood (AHC) is a rare disease manifested by transient episodes of hemiplegia and other neurological disorders. Delayed motor development has been reported in patients with AHC, but detailed features of the motor impairment have not been described so far. Aim The aim of the study was to evaluate gross motor function between attacks in a group of Polish patients with AHC. Materials and methods The interictal gross motor function was assessed using the Gross Motor Function AHC scale, which consisted of 41 motor tasks. The study group consisted of 10 patients with AHC older than 2 years of age. The control group consisted of 30 age- and gender-matched subjects. The results achieved in each of the 41 tasks by the study subjects were compared to the results obtained with controls using the non-parametric Mann-Whitney U-test. In tasks 38-41, mean times were compared between the study subjects and controls. Results The study revealed gross motor function impairment in patients with AHC. The greatest differences compared to controls concerned such skills as standing on toes, walking on toes, walking on heels, as well as running and hopping on one leg and on alternate legs. Significant impairment of the motor function of the upper limbs was also found. Conclusions The study confirmed motor function impairment between attacks in patients with AHC. The study findings may indicate the need to introduce individualised physiotherapy management of patients with AHC.
Collapse
Affiliation(s)
- Agnieszka Stępień
- Department of Rehabilitation, Józef Piłsudski University of Physical Education, Warsaw, Poland
| | | | - Maciej Krawczyk
- Department of Rehabilitation, Józef Piłsudski University of Physical Education, Warsaw, Poland
| | - Witold Rekowski
- Psychosocial Foundation of Health and Rehabilitation, Department of Rehabilitation, Józef Piłsudski University of Physical Education, Warsaw, Poland
| | | |
Collapse
|
14
|
Boonsimma P, Michael Gasser M, Netbaramee W, Wechapinan T, Srichomthong C, Ittiwut C, Wagner M, Krenn M, Zimprich F, Abicht A, Biskup S, Roser T, Borggraefe I, Suphapeetiporn K, Shotelersuk V. Mutational and phenotypic expansion of ATP1A3-related disorders: Report of nine cases. Gene 2020; 749:144709. [PMID: 32339621 DOI: 10.1016/j.gene.2020.144709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mutations in the ATP1A3 gene are known to be the cause of three distinct neurological syndromes including alternating hemiplegia of childhood (AHC), rapid-onset dystonia parkinsonism (RDP) and cerebellar ataxia, arefexia, pes cavus, optic atrophy and sensorineural hearing impairment (CAPOS). Recent studies have suggested the broader diversity of ATP1A3-related disorders. This study aimed to investigate the clinical spectrum in patients carrying causative mutations within the ATP1A3 gene. METHOD The medical histories of nine unrelated patients with diverse phenotypes harboring variants in ATP1A3 were retrospectively analyzed after they were referred to a tertiary epilepsy center in one of the two different health care systems (Germany or Thailand). Clinical features, neurophysiological data, imaging results, genetic characteristics and treatments were reviewed. RESULTS Three patients harbor novel mutations in the ATP1A3 gene. Atypical clinical features and imaging findings were observed in two cases, one with hemiplegia-hemiconvulsion-epilepsy syndrome, and the other with neurodegeneration with brain iron accumulation. All nine patients presented with intellectual impairment. Alternating hemiplegia of childhood (AHC) was the most common phenotype (67%). Flunarizine and topiramate led to symptom reduction in 83% and 25% of AHC cases administered, respectively. CONCLUSION The present case series expands the clinical and genetic spectrum of ATP1A3-related disorders.
Collapse
Affiliation(s)
- Ponghatai Boonsimma
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand
| | - Marius Michael Gasser
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Haunersches Childrens Hospital, Ludwig Maximilians University of Munich, Germany
| | - Wiracha Netbaramee
- Division of Neurology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanin Wechapinan
- Division of Neurology, Department of Pediatrics, Faculty of Medicine, Queen Sirikit National Institute of Child Health, Bangkok 10400, Thailand
| | - Chalurmpon Srichomthong
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand
| | - Chupong Ittiwut
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand
| | - Matias Wagner
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany; Institute for Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Krenn
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Angela Abicht
- Medical Genetic Center Munich, Munich, Germany; Department of Neurology, Friedrich-Baur-Institute, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Saskia Biskup
- Praxis für Humangenetik und CeGaT GmbH, Paul-Ehrlich-Str. 23, Tuebingen, Germany
| | - Timo Roser
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Haunersches Childrens Hospital, Ludwig Maximilians University of Munich, Germany
| | - Ingo Borggraefe
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Haunersches Childrens Hospital, Ludwig Maximilians University of Munich, Germany; Comprehensive Epilepsy Center, Ludwig Maxiliams University of Munich, Germany
| | - Kanya Suphapeetiporn
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand.
| | - Vorasuk Shotelersuk
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|
15
|
Abstract
Alternating hemiplegia, a rare neurological disease that manifests in children under the age of 18 months, is characterized by transient episodes of hemiparesis of an alternating nature in the waking period. In addition to transient hemiparesis, neurological symptoms in the form of choreoathetosis, ataxia, dystonia, autonomic dysfunction, ocular apraxia, nystagmus, seizures, dysarthria and intellectual disorders may develop. Mutation in the ATP1A3 gene is the cause of the disease in more than 75% of patients. In some cases, the use of flunarizine, adenosine triphosphate and a ketogenic diet can reduce the frequency and duration of hemiplegic attacks. The authors report a case of a patient with alternating hemiplegia caused by a heterozygous mutation in exon 8 of the ATP1A3 gene (chr19: 42489098A>T, rs606231428), resulting in an amino acid substitution at position 335 (p.Val335Asp, NM_001256214.1). The use of flunarizin in a dose of 5 mg/day significantly reduces the number and duration of seizures, while oral adenosine-5-triphosphoric acid in a dose of 20 mg/kg/day is not effective.
Collapse
Affiliation(s)
- S L Kulikova
- Republican Research and Clinical Center of Neurology and Neurosurgery, Minsk, Belarus
| | - S A Likhachev
- Republican Research and Clinical Center of Neurology and Neurosurgery, Minsk, Belarus
| | - A R Kashyna
- City Children's Clinical Polyclinic, Minsk, Belarus
| |
Collapse
|
16
|
Physical Therapy for a Patient With Alternating Hemiplegia of Childhood: A Case Report. Pediatr Phys Ther 2019; 31:E8-E14. [PMID: 31220019 DOI: 10.1097/pep.0000000000000630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Alternating hemiplegia of childhood (AHC) is a rare neurological disorder that can influence posture and movement during critical periods of motor development. There are no descriptions of physical therapy for children with AHC. The purpose of this case report is to present an example of physical therapy evaluation, intervention, and outcomes for a child with AHC. SUMMARY OF KEY POINTS Physical therapy services were provided over 9 sequential plans of care between 14 and 52 months of age. The child demonstrated improvements in motor control, walked independently at 16.5 months of age, and her Gross Motor Function Measure-88 score increased from 78% to 95% between 27 and 52 months of age. CONCLUSIONS AND RECOMMENDATIONS FOR CLINICAL PRACTICE The importance in this case lies in the use of a multisystem approach to treatment, careful consideration of frequency of intervention, and discussion of the unique features of AHC.
Collapse
|
17
|
Dobretsov M, Hayar A, Kockara NT, Kozhemyakin M, Light KE, Patyal P, Pierce DR, Wight PA. A Transgenic Mouse Model to Selectively Identify α 3 Na,K-ATPase Expressing Cells in the Nervous System. Neuroscience 2018; 398:274-294. [PMID: 30031123 DOI: 10.1016/j.neuroscience.2018.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
Abstract
The α3 Na+,K+-ATPase (α3NKA) is one of four known α isoforms of the mammalian transporter. A deficiency in α3NKA is linked to severe movement control disorders. Understanding the pathogenesis of these disorders is limited by an incomplete knowledge of α3NKA expression in the brain as well as the challenges associated with identifying living cells that express the isoform for subsequent electrophysiological studies. To address this problem, transgenic mice were generated on the C57BL/6 genetic background, which utilize the mouse α3 subunit gene (Atp1a3) promoter to drive the expression of ZsGreen1 fluorescent protein. Consistent with published results on α3NKA distribution, a ZsGreen1 signal was detected in the brain, but not in the liver, with Atp1a3-ZsGreen1 transgenic mice. The intensity of ZsGreen1 fluorescence in neuronal cell bodies varied considerably in the brain, being highest in the brainstem, deep cerebellar and select thalamic nuclei, and relatively weak in cortical regions. Fluorescence was not detected in astrocytes or white matter areas. ZsGreen1-positive neurons were readily observed in fresh (unfixed) brain sections, which were amenable to patch-clamp recordings. Thus, the α3NKA-ZsGreen1 mouse model provides a powerful tool for studying the distribution and functional properties of α3NKA-expressing neurons in the brain.
Collapse
Affiliation(s)
- Maxim Dobretsov
- Department of Anesthesiology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States.
| | - Abdallah Hayar
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Neriman T Kockara
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Maxim Kozhemyakin
- Department of Neurology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Kim E Light
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Pankaj Patyal
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Dwight R Pierce
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Patricia A Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States.
| |
Collapse
|
18
|
Missense variants in ATP1A3 and FXYD gene family are associated with childhood-onset schizophrenia. Mol Psychiatry 2018; 25:821-830. [PMID: 29895895 PMCID: PMC6291354 DOI: 10.1038/s41380-018-0103-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 11/09/2022]
Abstract
Childhood-onset schizophrenia (COS) is a rare and severe form of schizophrenia defined as onset before age of 13. Here we report on two unrelated cases diagnosed with both COS and alternating hemiplegia of childhood (AHC), and for whom two distinct pathogenic de novo variants were identified in the ATP1A3 gene. ATP1A3 encodes the α-subunit of a neuron-specific ATP-dependent transmembrane sodium-potassium pump. Using whole exome sequencing data derived from a cohort of 17 unrelated COS cases, we also examined ATP1A3 and all of its interactors known to be expressed in the brain to establish if variants could be identified. This led to the identification of a third case with a possibly damaging missense mutation in ATP1A3 and three others cases with predicted pathogenic missense variants in the FXYD gene family (FXYD1, FXYD6, and FXYD6-FXYD2 readthrough). FXYD genes encode proteins that modulate the ATP-dependant pump function. This report is the first to identify variants in the same pathway for COS. Our COS study illustrates the interest of stratifying a complex condition according to the age of onset for the identification of deleterious variants. Whereas ATP1A3 is a replicated gene in rare neuropediatric diseases, this gene has previously been linked with COS in only one case report. The association with rare variants in FXYD gene family is novel and highlights the interest of exploring these genes in COS as well as in pediatric neurodevelopmental disorders.
Collapse
|
19
|
Chen H, Liu P, Hu WG, Deng J, Wang YJ. [Alternating hemiplegia of childhood and epilepsy in an infant]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:956-958. [PMID: 28899461 PMCID: PMC7403067 DOI: 10.7499/j.issn.1008-8830.2017.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/17/2016] [Indexed: 06/07/2023]
Affiliation(s)
- Hui Chen
- Department of Pediatric Neurology, Chengdu Women and Children's Central Hospital, Chengdu 610091, China
| | | | | | | | | |
Collapse
|
20
|
Alderson L. Challenges describing motor profiles in alternating hemiplegia of childhood. Dev Med Child Neurol 2017; 59:778-779. [PMID: 28556907 DOI: 10.1111/dmcn.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lucy Alderson
- Great Ormond Street Hospital - Physiotherapy Department, London, UK
| |
Collapse
|
21
|
Isaksen TJ, Kros L, Vedovato N, Holm TH, Vitenzon A, Gadsby DC, Khodakhah K, Lykke-Hartmann K. Hypothermia-induced dystonia and abnormal cerebellar activity in a mouse model with a single disease-mutation in the sodium-potassium pump. PLoS Genet 2017; 13:e1006763. [PMID: 28472154 PMCID: PMC5436892 DOI: 10.1371/journal.pgen.1006763] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/18/2017] [Accepted: 04/17/2017] [Indexed: 11/18/2022] Open
Abstract
Mutations in the neuron-specific α3 isoform of the Na+/K+-ATPase are found in patients suffering from Rapid onset Dystonia Parkinsonism and Alternating Hemiplegia of Childhood, two closely related movement disorders. We show that mice harboring a heterozygous hot spot disease mutation, D801Y (α3+/D801Y), suffer abrupt hypothermia-induced dystonia identified by electromyographic recordings. Single-neuron in vivo recordings in awake α3+/D801Y mice revealed irregular firing of Purkinje cells and their synaptic targets, the deep cerebellar nuclei neurons, which was further exacerbated during dystonia and evolved into abnormal high-frequency burst-like firing. Biophysically, we show that the D-to-Y mutation abolished pump-mediated Na+/K+ exchange, but allowed the pumps to bind Na+ and become phosphorylated. These findings implicate aberrant cerebellar activity in α3 isoform-related dystonia and add to the functional understanding of the scarce and severe mutations in the α3 isoform Na+/K+-ATPase. The neurological spectrum associated with mutations in the ATP1A3 gene, encoding the α3 isoform of the Na+/K+-ATPase, is complex and still poorly understood. To elucidate the disease-specific pathophysiology, we examined a mouse model harboring the mutation D801Y, which was originally found in a patient with Rapid onset Dystonia Parkinsonism, but recently, also in a patient with Alternating Hemiplegia of Childhood. We found that this model exhibited motor deficits and developed dystonia when exposed to a drop in body temperature. Cerebellar in vivo recordings in awake mice revealed irregular firing of Purkinje cells and their synaptic targets, the deep cerebellar nuclei neurons, which was further exacerbated and evolved into abnormal high-frequency burst firing during dystonia. The development of specific neurological features within the ATP1A3 mutation spectrum, such as dystonia, are thought to reflect the functional consequences of each mutation, thus to investigate the consequence of the D801Y mutations we characterized mutated D-to-Y Na+/K+-ATPases expressed in Xenopus oocytes. These in vitro studies showed that the D-to-Y mutation abolishes pump-mediated Na+/K+ exchange, but still allows the pumps to bind Na+ and become phosphorylated, trapping them in conformations that instead support proton influx.
Collapse
Affiliation(s)
- Toke Jost Isaksen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Lieke Kros
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Natascia Vedovato
- The Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, New York, United States of America
| | - Thomas Hellesøe Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Ariel Vitenzon
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David C. Gadsby
- The Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, New York, United States of America
| | - Kamran Khodakhah
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
22
|
Mosaicism in ATP1A3-related disorders: not just a theoretical risk. Neurogenetics 2016; 18:23-28. [PMID: 27726050 DOI: 10.1007/s10048-016-0498-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/18/2016] [Indexed: 01/16/2023]
Abstract
Mutations in ATP1A3 are involved in a large spectrum of neurological disorders, including rapid onset dystonia parkinsonism (RDP), alternating hemiplegia of childhood (AHC), and cerebellar ataxia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS), with recent descriptions of overlapping phenotypes. In AHC, a few familial cases of autosomal dominant inheritance have been reported, along with cases of de novo sporadic mutations. In contrast, autosomal dominant inheritance has frequently been associated with RDP and CAPOS. Here, we report on two unrelated sets of full siblings with ATP1A3 mutations, (c.2116G>A) p. Gly706Arg in the first family, and (c.2266C>T) p. Arg756Cys in the second family, presenting with familial recurrence of the disease. Both families displayed parental germline mosaicism. In the first family, the brother and sister presented with severe intellectual deficiency, early onset pharmacoresistant epilepsy, ataxia, and autistic features. In the second family, both sisters demonstrated severe encephalopathy with ataxia and dystonia following a regression episode during a febrile episode during infancy. To our knowledge, mosaicism has not previously been reported in ATP1A3-related disorders. This report, therefore, provides evidence that germline mosaicism for ATP1A3 mutations is a likely explanation for familial recurrence and should be considered during recurrence risk counseling for families of children with ATP1A3-related disorders.
Collapse
|
23
|
Holm R, Toustrup-Jensen MS, Einholm AP, Schack VR, Andersen JP, Vilsen B. Neurological disease mutations of α3 Na +,K +-ATPase: Structural and functional perspectives and rescue of compromised function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1807-1828. [PMID: 27577505 DOI: 10.1016/j.bbabio.2016.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 11/26/2022]
Abstract
Na+,K+-ATPase creates transmembrane ion gradients crucial to the function of the central nervous system. The α-subunit of Na+,K+-ATPase exists as four isoforms (α1-α4). Several neurological phenotypes derive from α3 mutations. The effects of some of these mutations on Na+,K+-ATPase function have been studied in vitro. Here we discuss the α3 disease mutations as well as information derived from studies of corresponding mutations of α1 in the light of the high-resolution crystal structures of the Na+,K+-ATPase. A high proportion of the α3 disease mutations occur in the transmembrane sector and nearby regions essential to Na+ and K+ binding. In several cases the compromised function can be traced to disturbance of the Na+ specific binding site III. Recently, a secondary mutation was found to rescue the defective Na+ binding caused by a disease mutation. A perspective is that it may be possible to develop an efficient pharmaceutical mimicking the rescuing effect.
Collapse
Affiliation(s)
- Rikke Holm
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | | | - Anja P Einholm
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Vivien R Schack
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Jens P Andersen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
24
|
Holm TH, Isaksen TJ, Glerup S, Heuck A, Bøttger P, Füchtbauer EM, Nedergaard S, Nyengaard JR, Andreasen M, Nissen P, Lykke-Hartmann K. Cognitive deficits caused by a disease-mutation in the α3 Na(+)/K(+)-ATPase isoform. Sci Rep 2016; 6:31972. [PMID: 27549929 PMCID: PMC4994072 DOI: 10.1038/srep31972] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 12/01/2022] Open
Abstract
The Na+/K+-ATPases maintain Na+ and K+ electrochemical gradients across the plasma membrane, a prerequisite for electrical excitability and secondary transport in neurons. Autosomal dominant mutations in the human ATP1A3 gene encoding the neuron-specific Na+/K+-ATPase α3 isoform cause different neurological diseases, including rapid-onset dystonia-parkinsonism (RDP) and alternating hemiplegia of childhood (AHC) with overlapping symptoms, including hemiplegia, dystonia, ataxia, hyperactivity, epileptic seizures, and cognitive deficits. Position D801 in the α3 isoform is a mutational hotspot, with the D801N, D801E and D801V mutations causing AHC and the D801Y mutation causing RDP or mild AHC. Despite intensive research, mechanisms underlying these disorders remain largely unknown. To study the genotype-to-phenotype relationship, a heterozygous knock-in mouse harboring the D801Y mutation (α3+/D801Y) was generated. The α3+/D801Y mice displayed hyperactivity, increased sensitivity to chemically induced epileptic seizures and cognitive deficits. Interestingly, no change in the excitability of CA1 pyramidal neurons in the α3+/D801Y mice was observed. The cognitive deficits were rescued by administration of the benzodiazepine, clonazepam, a GABA positive allosteric modulator. Our findings reveal the functional significance of the Na+/K+-ATPase α3 isoform in the control of spatial learning and memory and suggest a link to GABA transmission.
Collapse
Affiliation(s)
- Thomas Hellesøe Holm
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Toke Jost Isaksen
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Simon Glerup
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark
| | - Anders Heuck
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Pernille Bøttger
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark
| | | | - Steen Nedergaard
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Laboratory, Center for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus University, DK-8000 Aarhus, Denmark
| | - Mogens Andreasen
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus, Denmark.,Danish Research Institute for Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership of Molecular Medicine, Aarhus University, Department of Molecular Biology and Genetics and Department of Biomedicine, DK-8000 Aarhus C, Denmark
| | - Karin Lykke-Hartmann
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
25
|
Gurrieri F, Tiziano FD, Zampino G, Neri G. Recognizable facial features in patients with alternating hemiplegia of childhood. Am J Med Genet A 2016; 170:2698-705. [PMID: 27312461 DOI: 10.1002/ajmg.a.37808] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/08/2016] [Indexed: 11/07/2022]
Abstract
Alternating hemiplegia of childhood is an early onset neurodevelopmental disorder characterized by paroxystic episodes of alternating hemiplegia, variable degrees of intellectual disability, and dystonic movements. The main causative gene, ATP1A3, is also responsible for other neurodevelopmental disorders. While the neurological profile of this condition is well defined, the question whether a recognizable pattern of physical anomalies does exist in this condition is still open. We performed a morphological evaluation of 30 patients at different ages. All patients were evaluated independently by each author and evaluation sheets were compared, discussed, and agreed afterwards. This study started before the identification of ATP1A3 as the causative gene, and the patients were selected upon their neurological picture. Four of these 30 patients tested negative for ATP1A3 mutations and were excluded from the present work. On physical ground, almost all patients shared a similar physical phenotype consisting of hypotonia, long face, thin eyebrows, strabismus, hypertelorism, long palpebral fissures, downturned mouth, and slender habitus. Such phenotype is sufficiently typical to generate a recognizable gestalt. We also evaluated patients photographs taken from the parents in early childhood (6-20 months) to delineate a clinical profile possibly recognizable before the neurological signs suggest the diagnosis. Our data suggest that the typical early gestalt is sufficient to advise the molecular analysis of ATP1A3, even in absence of the pathognomonic neurological signs. Finally, since a number of patients is now adult, some information can be drawn on the phenotypic evolution of the facial appearance of patients with alternating hemiplegia of childhood. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fiorella Gurrieri
- Istituto di Medicina Genomica, Università Cattolica del S. Cuore Roma, Roma, Lazio, Italy.
| | | | - Giuseppe Zampino
- Istituto di Clinica Pediatrica, Università Cattolica del S. Cuore Roma, Roma, Lazio, Italy
| | - Giovanni Neri
- Istituto di Medicina Genomica, Università Cattolica del S. Cuore Roma, Roma, Lazio, Italy
| |
Collapse
|
26
|
Kinoshita PF, Leite JA, Orellana AMM, Vasconcelos AR, Quintas LEM, Kawamoto EM, Scavone C. The Influence of Na(+), K(+)-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. Front Physiol 2016; 7:195. [PMID: 27313535 PMCID: PMC4890531 DOI: 10.3389/fphys.2016.00195] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022] Open
Abstract
Decreased Na(+), K(+)-ATPase (NKA) activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β, and γ, with four distinct isoforms of the catalytic α subunit (α1-4). Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS), the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2), while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC), as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS) syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2∕3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP) and cGMP-dependent protein kinase (PKG) pathway. Glutamate, through nitric oxide synthase (NOS), cGMP and PKG, stimulates brain α2∕3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA) receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid-β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging.
Collapse
Affiliation(s)
- Paula F. Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Jacqueline A. Leite
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Ana Maria M. Orellana
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Andrea R. Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Luis E. M. Quintas
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Elisa M. Kawamoto
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| |
Collapse
|
27
|
Lagman-Bartolome AM, Lay C. Pediatric migraine variants: a review of epidemiology, diagnosis, treatment, and outcome. Curr Neurol Neurosci Rep 2016; 15:34. [PMID: 25903296 DOI: 10.1007/s11910-015-0551-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pediatric migraine variants, previously known as childhood periodic syndromes, migraine equivalents, or migraine precursors, are a group of periodic or paroxysmal disorders occurring in patients who also have migraine with or without aura, or who have an increased likelihood of developing migraine. They have common key clinical features including periodic or paroxysmal character, normal neurological examination between attacks, family history of migraine, and clinical evolution to classic types of migraine. This article aims to review the pathophysiology, evaluation, and management of the pediatric migraine variants including abdominal migraine, benign paroxysmal vertigo, cyclic vomiting syndrome, and benign paroxysmal torticollis as well as the episodic syndromes that may lead to migraine, infantile colic, alternating hemiplegia of childhood, and vestibular migraine.
Collapse
Affiliation(s)
- Ana Marissa Lagman-Bartolome
- Headache Medicine, Pediatric Neurology, Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Canada,
| | | |
Collapse
|
28
|
Stern WM, Desikan M, Hoad D, Jaffer F, Strigaro G, Sander JW, Rothwell JC, Sisodiya SM. Spontaneously Fluctuating Motor Cortex Excitability in Alternating Hemiplegia of Childhood: A Transcranial Magnetic Stimulation Study. PLoS One 2016; 11:e0151667. [PMID: 26999520 PMCID: PMC4801356 DOI: 10.1371/journal.pone.0151667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
Background Alternating hemiplegia of childhood is a very rare and serious neurodevelopmental syndrome; its genetic basis has recently been established. Its characteristic features include typically-unprovoked episodes of hemiplegia and other transient or more persistent neurological abnormalities. Methods We used transcranial magnetic stimulation to assess the effect of the condition on motor cortex neurophysiology both during and between attacks of hemiplegia. Nine people with alternating hemiplegia of childhood were recruited; eight were successfully tested using transcranial magnetic stimulation to study motor cortex excitability, using single and paired pulse paradigms. For comparison, data from ten people with epilepsy but not alternating hemiplegia, and ten healthy controls, were used. Results One person with alternating hemiplegia tested during the onset of a hemiplegic attack showed progressively diminishing motor cortex excitability until no response could be evoked; a second person tested during a prolonged bilateral hemiplegic attack showed unusually low excitability. Three people tested between attacks showed asymptomatic variation in cortical excitability, not seen in controls. Paired pulse paradigms, which probe intracortical inhibitory and excitatory circuits, gave results similar to controls. Conclusions We report symptomatic and asymptomatic fluctuations in motor cortex excitability in people with alternating hemiplegia of childhood, not seen in controls. We propose that such fluctuations underlie hemiplegic attacks, and speculate that the asymptomatic fluctuation we detected may be useful as a biomarker for disease activity.
Collapse
Affiliation(s)
- William M. Stern
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
- Epilepsy Society, Chalfont St Peter, SL9 0RJ, United Kingdom
| | - Mahalekshmi Desikan
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - Damon Hoad
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - Fatima Jaffer
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Gionata Strigaro
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Josemir W. Sander
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
- Epilepsy Society, Chalfont St Peter, SL9 0RJ, United Kingdom
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - John C. Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - Sanjay M. Sisodiya
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
- Epilepsy Society, Chalfont St Peter, SL9 0RJ, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Panagiotakaki E, De Grandis E, Stagnaro M, Heinzen EL, Fons C, Sisodiya S, de Vries B, Goubau C, Weckhuysen S, Kemlink D, Scheffer I, Lesca G, Rabilloud M, Klich A, Ramirez-Camacho A, Ulate-Campos A, Campistol J, Giannotta M, Moutard ML, Doummar D, Hubsch-Bonneaud C, Jaffer F, Cross H, Gurrieri F, Tiziano D, Nevsimalova S, Nicole S, Neville B, van den Maagdenberg AMJM, Mikati M, Goldstein DB, Vavassori R, Arzimanoglou A. Clinical profile of patients with ATP1A3 mutations in Alternating Hemiplegia of Childhood-a study of 155 patients. Orphanet J Rare Dis 2015; 10:123. [PMID: 26410222 PMCID: PMC4583741 DOI: 10.1186/s13023-015-0335-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in the gene ATP1A3 have recently been identified to be prevalent in patients with alternating hemiplegia of childhood (AHC2). Based on a large series of patients with AHC, we set out to identify the spectrum of different mutations within the ATP1A3 gene and further establish any correlation with phenotype. METHODS Clinical data from an international cohort of 155 AHC patients (84 females, 71 males; between 3 months and 52 years) were gathered using a specifically formulated questionnaire and analysed relative to the mutational ATP1A3 gene data for each patient. RESULTS In total, 34 different ATP1A3 mutations were detected in 85 % (132/155) patients, seven of which were novel. In general, mutations were found to cluster into five different regions. The most frequent mutations included: p.Asp801Asn (43 %; 57/132), p.Glu815Lys (16 %; 22/132), and p.Gly947Arg (11 %; 15/132). Of these, p.Glu815Lys was associated with a severe phenotype, with more severe intellectual and motor disability. p.Asp801Asn appeared to confer a milder phenotypic expression, and p.Gly947Arg appeared to correlate with the most favourable prognosis, compared to the other two frequent mutations. Overall, the comparison of the clinical profiles suggested a gradient of severity between the three major mutations with differences in intellectual (p = 0.029) and motor (p = 0.039) disabilities being statistically significant. For patients with epilepsy, age at onset of seizures was earlier for patients with either p.Glu815Lys or p.Gly947Arg mutation, compared to those with p.Asp801Asn mutation (p < 0.001). With regards to the five mutation clusters, some clusters appeared to correlate with certain clinical phenotypes. No statistically significant clinical correlations were found between patients with and without ATP1A3 mutations. CONCLUSIONS Our results, demonstrate a highly variable clinical phenotype in patients with AHC2 that correlates with certain mutations and possibly clusters within the ATP1A3 gene. Our description of the clinical profile of patients with the most frequent mutations and the clinical picture of those with less common mutations confirms the results from previous studies, and further expands the spectrum of genotype-phenotype correlations. Our results may be useful to confirm diagnosis and may influence decisions to ensure appropriate early medical intervention in patients with AHC. They provide a stronger basis for the constitution of more homogeneous groups to be included in clinical trials.
Collapse
Affiliation(s)
- Eleni Panagiotakaki
- Epilepsy, Sleep and Pediatric Neurophysiology Department (ESEFNP), University Hospitals of Lyon (HCL), Lyon, France.
| | - Elisa De Grandis
- Department of Child Neuropsychiatry, G. Gaslini Hospital, University of Genoa, Genoa, Italy
| | - Michela Stagnaro
- Department of Child Neuropsychiatry, G. Gaslini Hospital, University of Genoa, Genoa, Italy
| | - Erin L Heinzen
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Carmen Fons
- Department of Child Neurology, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Sanjay Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Boukje de Vries
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Christophe Goubau
- Department of Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Sarah Weckhuysen
- Department of Molecular Genetics, Neurogenetics Group, VIB, Antwerp, Belgium
| | - David Kemlink
- Department of Neurology, Charles University, First Faculty of Medicine and Teaching Hospital, Prague, Czech Republic
| | - Ingrid Scheffer
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Gaëtan Lesca
- Department of Genetics, University Hospitals of Lyon (HCL) and Claude Bernard Lyon I University, Lyon, France.,Lyon Neuroscience Research Center (CRNL), CNRS UMR 5292, INSERM U1028, Lyon, France
| | - Muriel Rabilloud
- Biostatistics Department, University Hospitals of Lyon and UMR 5558, Lyon, France
| | - Amna Klich
- Biostatistics Department, University Hospitals of Lyon and UMR 5558, Lyon, France
| | - Alia Ramirez-Camacho
- Epilepsy, Sleep and Pediatric Neurophysiology Department (ESEFNP), University Hospitals of Lyon (HCL), Lyon, France.,Department of Child Neurology, Sant Joan de Déu Hospital, Barcelona, Spain
| | | | - Jaume Campistol
- Department of Child Neurology, Sant Joan de Déu Hospital, Barcelona, Spain
| | | | - Marie-Laure Moutard
- Department of Child Neurology, Armand Trousseau Hospital, APHP, Paris, France
| | - Diane Doummar
- Department of Child Neurology, Armand Trousseau Hospital, APHP, Paris, France
| | | | - Fatima Jaffer
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Helen Cross
- Institute of Child Health, University College London, London, UK
| | - Fiorella Gurrieri
- Institute of Medical Genetics, University Cattolica del Sacro Cuore, Policlinics A. Gemelli, Rome, Italy
| | - Danilo Tiziano
- Institute of Medical Genetics, University Cattolica del Sacro Cuore, Policlinics A. Gemelli, Rome, Italy
| | - Sona Nevsimalova
- Department of Neurology, Charles University, First Faculty of Medicine and Teaching Hospital, Prague, Czech Republic
| | - Sophie Nicole
- Institut National de la Santé et de la Recherche Médicale, U975, Centre de Recherche de l'Institut du Cerveau et de la Moelle, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Paris, France
| | - Brian Neville
- Institute of Child Health, University College London, London, UK
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mohamad Mikati
- Division of Pediatric Neurology and Department of Neurobiology, Duke University, School of Medicine, Durham, NC, USA
| | - David B Goldstein
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Rosaria Vavassori
- Associazione Italiana per la Sindrome di Emiplegia Alternante (A.I.S.EA Onlus), Lecco, Italy
| | - Alexis Arzimanoglou
- Epilepsy, Sleep and Pediatric Neurophysiology Department (ESEFNP), University Hospitals of Lyon (HCL), Lyon, France.,DYCOG team, Lyon Neuroscience Research Centre (CRNL), INSERM U1028; CNRS UMR 5292, Lyon, France
| | | | | | | |
Collapse
|
30
|
Viollet L, Glusman G, Murphy KJ, Newcomb TM, Reyna SP, Sweney M, Nelson B, Andermann F, Andermann E, Acsadi G, Barbano RL, Brown C, Brunkow ME, Chugani HT, Cheyette SR, Collins A, DeBrosse SD, Galas D, Friedman J, Hood L, Huff C, Jorde LB, King MD, LaSalle B, Leventer RJ, Lewelt AJ, Massart MB, Mérida MR, Ptáček LJ, Roach JC, Rust RS, Renault F, Sanger TD, Sotero de Menezes MA, Tennyson R, Uldall P, Zhang Y, Zupanc M, Xin W, Silver K, Swoboda KJ. Alternating Hemiplegia of Childhood: Retrospective Genetic Study and Genotype-Phenotype Correlations in 187 Subjects from the US AHCF Registry. PLoS One 2015; 10:e0127045. [PMID: 25996915 PMCID: PMC4440742 DOI: 10.1371/journal.pone.0127045] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/11/2015] [Indexed: 11/21/2022] Open
Abstract
Mutations in ATP1A3 cause Alternating Hemiplegia of Childhood (AHC) by disrupting function of the neuronal Na+/K+ ATPase. Published studies to date indicate 2 recurrent mutations, D801N and E815K, and a more severe phenotype in the E815K cohort. We performed mutation analysis and retrospective genotype-phenotype correlations in all eligible patients with AHC enrolled in the US AHC Foundation registry from 1997-2012. Clinical data were abstracted from standardized caregivers’ questionnaires and medical records and confirmed by expert clinicians. We identified ATP1A3 mutations by Sanger and whole genome sequencing, and compared phenotypes within and between 4 groups of subjects, those with D801N, E815K, other ATP1A3 or no ATP1A3 mutations. We identified heterozygous ATP1A3 mutations in 154 of 187 (82%) AHC patients. Of 34 unique mutations, 31 (91%) are missense, and 16 (47%) had not been previously reported. Concordant with prior studies, more than 2/3 of all mutations are clustered in exons 17 and 18. Of 143 simplex occurrences, 58 had D801N (40%), 38 had E815K (26%) and 11 had G937R (8%) mutations. Patients with an E815K mutation demonstrate an earlier age of onset, more severe motor impairment and a higher prevalence of status epilepticus. This study further expands the number and spectrum of ATP1A3 mutations associated with AHC and confirms a more deleterious effect of the E815K mutation on selected neurologic outcomes. However, the complexity of the disorder and the extensive phenotypic variability among subgroups merits caution and emphasizes the need for further studies.
Collapse
Affiliation(s)
- Louis Viollet
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Gustavo Glusman
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Kelley J. Murphy
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Tara M. Newcomb
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Sandra P. Reyna
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew Sweney
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Benjamin Nelson
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Frederick Andermann
- Neurogenetics Unit, Montreal Neurologic Institute and Hospital, McGill University, Montreal Quebec, Canada
| | - Eva Andermann
- Neurogenetics Unit, Montreal Neurologic Institute and Hospital, McGill University, Montreal Quebec, Canada
| | - Gyula Acsadi
- Departments of Pediatrics and Neurology, Connecticut Children's Medical Center and University of Connecticut School of Medicine, Hartford, CT, United States of America
| | - Richard L. Barbano
- Department of Neurology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Candida Brown
- Diablo Valley Child Neurology, an affiliate of Stanford Health Alliance, Pleasant Hill, California, United States of America
| | - Mary E. Brunkow
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Harry T. Chugani
- Division of Pediatric Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan, United States of America
| | - Sarah R. Cheyette
- Department of Child Neurology, Palo Alto Medical Foundation Redwood City Clinic, Redwood City, California, United States of America
| | - Abigail Collins
- Department of Pediatric Neurology, Children’s Hospital Colorado, University of Colorado Hospital, Aurora, Colorado, United States of America
| | - Suzanne D. DeBrosse
- Departments of Genetics and Genome Sciences, Pediatrics, and Neurology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - David Galas
- Pacific Northwest Diabetes Research Institute, Seattle, Washington, United States of America
| | - Jennifer Friedman
- Departments of Neuroscience and Pediatrics, University of California San Diego, San Diego, California, United States of America
| | - Lee Hood
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Chad Huff
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Lynn B. Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary D. King
- Departments of Pediatrics and Neurology, University College Dublin School of Medicine and Medical Science, Dublin, Ireland
| | - Bernie LaSalle
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Richard J. Leventer
- Children’s Neuroscience Centre, Murdoch Childrens Research Institute, University of Melbourne Department of Paediatrics, The Royal Children’s Hospital Melbourne, Parkville Victoria, Australia
| | - Aga J. Lewelt
- Department of Pediatrics, College of Medicine Jacksonville, University of Florida, Jacksonville, Florida, United States of America
| | - Mylynda B. Massart
- Department of Family Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Mario R. Mérida
- Stevens Henager College, Salt Lake City, Utah, United States of America
| | - Louis J. Ptáček
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Jared C. Roach
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Robert S. Rust
- Center for Medical Ethics and Humanities in Medicine, University Of Virginia UVA health system, Charlottesville, Virginia, United States of America
| | - Francis Renault
- Departement de Neurophysiologie. Hopital Armand Trousseau APHP, Paris, France
| | - Terry D. Sanger
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | | | - Rachel Tennyson
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Peter Uldall
- Department of Paediatrics and Adolescent Medicine, Juliane Marie Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Yue Zhang
- Study Design and Biostatistics Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary Zupanc
- Department of Neurology, Children’s Hospital Orange County, and Department of Pediatrics, University of California, Orange, California, United States of America
| | - Winnie Xin
- Center for Human Genetic Research, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kenneth Silver
- Departments of Pediatrics and Neurology, University of Chicago and Comer Children's Hospital, Chicago, Illinois, United States of America
| | - Kathryn J. Swoboda
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
31
|
The expanding spectrum of neurological phenotypes in children with ATP1A3 mutations, Alternating Hemiplegia of Childhood, Rapid-onset Dystonia-Parkinsonism, CAPOS and beyond. Pediatr Neurol 2015; 52:56-64. [PMID: 25447930 PMCID: PMC4352574 DOI: 10.1016/j.pediatrneurol.2014.09.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/09/2014] [Accepted: 09/23/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND ATP1A3 mutations have now been recognized in infants and children presenting with a diverse group of neurological phenotypes, including Rapid-onset Dystonia-Parkinsonism (RDP), Alternating Hemiplegia of Childhood (AHC), and most recently, Cerebellar ataxia, Areflexia, Pes cavus, Optic atrophy, and Sensorineural hearing loss (CAPOS) syndrome. METHODS Existing literature on ATP1A3-related disorders in the pediatric population were reviewed, with attention to clinical features and associated genotypes among those with RDP, AHC, or CAPOS syndrome phenotypes. RESULTS While classically defined phenotypes associated with AHC, RDP, and CAPOS syndromes are distinct, common elements among ATP1A3-related neurological disorders include characteristic episodic neurological symptoms and signs that vary in severity, duration, and frequency of occurrence. Affected children typically present in the context of an acute onset of paroxysmal, episodic neurological symptoms ranging from oculomotor abnormalities, hypotonia, paralysis, dystonia, ataxia, seizure-like episodes, or encephalopathy. Neurodevelopmental delays or persistence of dystonia, chorea, or ataxia after resolution of an initial episode are common, providing important clues for diagnosis. CONCLUSIONS The phenotypic spectrum of ATP1A3-related neurological disorders continues to expand beyond the distinct yet overlapping phenotypes in patients with AHC, RDP, and CAPOS syndromes. ATP1A3 mutation analysis is appropriate to consider in the diagnostic algorithm for any child presenting with episodic or fluctuating ataxia, weakness or dystonia whether they manifest persistence of neurological symptoms between episodes. Additional work is needed to better identify and classify affected patients and develop targeted treatment approaches.
Collapse
|
32
|
Boelman C, Lagman-Bartolome AM, MacGregor DL, McCabe J, Logan WJ, Minassian BA. Identical ATP1A3 mutation causes alternating hemiplegia of childhood and rapid-onset dystonia parkinsonism phenotypes. Pediatr Neurol 2014; 51:850-3. [PMID: 25439493 DOI: 10.1016/j.pediatrneurol.2014.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/06/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Alternating hemiplegia of childhood and rapid-onset dystonia parkinsonism are two separate movement disorders with different dominant mutations in the same sodium-potassium transporter ATPase subunit gene, ATP1A3. PATIENT We present a child with topiramate-responsive alternating hemiplegia of childhood who was tested for an ATP1A3 gene mutation. RESULTS Gene sequencing revealed an identical ATP1A3 mutation as in three typical adult-onset rapid-onset dystonia parkinsonism cases but never previously described in an alternating hemiplegia of childhood case. CONCLUSION The discordance of these phenotypes suggests that there are other undiscovered environmental, genetic, or epigenetic factors influencing the development of alternating hemiplegia of childhood or rapid-onset dystonia parkinsonism.
Collapse
Affiliation(s)
- Cyrus Boelman
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | - Daune L MacGregor
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jane McCabe
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Willam J Logan
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Berge A Minassian
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Vila-Pueyo M, Pons R, Raspall-Chaure M, Marcé-Grau A, Carreño O, Sintas C, Cormand B, Pineda-Marfà M, Macaya A. Clinical and genetic analysis in alternating hemiplegia of childhood: Ten new patients from Southern Europe. J Neurol Sci 2014; 344:37-42. [DOI: 10.1016/j.jns.2014.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
|
34
|
Heinzen EL, Arzimanoglou A, Brashear A, Clapcote SJ, Gurrieri F, Goldstein DB, Jóhannesson SH, Mikati MA, Neville B, Nicole S, Ozelius LJ, Poulsen H, Schyns T, Sweadner KJ, van den Maagdenberg A, Vilsen B. Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol 2014; 13:503-14. [PMID: 24739246 DOI: 10.1016/s1474-4422(14)70011-0] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genetic research has shown that mutations that modify the protein-coding sequence of ATP1A3, the gene encoding the α3 subunit of Na(+)/K(+)-ATPase, cause both rapid-onset dystonia parkinsonism and alternating hemiplegia of childhood. These discoveries link two clinically distinct neurological diseases to the same gene, however, ATP1A3 mutations are, with one exception, disease-specific. Although the exact mechanism of how these mutations lead to disease is still unknown, much knowledge has been gained about functional consequences of ATP1A3 mutations using a range of in-vitro and animal model systems, and the role of Na(+)/K(+)-ATPases in the brain. Researchers and clinicians are attempting to further characterise neurological manifestations associated with mutations in ATP1A3, and to build on the existing molecular knowledge to understand how specific mutations can lead to different diseases.
Collapse
Affiliation(s)
- Erin L Heinzen
- Center for Human Genome Variation, Duke University, School of Medicine, Durham, NC, USA; Department of Medicine, Section of Medical Genetics, Duke University, School of Medicine, Durham, NC, USA.
| | - Alexis Arzimanoglou
- Epilepsy, Sleep and Pediatric Neurophysiology Department, HFME, University Hospitals of Lyon, France; Centre de Recherche en Neurosciences de Lyon, Centre National de la Recherche Scientifique, UMR 5292, INSERM U1028, Lyon, France
| | - Allison Brashear
- Department of Neurology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | - Fiorella Gurrieri
- Istituto di Genetica Medica, Università Cattolica S Cuore, Rome, Italy
| | - David B Goldstein
- Center for Human Genome Variation, Duke University, School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University, School of Medicine, Durham, NC, USA
| | | | - Mohamad A Mikati
- Division of Pediatric Neurology, Duke University, School of Medicine, Durham, NC, USA; Department of Neurobiology, Duke University, School of Medicine, Durham, NC, USA
| | - Brian Neville
- Institute of Child Health, University College London, London, UK
| | - Sophie Nicole
- Institut National de la Santé et de la Recherche Médicale, U975, Centre de Recherche de l'Institut du Cerveau et de la Moelle, Paris, France; Centre National de la Recherche Scientifique, UMR7225, Paris, France; Université Pierre et Marie Curie Paris VI, UMRS975, Paris, France
| | - Laurie J Ozelius
- Department of Genetics and Genomic Sciences and Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanne Poulsen
- Danish Research Institute for Translational Neuroscience, Nordic-EMBL Partnership of Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
| | - Tsveta Schyns
- European Network for Research on Alternating Hemiplegia (ENRAH), Brussels, Belgium
| | | | - Arn van den Maagdenberg
- Department of Human Genetics and Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|