1
|
Barnacoat JM, Lewis J, Stewart K, Mohammad SS, Paget S. Content and readability of patient educational materials about neuromodulation for childhood movement disorders. Disabil Rehabil 2025; 47:2572-2578. [PMID: 39246137 DOI: 10.1080/09638288.2024.2397078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE To assess content and readability of online patient educational materials (PEMs) for paediatric deep brain stimulation (DBS) and intrathecal baclofen (ITB). METHODS A content analysis of PEMs identified from top children's hospitals, institutions affiliated with published neuromodulation research, and DBS and ITB device manufacturers was conducted. PEM content was analysed using a predetermined framework. Readability was assessed using the Simple Measure of Gobbledygook (SMOG). RESULTS Of 109 PEMs (72 DBS; 37 ITB) identified, most (77 (71%)) originated in the United States. More ITB PEMs (27 (73%)) contained specific paediatric information than DBS PEMs (16 (22%)). PEMS more frequently described benefits (DBS: 92%; ITB: 89%) than risks (DBS: 49%; ITB: 78%). Frequent content included pre- and post-operative care, procedural details, and device information. Less common content included long-term lifestyle considerations, alternatives, patient experiences, and financial details. Median readability of PEMs was 13.2 (interquartile range [IQR]: 11.4-14.45) for DBS and 11.8 (IQR: 11-12.9) for ITB. CONCLUSIONS Available ITB and DBS PEMs often miss important broader details of the treatments, and have additional shortcomings such as poor readability scores. Our findings highlight need for more holistic content within neuromodulation PEMs, improved accessibility, and more balanced representation of risks and benefits.
Collapse
Affiliation(s)
- Jamie M Barnacoat
- Kids Neuroscience Center, Children's Hospital at Westmead, Sydney, Australia
| | - Jennifer Lewis
- Kids Rehab, Children's Hospital at Westmead, Sydney, Australia
| | - Kirsty Stewart
- Kids Rehab, Children's Hospital at Westmead, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Shekeeb S Mohammad
- Kids Neuroscience Center, Children's Hospital at Westmead, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- TY Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, Sydney, Australia
| | - Simon Paget
- Kids Rehab, Children's Hospital at Westmead, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
Lumsden DE, Tsagkaris S, Cleary J, Champion M, Mundy H, Mostofi A, Hasegawa H, McClelland VM, Bhattacharjee S, Silverdale M, Gimeno H, Ashkan K, Selway R, Kaminska M, Hammers A, Lin JP. Outcomes of deep brain stimulation surgery in the management of dystonia in glutaric aciduria type 1. J Neurol 2025; 272:234. [PMID: 40025312 PMCID: PMC11872982 DOI: 10.1007/s00415-025-12942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVES Glutaric aciduria type 1 (GA1) is a rare autosomal recessive organic acidaemia caused by deficiency of the glutaryl-CoA dehydrogenase enzyme. We describe the outcomes following deep brain stimulation (DBS) for the management of dystonia of children and adults with glutaric aciduria type 1 (GA1). METHODS Cases with GA1 were identified from the institutional databases of two tertiary movement disorder services. Data were extracted from clinical records using a standardised proforma, including baseline clinical characteristics, imaging and neurophysiological findings, complications post-surgery, and outcomes as measured by the Burke-Fahn-Marsden Dystonia Rating Scale (BMFDRS) motor scores and the Canadian Occupation Performance Measure (COPM). RESULTS A total of 15 children were identified aged 3-17.5 with a median age of 11.5 years at neurosurgery, and one adult undergoing DBS aged 31 years. Baseline BMFDRS motor score ranged from 58.5-114, median 105. GMFCS-equivalence level was 5 (i.e. non-ambulant) for 10/16 cases. Surgery was tolerated in all cases without evidence of metabolic decompensation. BFMDRS motor score 1-year post-surgery ranged from 57.5-108.5 (median 97.25) and at last follow-up 57.5-112 (median 104) (no statistically significant change compared to baseline at either time point, P > 0.05). COPM data were available for 11/13 children and young people (CAYP). Clinically significant improvement was reported in 7/11 at 1 year and 8/11 at last follow-up. Four CAYP transitioned to adult services. Death occurred in three cases during follow-up, in no case related to DBS. CONCLUSION DBS may be considered as a management option for children with GA1 who have appropriately selected goals for intervention.
Collapse
Affiliation(s)
- Daniel E Lumsden
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2, Beckett House, Westminster Bridge Road, London, SE1 7DB, UK.
- Research Department of Early Life Imaging, Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Stavros Tsagkaris
- King's College London and Guy's and St Thomas' PET Centre, Research Department of Biomedical Computing, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jon Cleary
- Neuroradiology, Department of Radiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Michael Champion
- Inherited Metabolic Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Helen Mundy
- Inherited Metabolic Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Abteen Mostofi
- Functional Neurosurgery, King's College Hospital, London, UK
| | | | - Verity M McClelland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Department of Clinical Neurophysiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Shakya Bhattacharjee
- Neurology, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust and Russells Hall Hospital, Dudley Group Foundation Trust, Birmingham, UK
| | - Monty Silverdale
- Department of Neurology and Neurosurgery, Salford Royal Hospital NHS Foundation Trust, Salford, UK
| | - Hortensia Gimeno
- Barts NHS Health and Queen Mary University of London, Wolfson Institute of Population Health, Centre for Preventive Neurology, London, UK
| | | | - Richard Selway
- Functional Neurosurgery, King's College Hospital, London, UK
| | - Margaret Kaminska
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2, Beckett House, Westminster Bridge Road, London, SE1 7DB, UK
| | - Alexander Hammers
- King's College London and Guy's and St Thomas' PET Centre, Research Department of Biomedical Computing, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jean-Pierre Lin
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2, Beckett House, Westminster Bridge Road, London, SE1 7DB, UK
- Department for Women and Children, Faculty of Life Sciences and Medicine, Kings College London, London, UK
| |
Collapse
|
3
|
Laurencin C, Poujois A, Bonjour M, Demily C, Klinger H, Roze E, Leclert V, Danaila T, Langlois‐Jacques C, Couchonnal E, Woimant F, Obadia MA, Perez G, Pernon M, Blanchet L, Broussolle E, Vidailhet M, Kassai B, Moro E, Karachi C, Polo G, Grabli D, Portefaix A, Thobois S. Deep brain stimulation for severe dystonia associated with Wilson disease: A prospective multicenter meta-analysis of an N-of-1 trial. Eur J Neurol 2025; 32:e16524. [PMID: 39468897 PMCID: PMC11622510 DOI: 10.1111/ene.16524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND AND PURPOSE Disabling dystonia despite optimal medical treatment is common in Wilson disease (WD). No controlled study has evaluated the effect of deep brain stimulation (DBS) on dystonia related to WD. This study was undertaken to evaluate the efficacy of DBS on dystonia related to WD. METHODS A meta-analysis of an N-of-1 prospective, randomized, double-blind, multicenter DBS study was conducted at two French WD reference centers. Main inclusion criteria were patients with WD, stabilized for at least 6 months with significant disability due to dystonia despite optimized medical treatment. The subthalamic nucleus (STN) was targeted for bradykinetic patients with tonic dystonia, and the internal globus pallidus (GPi) was chosen for patients with hyperkinetic dystonia. Each patient underwent two periods of DBS "on" and two periods of DBS "off," each lasting 4 months. The order of stimulation conditions was randomized. The primary outcome was the change in the Canadian Occupational Performance Measure Performance (COPM-P) and Satisfaction scores after each 4-month period. Secondary outcomes were changes in the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) severity and disability scores and Unified Wilson's Disease Rating Scale (UWDRS) scores. RESULTS Between 12 May 2016 and 7 October 2022, three patients were included. Two patients received bilateral GPi DBS, and one received bilateral STN DBS. There was no change of COPM-P (p = 0.956), BFMDRS, and UWDRS scores. No serious adverse events were reported. CONCLUSIONS STN or GPi DBS are ineffective on dystonia related to WD.
Collapse
Affiliation(s)
- Chloé Laurencin
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological HospitalHospices Civils de LyonBronFrance
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, PATH‐PARK TeamUniversity Lyon 1LyonFrance
- National Reference Center for Wilson Disease and Other Copper‐Related Rare Diseases, Femme Mère Enfant HospitalHospices Civils de LyonBronFrance
| | - Aurelia Poujois
- National Reference Center for Wilson Disease and Other Copper‐Related Rare Diseases, Neurology DepartmentRothschild Foundation HospitalParisFrance
| | - Maxime Bonjour
- Department of BiostatisticsHospices Civils de LyonLyonFrance
- Laboratoire de Biométrie et Biologie ÉvolutiveUniversity Lyon 1VilleurbanneFrance
- Faculté de Médecine Lyon EstUniversity Lyon 1LyonFrance
| | - Caroline Demily
- Reference Center for Rare Diseases With Psychiatric Phenotype GénopsyLe Vinatier HospitalBronFrance
| | - Hélène Klinger
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological HospitalHospices Civils de LyonBronFrance
| | - Emmanuel Roze
- Sorbonne University, INSERM, CNRSParisFrance
- Brain Institute, Assistance Publique Hôpitaux de Paris, Salpêtrière HospitalParisFrance
| | - Victoire Leclert
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological HospitalHospices Civils de LyonBronFrance
| | - Teodor Danaila
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological HospitalHospices Civils de LyonBronFrance
| | - Carole Langlois‐Jacques
- Department of BiostatisticsHospices Civils de LyonLyonFrance
- Laboratoire de Biométrie et Biologie ÉvolutiveUniversity Lyon 1VilleurbanneFrance
- Faculté de Médecine Lyon EstUniversity Lyon 1LyonFrance
| | - Eduardo Couchonnal
- National Reference Center for Wilson Disease and Other Copper‐Related Rare Diseases, Femme Mère Enfant HospitalHospices Civils de LyonBronFrance
| | - France Woimant
- National Reference Center for Wilson Disease and Other Copper‐Related Rare Diseases, Neurology DepartmentRothschild Foundation HospitalParisFrance
| | - Mickael Alexandre Obadia
- National Reference Center for Wilson Disease and Other Copper‐Related Rare Diseases, Neurology DepartmentRothschild Foundation HospitalParisFrance
| | - Gwennaelle Perez
- National Reference Center for Wilson Disease and Other Copper‐Related Rare Diseases, Neurology DepartmentRothschild Foundation HospitalParisFrance
| | - Michaela Pernon
- National Reference Center for Wilson Disease and Other Copper‐Related Rare Diseases, Neurology DepartmentRothschild Foundation HospitalParisFrance
| | - Laurianne Blanchet
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological HospitalHospices Civils de LyonBronFrance
| | - Emmanuel Broussolle
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological HospitalHospices Civils de LyonBronFrance
| | - Marie Vidailhet
- Sorbonne University, INSERM, CNRSParisFrance
- Brain Institute, Assistance Publique Hôpitaux de Paris, Salpêtrière HospitalParisFrance
| | - Behrouz Kassai
- Centre d'Investigation Clinique 1407, Hospices Civils de LyonLouis Pradel HospitalBronFrance
| | - Elena Moro
- Division of Neurology CHU Grenoble AlpesGrenoble Institute of Neurosciences, INSERM U1216, Grenoble Alpes UniversityGrenobleFrance
| | - Carine Karachi
- Neurosurgery Department, Hôpital de la Salpêtrière, Groupe Hospitalier Pitié‐SalpêtrièreAssistance Publique‐Hôpitaux de ParisParisFrance
| | - Gustavo Polo
- Neurosurgery Department A, Hospices Civils de LyonPierre Wertheimer Neurological HospitalBronFrance
| | - David Grabli
- Sorbonne University, INSERM, CNRSParisFrance
- Brain Institute, Assistance Publique Hôpitaux de Paris, Salpêtrière HospitalParisFrance
| | - Aurélie Portefaix
- Centre d'Investigation Clinique 1407, Hospices Civils de LyonLouis Pradel HospitalBronFrance
| | - Stéphane Thobois
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological HospitalHospices Civils de LyonBronFrance
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, PATH‐PARK TeamUniversity Lyon 1LyonFrance
| |
Collapse
|
4
|
Arnevik Austrheim K, Skagen C, Rieber J, Melfald Tveten K. Practice, play, repeat - individualized outcomes after the "intensity matters!"-program for children with disabilities - a descriptive multicase study. Disabil Rehabil 2024; 46:2847-2852. [PMID: 37452469 DOI: 10.1080/09638288.2023.2233905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE To examine and categorize individual outcomes after the "Intensity matters!"-program, a new, cross-professional intensive intervention for children with disabilities across Norway. MATERIALS AND METHODS 84 children and their parents/legal guardian were enrolled in this multicase study. Participants were active in defining goals, and hereby the content of the intervention. The pre-settled goals were grouped into the categories of body functions and structure, activities and participation inspired by the components of the International Classification of Functioning, Disability, and Health (ICF). The pre-settled goals were assessed pre- and post-intervention by using The Canadian Occupational Performance Measure (COPM). A clinically important change was predefined as a change ≥2 points. RESULTS 1004 pre-settled goals were categorized into focus areas, where 62.4% were categorized as activity; functional mobility (n = 626). Post-intervention assessment of the COPM ratings of child performance and satisfaction showed a mean change of 3.7 (range -0.25;8.5) and 3.8 (range 0.25;10), respectively. CONCLUSION The majority of participants in the "Intensity Matters!"-program had a clinically important change in their individual goals after only three weeks of intervention. This study supports the use of client-centered measures in rehabilitation for children with disabilities, but a further examination of long-term outcome is warranted.
Collapse
Affiliation(s)
| | - C Skagen
- Children's Physiotherapy Center, Bergen, Norway
| | - J Rieber
- Children's Physiotherapy Center, Bergen, Norway
| | - K Melfald Tveten
- Children's Physiotherapy Center, Bergen, Norway
- Department of Health and Function, Western Norway University of Applied Sciences, Bergen, Norway
| |
Collapse
|
5
|
Ebden M, Elkaim LM, Breitbart S, Yan H, Warsi N, Huynh M, Mithani K, Venetucci Gouveia F, Fasano A, Ibrahim GM, Gorodetsky C. Chronic Pallidal Local Field Potentials Are Associated With Dystonic Symptoms in Children. Neuromodulation 2024; 27:551-556. [PMID: 37768258 DOI: 10.1016/j.neurom.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Novel deep brain stimulation devices can record local field potentials (LFPs), which represent the synchronous synaptic activity of neuronal populations. The clinical relevance of LFPs in patients with dystonia remains unclear. OBJECTIVES We sought to determine whether chronic LFPs recorded from the globus pallidus internus (GPi) were associated with symptoms of dystonia in children. MATERIALS AND METHODS Ten patients with heterogeneous forms of dystonia (genetic and acquired) were implanted with neurostimulators that recorded LFP spectral snapshots. Spectra were compared across parent-reported asymptomatic and symptomatic periods, with daily narrowband data superimposed in 24 one-hour bins. RESULTS Spectral power increased during periods of registered dystonic symptoms: mean increase = 102%, CI: (76.7, 132). Circadian rhythms within the LFP narrowband time series correlated with dystonic symptoms: for delta/theta-waves, correlation = 0.33, CI: (0.18, 0.47) and for alpha waves, correlation = 0.27, CI: (0.14, 0.40). CONCLUSIONS LFP spectra recorded in the GPi indicate a circadian pattern and are associated with the manifestation of dystonic symptoms.
Collapse
Affiliation(s)
- Mark Ebden
- Neurosciences and Mental Health Program, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lior M Elkaim
- Division of Neurology and Neurosurgery, McGill University, McGill University Health Centre, Montreal, Quebec, Canada
| | - Sara Breitbart
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Han Yan
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nebras Warsi
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - MyLoi Huynh
- Neurosciences and Mental Health Program, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karim Mithani
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Flavia Venetucci Gouveia
- Neurosciences and Mental Health Program, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada; CenteR for Advancing Neurotechnological Innovation to Application, Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Carolina Gorodetsky
- Division of Neurology, the Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Garofalo M, Beudel M, Dijk J, Bonouvrié L, Buizer A, Geytenbeek J, Prins R, Schuurman P, van de Pol L. Elective and Emergency Deep Brain Stimulation in Refractory Pediatric Monogenetic Movement Disorders Presenting with Dystonia: Current Practice Illustrated by Two Cases. Neuropediatrics 2022; 54:44-52. [PMID: 36223877 PMCID: PMC9842449 DOI: 10.1055/a-1959-9088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Dystonia is characterized by sustained or intermittent muscle contractions, leading to abnormal posturing and twisting movements. In pediatric patients, dystonia often negatively influences quality of life. Pharmacological treatment for dystonia is often inadequate and causes adverse effects. Deep brain stimulation (DBS) appears to be a valid therapeutic option for pharmacoresistant dystonia in children. METHODS To illustrate the current clinical practice, we hereby describe two pediatric cases of monogenetic movement disorders presenting with dystonia and treated with DBS. We provide a literature review of similar previously described cases and on different clinical aspects of DBS in pediatric dystonia. RESULTS The first patient, a 6-year-old girl with severe dystonia, chorea, and myoclonus due to an ADCY5 gene mutation, received DBS in an elective setting. The second patient, an 8-year-old boy with GNAO1-related dystonia and chorea, underwent emergency DBS due to a pharmacoresistant status dystonicus. A significant amelioration of motor symptoms (65% on the Burke-Fahn-Marsden Dystonia Rating Scale) was observed postoperatively in the first patient and her personal therapeutic goals were achieved. DBS was previously reported in five patients with ADCY5-related movement disorders, of which three showed objective improvement. Emergency DBS in our second patient resulted in the successful termination of his GNAO1-related status dystonicus, this being the eighth case reported in the literature. CONCLUSION DBS can be effective in monogenetic pediatric dystonia and should be considered early in the disease course. To better evaluate the effects of DBS on patients' functioning, patient-centered therapeutic goals should be discussed in a multidisciplinary approach.
Collapse
Affiliation(s)
- M. Garofalo
- Department of Child Neurology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - M. Beudel
- Department of Neurology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands,Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - J.M. Dijk
- Department of Neurology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands,Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - L.A. Bonouvrié
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam, the Netherlands,Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, the Netherlands
| | - A.I. Buizer
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam, the Netherlands,Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, the Netherlands
| | - J. Geytenbeek
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam, the Netherlands
| | - R.H.N. Prins
- Department of Neurology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
| | - P.R. Schuurman
- Department of Neurosurgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
| | - L.A. van de Pol
- Department of Child Neurology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands,Department of Child Neurology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands,Address for correspondence L.A. van de Pol, MD, PhD Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije UniversiteitBoelelaan 1117, 1081 HV Amsterdamthe Netherlands
| |
Collapse
|
7
|
Probabilistic mapping of deep brain stimulation in childhood dystonia. Parkinsonism Relat Disord 2022; 105:103-110. [PMID: 36403506 DOI: 10.1016/j.parkreldis.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES In adults with dystonia Probabilistic Stimulation Mapping (PSM) has identified putative "sweet spots" for stimulation. We aimed to apply PSM to a cohort of Children and Young People (CYP) following DBS surgery. METHODS Pre-operative MRI and post-operative CT images were co-registered for 52 CYP undergoing bilateral pallidal DBS (n = 31 genetic/idiopathic dystonia, and n = 21 Cerebral Palsy (CP)). DBS electrodes (n = 104) were automatically detected, and Volumes of Tissue Activation (VTA) derived from individual patient stimulation settings. VTAs were normalised to the MNI105 space, weighted by percentage improvement in Burke-Fahn-Marsden Dystonia Rating scale (BFMDRS) at one-year post surgery and mean improvement was calculated for each voxel. RESULTS For the genetic/idiopathic dystonia group, BFMDRS improvement was associated with stimulation across a broad volume of the GPi. A spatial clustering of the upper 25th percentile of voxels corresponded with a more delineated volume within the posterior ventrolateral GPi. The MNI coordinates of the centroid of this volume (X = -23.0, Y = -10.5 and Z = -3.5) were posterior and superior to the typical target for electrode placement. Volume of VTA overlap with a previously published "sweet spots" correlated with improvement following surgery. In contrast, there was minimal BFMDRS improvement for the CP group, no spatial clustering of efficacious clusters and a correlation between established "sweet spots" could not be established. CONCLUSIONS PSM in CYP with genetic/idiopathic dystonia suggests the presence of a "sweet spot" for electrode placement within the GPi, consistent with previous studies. Further work is required to identify and validate putative "sweet spots" across different cohorts of patients.
Collapse
|
8
|
Butchereit K, Manzini M, Polatajko HJ, Lin JP, McClelland VM, Gimeno H. Harnessing cognitive strategy use for functional problems and proposed underlying mechanisms in childhood-onset dystonia. Eur J Paediatr Neurol 2022; 41:1-7. [PMID: 36108454 DOI: 10.1016/j.ejpn.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND There is a significant gap in knowledge about rehabilitation techniques and strategies that can help children and young people with hyperkinetic movement disorders (HMD) including dystonia to successfully perform daily activities and improve overall participation. A promising approach to support skill acquisition is the Cognitive Orientation to daily Occupational Performance (CO-OP) intervention. CO-OP uses cognitive strategies to help patients generate their own solutions to overcome self-identified problems encountered in everyday living. PURPOSE 1. To identify and categorize strategies used by children with HMD to support skill acquisition during CO-OP; 2. To review the possible underlying mechanisms that might contribute to the cognitive strategies, in order to facilitate further studies for developing focused rehabilitation approaches. METHODS A secondary analysis was performed on video-recorded data from a previous study exploring the efficacy of CO-OP for childhood onset HMD, in which CO-OP therapy sessions were delivered by a single occupational therapist. For the purpose of this study, we reviewed a total of 40 randomly selected hours of video footage of CO-OP sessions delivered to six participants (age 6-19 years) over ten intervention sessions. An observational recording sheet was applied to identify systematically the participants' or therapist's verbalizations of cognitive strategies during the therapy. The strategies were classified into six categories in line with published literature. RESULTS Strategies used by HMD participants included distraction, externally focussed attention, internally focussed attention, emotion self-regulation, motor imagery and mental self-guidance. We postulate different underlying working mechanisms for these strategies, which have implications for the therapeutic management of children and young people with HMD including dystonia. CONCLUSIONS Cognitive strategy training can fundamentally change and improve motor performance. On-going work will address both the underlying neural mechanisms of therapeutic change and the mediators and moderators that influence how change unfolds.
Collapse
Affiliation(s)
- Kailee Butchereit
- University of Toronto, Department of Occupational Science and Occupational Therapy, Toronto, Canada
| | - Michael Manzini
- University of Toronto, Department of Occupational Science and Occupational Therapy, Toronto, Canada
| | - Helene J Polatajko
- University of Toronto, Department of Occupational Science and Occupational Therapy, Toronto, Canada
| | - Jean-Pierre Lin
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Women and Children's Institute, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Verity M McClelland
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Women and Children's Institute, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Hortensia Gimeno
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Barts Health NHS Trust, Royal London Hospital and Tower Hamlets Community Therapy Services, London, UK; Wolfson Institute of Population Medicine, Preventive Neurology Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
9
|
Malatt C, Tagliati M. Long-Term Outcomes of Deep Brain Stimulation for Pediatric Dystonia. Pediatr Neurosurg 2022; 57:225-237. [PMID: 35439762 DOI: 10.1159/000524577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/06/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) has been utilized for over two decades to treat medication-refractory dystonia in children. Short-term benefit has been demonstrated for inherited, isolated, and idiopathic cases, with less efficacy in heredodegenerative and acquired dystonia. The ongoing publication of long-term outcomes warrants a critical assessment of available information as pediatric patients are expected to live most of their lives with these implants. SUMMARY We performed a review of the literature for data describing motor and neuropsychiatric outcomes, in addition to complications, 5 or more years after DBS placement in patients undergoing DBS surgery for dystonia at an age younger than 21. We identified 20 articles including individual data on long-term motor outcomes after DBS for a total of 78 patients. In addition, we found five articles reporting long-term outcomes after DBS in 9 patients with status dystonicus. Most patients were implanted within the globus pallidus internus, with only a few cases targeting the subthalamic nucleus and ventrolateral posterior nucleus of the thalamus. The average follow-up was 8.5 years, with a range of up to 22 years. Long-term outcomes showed a sustained motor benefit, with median Burke-Fahn-Marsden dystonia rating score improvement ranging from 2.5% to 93.2% in different dystonia subtypes. Patients with inherited, isolated, and idiopathic dystonias had greater improvement than those with heredodegenerative and acquired dystonias. Sustained improvements in quality of life were also reported, without the development of significant cognitive or psychiatric comorbidities. Late adverse events tended to be hardware-related, with minimal stimulation-induced effects. KEY MESSAGES While data regarding long-term outcomes is somewhat limited, particularly with regards to neuropsychiatric outcomes and adverse events, improvement in motor outcomes appears to be preserved more than 5 years after DBS placement.
Collapse
Affiliation(s)
- Camille Malatt
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA,
| | - Michele Tagliati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
10
|
Koy A, Kühn AA, Huebl J, Schneider GH, van Riesen AK, Eckenweiler M, Rensing-Zimmermann C, Coenen VA, Krauss JK, Saryyeva A, Hartmann H, Haeussler M, Volkmann J, Matthies C, Horn A, Schnitzler A, Vesper J, Gharabaghi A, Weiss D, Bevot A, Marks W, Pomykal A, Monbaliu E, Borck G, Mueller J, Prinz-Langenohl R, Dembek T, Visser-Vandewalle V, Wirths J, Schiller P, Hellmich M, Timmermann L. Quality of Life after Deep Brain Stimulation of Pediatric Patients With Dyskinetic Cerebral Palsy: A Prospective, Single-Arm, Multicenter Study With a Subsequent Randomized Double-Blind Crossover (STIM-CP). Mov Disord 2021; 37:799-811. [PMID: 34967053 DOI: 10.1002/mds.28898] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/05/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Patients with dyskinetic cerebral palsy are often severely impaired with limited treatment options. The effects of deep brain stimulation (DBS) are less pronounced than those in inherited dystonia but can be associated with favorable quality of life outcomes even in patients without changes in dystonia severity. OBJECTIVE The aim is to assess DBS effects in pediatric patients with pharmacorefractory dyskinetic cerebral palsy with focus on quality of life. METHODS The method used is a prospective, single-arm, multicenter study. The primary endpoint is improvement in quality of life (CPCHILD [Caregiver Priorities & Child Health Index of Life with Disabilities]) from baseline to 12 months under therapeutic stimulation. The main key secondary outcomes are changes in Burke-Fahn-Marsden Dystonia Rating Scale, Dyskinesia Impairment Scale, Gross Motor Function Measure-66, Canadian Occupational Performance Measure (COPM), and Short-Form (SF)-36. After 12 months, patients were randomly assigned to a blinded crossover to receive active or sham stimulation for 24 hours each. Severity of dystonia and chorea were blindly rated. Safety was assessed throughout. The trial was registered at ClinicalTrials.gov, number NCT02097693. RESULTS Sixteen patients (age: 13.4 ± 2.9 years) were recruited by seven clinical sites. Primary outcome at 12-month follow-up is as follows: mean CPCHILD increased by 4.2 ± 10.4 points (95% CI [confidence interval] -1.3 to 9.7; P = 0.125); among secondary outcomes: improvement in COPM performance measure of 1.1 ± 1.5 points (95% CI 0.2 to 1.9; P = 0.02) and in the SF-36 physical health component by 5.1 ± 6.2 points (95% CI 0.7 to 9.6; P = 0.028). Otherwise, there are no significant changes. CONCLUSION Evidence to recommend DBS as routine treatment to improve quality of life in pediatric patients with dyskinetic cerebral palsy is not yet sufficient. Extended follow-up in larger cohorts will determine the impact of DBS further to guide treatment decisions in these often severely disabled patients.
Collapse
Affiliation(s)
- Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Julius Huebl
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany.,Department of Neurology, Munich Municipal Hospital Bogenhausen, Munich, Germany
| | | | - Anne K van Riesen
- Department of Pediatric Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelia Rensing-Zimmermann
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, Center for Deep Brain Stimulation, University Medical Center, Freiburg, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Hans Hartmann
- Department of Pediatrics, Clinic for Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Martin Haeussler
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Cordula Matthies
- Department of Stereotactic and Functional Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Annette Horn
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology, Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Vesper
- Department of Functional Neurosurgery and Stereotaxy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Daniel Weiss
- Centre for Neurology, Department for Neurodegenerative Diseases, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Andrea Bevot
- Department of Pediatrics, Medical Faculty, University of Tübingen, Tübingen, Germany
| | - Warren Marks
- Department of Neurology, Cook Children's Medical Center, Fort Worth, Texas, USA.,Department of Pediatrics, University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | - Angela Pomykal
- Department of Neurology, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Elegast Monbaliu
- Department of Rehabilitation Sciences, KU Leuven Campus Bruges, Brugge, Belgium
| | | | - Joerg Mueller
- Department of Neurology, Vivantes Klinikum Spandau, Berlin, Germany
| | | | - Till Dembek
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jochen Wirths
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Petra Schiller
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Hellmich
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | | |
Collapse
|
11
|
Bohn E, Goren K, Switzer L, Falck‐Ytter Y, Fehlings D. Pharmacological and neurosurgical interventions for individuals with cerebral palsy and dystonia: a systematic review update and meta-analysis. Dev Med Child Neurol 2021; 63:1038-1050. [PMID: 33772789 PMCID: PMC8451898 DOI: 10.1111/dmcn.14874] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 12/30/2022]
Abstract
AIM To update a systematic review of evidence published up to December 2015 for pharmacological/neurosurgical interventions among individuals with cerebral palsy (CP) and dystonia. METHOD Searches were updated (January 2016 to May 2020) for oral baclofen, trihexyphenidyl, benzodiazepines, clonidine, gabapentin, levodopa, botulinum neurotoxin (BoNT), intrathecal baclofen (ITB), and deep brain stimulation (DBS), and from database inception for medical cannabis. Eligible studies included at least five individuals with CP and dystonia and reported on dystonia, goal achievement, motor function, pain/comfort, ease of caregiving, quality of life (QoL), or adverse events. Evidence certainty was evaluated using GRADE. RESULTS Nineteen new studies met inclusion criteria (two trihexyphenidyl, one clonidine, two BoNT, nine ITB, six DBS), giving a total of 46 studies (four randomized, 42 non-randomized) comprising 915 participants when combined with those from the original systematic review. Very low certainty evidence supported improved dystonia (clonidine, ITB, DBS) and goal achievement (clonidine, BoNT, ITB, DBS). Low to very low certainty evidence supported improved motor function (DBS), pain/comfort (clonidine, BoNT, ITB, DBS), ease of caregiving (clonidine, BoNT, ITB), and QoL (ITB, DBS). Trihexyphenidyl, clonidine, BoNT, ITB, and DBS may increase adverse events. No studies were identified for benzodiazepines, gabapentin, oral baclofen, and medical cannabis. INTERPRETATION Evidence evaluating the use of pharmacological and neurosurgical management options for individuals with CP and dystonia is limited to between low and very low certainty. What this paper adds Meta-analysis suggests that intrathecal baclofen (ITB) and deep brain stimulation (DBS) may improve dystonia and pain. Meta-analysis suggests that DBS may improve motor function. Clonidine, botulinum neurotoxin, ITB, and DBS may improve achievement of individualized goals. ITB and DBS may improve quality of life. No direct evidence is available for oral baclofen, benzodiazepines, gabapentin, or medical cannabis.
Collapse
Affiliation(s)
- Emma Bohn
- Holland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada,Department of PaediatricsUniversity of TorontoTorontoOntarioCanada
| | - Katherine Goren
- Holland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada,Department of PaediatricsUniversity of TorontoTorontoOntarioCanada
| | - Lauren Switzer
- Holland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada,Department of PaediatricsUniversity of TorontoTorontoOntarioCanada
| | - Yngve Falck‐Ytter
- Division of Gastroenterology and HepatologyVeteran Affairs North East Ohio Health Care SystemCase Western Reserve UniversityClevelandOHUSA
| | - Darcy Fehlings
- Holland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada,Department of PaediatricsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
12
|
Larsh T, Wu SW, Vadivelu S, Grant GA, O'Malley JA. Deep Brain Stimulation for Pediatric Dystonia. Semin Pediatr Neurol 2021; 38:100896. [PMID: 34183138 DOI: 10.1016/j.spen.2021.100896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022]
Abstract
Dystonia is one of the most common pediatric movement disorders and can have a profound impact on the lives of children and their caregivers. Response to pharmacologic treatment is often unsatisfactory. Deep brain stimulation (DBS) has emerged as a promising treatment option for children with medically refractory dystonia. In this review we highlight the relevant literature related to DBS for pediatric dystonia, with emphasis on the background, indications, prognostic factors, challenges, and future directions of pediatric DBS.
Collapse
Affiliation(s)
- Travis Larsh
- Center for Pediatric Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Sudhakar Vadivelu
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Gerald A Grant
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Stanford University School of Medicine, Palo Alto, CA
| | - Jennifer A O'Malley
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, Palo Alto, CA.
| |
Collapse
|
13
|
Gimeno H, Polatajko HJ, Cornelius V, Lin JP, Brown RG. Rehabilitation in childhood-onset hyperkinetic movement disorders including dystonia: Treatment change in outcomes across the ICF and feasibility of outcomes for full trial evaluation. Eur J Paediatr Neurol 2021; 33:159-167. [PMID: 34052114 DOI: 10.1016/j.ejpn.2021.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Childhood-onset hyperkinetic movement disorders (HMD), including dystonia are notoriously difficult to treat and there are limited studies showing successful medical, surgical or non-pharmacological interventions. METHODS This prospective study used grouped data (n = 22) from two studies of the Cognitive Orientation to daily Occupational Performance (CO-OP) Approach for patient-selected goals. Eligibility included aged 6-21 years, deep brain stimulation in place, with manual ability classification system level I-IV. Outcome was assessed on a range of patient-reported and clinician-rated measures across the International Classification of Function at end-treatment (10 weekly sessions) (series 1 and 2) and 3-month follow-up (series 1). Feasibility of outcomes to be used in a full trial were explored. FINDINGS Nineteen participants completed the intervention and were included in the analysis. Of the primary outcome measures, the self-reported Canadian Occupational Performance Measure showed improvement in goal performance (mean change 4.08, 95% CI [3.37,4.79] post-; 4.18 [5.10,5.26] follow-up), and satisfaction (4.03 [3.04,5.03) post-; 4.44 [3.07,5.82] follow-up]. The Assessment of Motor and Process Skills showed improved motor score (0.52 [0.01,1.03] at follow-up only, while the process score did not change. Objective blind-rated pooled data using the Performance Quality Rating Scale-individualized indicated significant change for trained goals (3.79 [3.37,4.21] post-; (4.01,5.10) follow-up] and untrained goals (1.90 [1.24,2.55] post 1.91 [0.23,3.60] follow-up]. Motor impairment assessed by the Burke-Fahn Motor Disability Rating Scale was unchanged (-3.26 [-6.62,0.09] post-; -1.11 [-8.05,5.82] follow-up). Improvement was also observed in self-efficacy (0.97 [0.47,1.47] post-; 1.37 [1.91-0.83] follow-up) and Quality of Life (0.12 [0.03-0.22] follow-up). Goal improvement; self-efficacy and quality of life captured significant change post-intervention. This improvement was shown despite no change on impairment-related measures and were shown to be feasible measures to use in a larger study of CO-OP for this population.
Collapse
Affiliation(s)
- Hortensia Gimeno
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Department of Psychology, Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK.
| | - Helene J Polatajko
- Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, Canada
| | - Victoria Cornelius
- Imperial Clinical Trials Unit, School of Public Health, Imperial College London, London, UK
| | - Jean-Pierre Lin
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Richard G Brown
- Department of Psychology, Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
14
|
Smit M, Albanese A, Benson M, Edwards MJ, Graessner H, Hutchinson M, Jech R, Krauss JK, Morgante F, Pérez Dueñas B, Reilly RB, Tinazzi M, Contarino MF, Tijssen MAJ. Dystonia Management: What to Expect From the Future? The Perspectives of Patients and Clinicians Within DystoniaNet Europe. Front Neurol 2021; 12:646841. [PMID: 34149592 PMCID: PMC8211212 DOI: 10.3389/fneur.2021.646841] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/19/2021] [Indexed: 01/02/2023] Open
Abstract
Improved care for people with dystonia presents a number of challenges. Major gaps in knowledge exist with regard to how to optimize the diagnostic process, how to leverage discoveries in pathophysiology into biomarkers, and how to develop an evidence base for current and novel treatments. These challenges are made greater by the realization of the wide spectrum of symptoms and difficulties faced by people with dystonia, which go well-beyond motor symptoms. A network of clinicians, scientists, and patients could provide resources to facilitate information exchange at different levels, share mutual experiences, and support each other's innovative projects. In the past, collaborative initiatives have been launched, including the American Dystonia Coalition, the European Cooperation in Science and Technology (COST-which however only existed for a limited time), and the Dutch DystonieNet project. The European Reference Network on Rare Neurological Diseases includes dystonia among other rare conditions affecting the central nervous system in a dedicated stream. Currently, we aim to broaden the scope of these initiatives to a comprehensive European level by further expanding the DystoniaNet network, in close collaboration with the ERN-RND. In line with the ERN-RND, the mission of DystoniaNet Europe is to improve care and quality of life for people with dystonia by, among other endeavors, facilitating access to specialized care, overcoming the disparity in education of medical professionals, and serving as a solid platform to foster international clinical and research collaborations. In this review, both professionals within the dystonia field and patients and caregivers representing Dystonia Europe highlight important unsolved issues and promising new strategies and the role that a European network can play in activating them.
Collapse
Affiliation(s)
- Marenka Smit
- Expertise Centre Movement Disorders Groningen, Department of Neurology, University Medical Centre Groningen, Groningen, Netherlands
| | - Alberto Albanese
- Department of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| | | | - Mark J. Edwards
- Neuroscience Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Holm Graessner
- Institute of Medical Genetics and Applied Genomics and Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Michael Hutchinson
- Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland
| | - Robert Jech
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Joachim K. Krauss
- Department of Neurosurgery, Medizinische Hochschule Hannover, Hanover, Germany
| | - Francesca Morgante
- Neuroscience Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Belen Pérez Dueñas
- Pediatric Neurology Research Group, Hospital Vall d'Hebron–Institut de Recerca (VHIR), Barcelona, Spain
| | - Richard B. Reilly
- School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
- Department of Neurology, Haga Teaching Hospital, The Hague, Netherlands
| | - Marina A. J. Tijssen
- Expertise Centre Movement Disorders Groningen, Department of Neurology, University Medical Centre Groningen, Groningen, Netherlands
| | | |
Collapse
|
15
|
Furlanetti L, Ellenbogen J, Gimeno H, Ainaga L, Narbad V, Hasegawa H, Lin JP, Ashkan K, Selway R. Targeting accuracy of robot-assisted deep brain stimulation surgery in childhood-onset dystonia: a single-center prospective cohort analysis of 45 consecutive cases. J Neurosurg Pediatr 2021; 27:677-687. [PMID: 33862592 DOI: 10.3171/2020.10.peds20633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/06/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an established treatment for pediatric dystonia. The accuracy of electrode implantation is multifactorial and remains a challenge in this age group, mainly due to smaller anatomical targets in very young patients compared to adults, and also due to anatomical abnormalities frequently associated with some etiologies of dystonia. Data on the accuracy of robot-assisted DBS surgery in children are limited. The aim of the current paper was to assess the accuracy of robot-assisted implantation of DBS leads in a series of patients with childhood-onset dystonia. METHODS Forty-five children with dystonia undergoing implantation of DBS leads under general anesthesia between 2017 and 2019 were included. Robot-assisted stereotactic implantation of the DBS leads was performed. The final position of the electrodes was verified with an intraoperative 3D scanner (O-arm). Coordinates of the planned electrode target and actual electrode position were obtained and compared, looking at the radial error, depth error, absolute error, and directional error, as well as the euclidean distance. Functional assessment data prospectively collected by a multidisciplinary pediatric complex motor disorders team were analyzed with regard to motor skills, individualized goal achievement, and patients' and caregivers' expectations. RESULTS A total of 90 DBS electrodes were implanted and 48.5% of the patients were female. The mean age was 11.0 ± 0.6 years (range 3-18 years). All patients received bilateral DBS electrodes into the globus pallidus internus. The median absolute errors in x-, y-, and z-axes were 0.85 mm (range 0.00-3.25 mm), 0.75 mm (range 0.05-2.45 mm), and 0.75 mm (range 0.00-3.50 mm), respectively. The median euclidean distance from the target to the actual electrode position was 1.69 ± 0.92 mm, and the median radial error was 1.21 ± 0.79. The robot-assisted technique was easily integrated into the authors' surgical practice, improving accuracy and efficiency, and reducing surgical time significantly along the learning curve. No major perioperative complications occurred. CONCLUSIONS Robot-assisted stereotactic implantation of DBS electrodes in the pediatric age group is a safe and accurate surgical method. Greater accuracy was present in this cohort in comparison to previous studies in which conventional stereotactic frame-based techniques were used. Robotic DBS surgery and neuroradiological advances may result in further improvement in surgical targeting and, consequently, in better clinical outcome in the pediatric population.
Collapse
Affiliation(s)
- Luciano Furlanetti
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | | | - Hortensia Gimeno
- 2Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Laura Ainaga
- 2Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Vijay Narbad
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
| | - Harutomo Hasegawa
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Jean-Pierre Lin
- 2Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Keyoumars Ashkan
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Richard Selway
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| |
Collapse
|
16
|
Gimeno H, Polatajko HJ, Lin JP, Cornelius V, Brown RG. Cognitive Strategy Training in Childhood-Onset Movement Disorders: Replication Across Therapists. Front Pediatr 2021; 8:600337. [PMID: 33553070 PMCID: PMC7861040 DOI: 10.3389/fped.2020.600337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Objective: To explore preliminary effectiveness of the Cognitive Orientation to daily Occupational Performance (CO-OP) Approach in improving outcomes in childhood-onset hyperkinetic movement disorders (HMDs) including dyskinetic cerebral palsy following deep brain stimulation (DBS) across UK clinical occupational therapists. Methods: Randomized, multiple-baseline, Single Case Experimental Design N-of-1 trial with replications across participants. Five self-selected goals were identified: three goals were worked on during CO-OP and two goals were left untreated and used to assess skills transfer. Participants were between 6 and 21 years and had received DBS surgery with baseline Manual Ability Classification System (MACS) levels I-IV. Participants were randomized to typical or extended baseline (2 vs. 6 weeks), followed by 10 weekly individual CO-OP sessions. The primary outcome was functional performance measured by the Performance Quality Rating Scale-Individualized (PQRS-I), assessed before, during, and following treatment. Outcome assessors were blinded to baseline allocation, session number, and assessment time. A non-overlapping index, Tau-U, was used to measure effect size. Results: Of the 12 participants recruited, 10 commenced and completed treatment. In total, 63% of trained goals improved with effect sizes 0.66-1.00 ("moderate" to "large" effect), seen for all children in at least one goal. Skills transfer was found in 37% of the untrained goals in six participants. Conclusions: Cognitive strategy use improved participant-selected functional goals in childhood-onset HMD, more than just practice during baseline. Preliminary effectiveness is shown when the intervention is delivered in clinical practice by different therapists in routine clinical settings.
Collapse
Affiliation(s)
- Hortensia Gimeno
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
- Department of Psychology, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Helene J. Polatajko
- Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, ON, Canada
| | - Jean-Pierre Lin
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Victoria Cornelius
- Imperial Clinical Trials Unit, Imperial College London, School of Public Health, London, United Kingdom
| | - Richard G. Brown
- Department of Psychology, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
17
|
The Relative Merits of an Individualized Versus a Generic Approach to Rating Functional Performance in Childhood Dystonia. CHILDREN-BASEL 2020; 8:children8010007. [PMID: 33375553 PMCID: PMC7824159 DOI: 10.3390/children8010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022]
Abstract
Aims. The Performance Quality Rating Scale (PQRS) is an observational measure that captures performance at the level of activity and participation. Developed for use with the Cognitive Orientation to daily Occupational Performance (CO-OP), it is a highly individualized approach to measurement. CO-OP is currently being studied in childhood-onset hyperkinetic movement disorders (HMD) and deep brain stimulation. The purpose of this study was to compare two different approaches to rating performance, generic (PQRS-G) and individualized (PQRS-I), for children with childhood-onset hyperkinetic movement disorders (HMD) including dystonia. Method. Videotaped activity performances, pre and post intervention were independently scored by two blind raters using PQRS-G PQRS-I. Results were examined to determine if the measures identified differences in e performance on goals chosen by the participants and on change scores after intervention. Dependent t-tests were used to compare performance and change scores. Results. The two approaches to rating both have moderate correlations (all data: 0.764; baseline: 0.677; post-intervention: 0.725) and yielded some different results in capturing performance. There was a significant difference in scores at pre-intervention between the two approaches to rating, even though post-intervention score mean difference was not significantly different. The PQRS-I had a wider score range, capturing wider performance differences, and greater change between baseline and post-intervention performances for children and young people with dystonic movement. Conclusions. Best practice in rehabilitation requires the use of outcome measures that optimally captures performance and performance change for children and young people with dystonic movement. When working with clients with severe motor-performance deficits, PQRS-I appears to be the better approach to capturing performance and performance changes.
Collapse
|
18
|
Muñoz KA, Blumenthal-Barby J, Storch EA, Torgerson L, Lázaro-Muñoz G. Pediatric Deep Brain Stimulation for Dystonia: Current State and Ethical Considerations. Camb Q Healthc Ethics 2020; 29:557-573. [PMID: 32892777 PMCID: PMC9426302 DOI: 10.1017/s0963180120000316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dystonia is a movement disorder that can have a debilitating impact on motor functions and quality of life. There are 250,000 cases in the United States, most with childhood onset. Due to the limited effectiveness and side effects of available treatments, pediatric deep brain stimulation (pDBS) has emerged as an intervention for refractory dystonia. However, there is limited clinical and neuroethics research in this area of clinical practice. This paper examines whether it is ethically justified to offer pDBS to children with refractory dystonia. Given the favorable risk-benefit profile, it is concluded that offering pDBS is ethically justified for certain etiologies of dystonia, but it is less clear for others. In addition, various ethical and policy concerns are discussed, which need to be addressed to optimize the practice of offering pDBS for dystonia. Strategies are proposed to help address these concerns as pDBS continues to expand.
Collapse
Affiliation(s)
- Katrina A. Muñoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX
| | | | - Eric A. Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX
| | - Laura Torgerson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX
| | - Gabriel Lázaro-Muñoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX
| |
Collapse
|
19
|
Shah SA, Brown P, Gimeno H, Lin JP, McClelland VM. Application of Machine Learning Using Decision Trees for Prognosis of Deep Brain Stimulation of Globus Pallidus Internus for Children With Dystonia. Front Neurol 2020; 11:825. [PMID: 32849251 PMCID: PMC7115974 DOI: 10.3389/fneur.2020.00825] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/30/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND While Deep Brain Stimulation (DBS) of the Globus pallidus internus is a well-established therapy for idiopathic/genetic dystonia, benefits for acquired dystonia are varied, ranging from modest improvement to deterioration. Predictive biomarkers to aid DBS prognosis for children are lacking, especially in acquired dystonias, such as dystonic Cerebral Palsy. We explored the potential role of machine learning techniques to identify parameters that could help predict DBS outcome. METHODS We conducted a retrospective study of 244 children attending King's College Hospital between September 2007 and June 2018 for neurophysiological tests as part of their assessment for possible DBS at Evelina London Children's Hospital. For the 133 individuals who underwent DBS and had 1-year outcome data available, we assessed the potential predictive value of six patient parameters: sex, etiology (including cerebral palsy), baseline severity (Burke-Fahn-Marsden Dystonia Rating Scale-motor score), cranial MRI and two neurophysiological tests, Central Motor Conduction Time (CMCT) and Somatosensory Evoked Potential (SEP). We applied machine learning analysis to determine the best combination of these features to aid DBS prognosis. We developed a classification algorithm based on Decision Trees (DTs) with k-fold cross validation for independent testing. We analyzed all possible combinations of the six features and focused on acquired dystonias. RESULTS Several trees resulted in better accuracy than the majority class classifier. However, the two features that consistently appeared in top 10 DTs were CMCT and baseline dystonia severity. A decision tree based on CMCT and baseline severity provided a range of sensitivity and specificity, depending on the threshold chosen for baseline dystonia severity. In situations where CMCT was not available, a DT using SEP alone provided better than the majority class classifier accuracy. CONCLUSION The results suggest that neurophysiological parameters can help predict DBS outcomes, and DTs provide a data-driven, highly interpretable decision support tool that lends itself to being used in clinical practice to help predict potential benefit of DBS in dystonic children. Our results encourage the introduction of neurophysiological parameters in assessment pathways, and data collection to facilitate multi-center evaluation and validation of these potential predictive markers and of the illustrative decision support tools presented here.
Collapse
Affiliation(s)
- Syed Ahmar Shah
- Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Peter Brown
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Hortensia Gimeno
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Women and Children's Health Institute, King's College London, London, United Kingdom
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Women and Children's Health Institute, King's College London, London, United Kingdom
| | - Verity M. McClelland
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
20
|
Perides S, Lin JP, Lee G, Gimeno H, Lumsden DE, Ashkan K, Selway R, Kaminska M. Deep brain stimulation reduces pain in children with dystonia, including in dyskinetic cerebral palsy. Dev Med Child Neurol 2020; 62:917-925. [PMID: 32386250 DOI: 10.1111/dmcn.14555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
AIM To establish the prevalence of dystonic pain in children and their response to deep brain stimulation (DBS). METHOD Dystonic pain was assessed in a cohort of 140 children, 71 males and 69 females, median age 11 years 11 months (range 3y-19y 1mo), undergoing DBS in our centre over a period of 10 years. The cohort was divided into aetiological dystonia groups: 1a, inherited; 1b, heredodegenerative; 2, acquired; and 3, idiopathic. Motor responses were measured with the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). RESULTS Dystonic pain was identified in 63 (45%) patients, 38% of whom had a diagnosis of cerebral palsy (CP). Dystonic pain improved in 90% of children and in all aetiological subgroups 1 year after DBS, while the BFMDRS motor score improved in 70%. Statistically significant improvement (p<0.01) was noted for the whole cohort on the Numerical Pain Rating Scale (n=27), Paediatric Pain Profile (n=17), and Caregivers Priorities and Child Health Index of Life with Disabilities questionnaire (n=48). There was reduction of pain severity, frequency, and analgesia requirement. Findings were similar for the whole cohort and aetiological subgroups other than the inherited heredodegenerative group where the improvement did not reach statistical significance. INTERPRETATION Dystonic pain is frequent in children with dystonia, including those with CP, who undergo DBS; this can be an important, realizable goal of surgery irrespective of aetiology. We encourage the use of multimodal approach in pain research to reduce the risk of bias.
Collapse
Affiliation(s)
- Sarah Perides
- Complex Motor Disorders Service, Evelina London Children's Hospital, London, UK
| | - Jean-Pierre Lin
- Complex Motor Disorders Service, Evelina London Children's Hospital, London, UK
| | - Geraldine Lee
- Florence Nightingale Faculty of Nursing, Midwifery & Palliative Care, King's College London, London, UK
| | - Hortensia Gimeno
- Complex Motor Disorders Service, Evelina London Children's Hospital, London, UK.,Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniel E Lumsden
- Complex Motor Disorders Service, Evelina London Children's Hospital, London, UK
| | - Keyoumars Ashkan
- Functional Surgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Richard Selway
- Functional Surgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Margaret Kaminska
- Complex Motor Disorders Service, Evelina London Children's Hospital, London, UK
| |
Collapse
|
21
|
Jiang H, Wang R, Zheng Z, Zhu J. Deep brain stimulation for the treatment of cerebral palsy: A review. BRAIN SCIENCE ADVANCES 2020. [DOI: 10.26599/bsa.2020.9050002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Deep brain stimulation (DBS) has been used as a safe and effective neuromodulation technique for treatment of various diseases. A large number of patients suffering from movement disorders such as dyskinesia may benefit from DBS. Cerebral palsy (CP) is a group of permanent disorders mainly involving motor impairment, and medical interventions are usually unsatisfactory or temporarily active, especially for dyskinetic CP. DBS may be another approach to the treatment of CP. In this review we discuss the targets for DBS and the mechanisms of action for the treatment of CP, and focus on presurgical assessment, efficacy for dystonia and other symptoms, safety, and risks.
Collapse
Affiliation(s)
- Hongjie Jiang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rui Wang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhe Zheng
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Junming Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
22
|
Tambirajoo K, Furlanetti L, Hasegawa H, Raslan A, Gimeno H, Lin JP, Selway R, Ashkan K. Deep Brain Stimulation of the Internal Pallidum in Lesch-Nyhan Syndrome: Clinical Outcomes and Connectivity Analysis. Neuromodulation 2020; 24:380-391. [PMID: 32573906 DOI: 10.1111/ner.13217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Lesch-Nyhan syndrome (LNS) is a rare genetic disorder characterized by a deficiency of hypoxanthine-guanine phosphoribosyltransferase enzyme. It manifests during infancy with compulsive self-mutilation behavior associated with disabling generalized dystonia and dyskinesia. Clinical management of these patients poses an enormous challenge for medical teams and carers. OBJECTIVES We report our experience with bilateral deep brain stimulation (DBS) of the globus pallidus internus (GPi) in the management of this complex disorder. MATERIALS AND METHODS Preoperative and postoperative functional assessment data prospectively collected by a multidisciplinary pediatric complex motor disorders team, including imaging, neuropsychology, and neurophysiology evaluations were analyzed with regards to motor and behavioral control, goal achievement, and patient and caregivers' expectations. RESULTS Four male patients (mean age 13 years) underwent DBS implantation between 2011 and 2018. Three patients received double bilateral DBS electrodes within the posteroventral GPi and the anteromedial GPi, whereas one patient had bilateral electrodes placed in the posteroventral GPi only. Median follow-up was 47.5 months (range 22-98 months). Functional improvement was observed in all patients and discussed in relation to previous reports. Analysis of structural connectivity revealed significant correlation between the involvement of specific cortical regions and clinical outcome. CONCLUSION Combined bilateral stimulation of the anteromedial and posteroventral GPi may be considered as an option for managing refractory dystonia and self-harm behavior in LNS patients. A multidisciplinary team-based approach is essential for patient selection and management, to support children and families, to achieve functional improvement and alleviate the overall disease burden for patients and caregivers.
Collapse
Affiliation(s)
- Kantharuby Tambirajoo
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| | - Luciano Furlanetti
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| | - Harutomo Hasegawa
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| | - Ahmed Raslan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| | - Hortensia Gimeno
- King's Health Partners Academic Health Sciences Centre, London, UK.,Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jean-Pierre Lin
- King's Health Partners Academic Health Sciences Centre, London, UK.,Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Richard Selway
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| |
Collapse
|
23
|
The Effectiveness of Deep Brain Stimulation in Dystonia: A Patient-Centered Approach. Tremor Other Hyperkinet Mov (N Y) 2020; 10:2. [PMID: 32775016 PMCID: PMC7394190 DOI: 10.5334/tohm.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: To systematically evaluate the effectiveness of deep brain stimulation of the globus pallidus internus (GPi-DBS) in dystonia on pre-operatively set functional priorities in daily living. Methods: Fifteen pediatric and adult dystonia patients (8 male; median age 32y, range 8–65) receiving GPi-DBS were recruited. All patients underwent a multidisciplinary evaluation before and 1-year post DBS implantation. The Canadian Occupational Performance Measure (COPM) first identified and then measured changes in functional priorities. The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) was used to evaluate dystonia severity. Results: Priorities in daily functioning substantially varied between patients but showed significant improvements on performance and satisfaction after DBS. Clinically significant COPM-score improvements were present in 7/8 motor responders, but also in 4/7 motor non-responders. Discussion: The use of a patient-oriented approach to measure GPi-DBS effectiveness in dystonia provides an unique insight in patients’ priorities and demonstrates that tangible improvements can be achieved irrespective of motor response. Highlights
Collapse
|
24
|
Scaratti C, Zorzi G, Guastafierro E, Leonardi M, Covelli V, Toppo C, Nardocci N. Long term perceptions of illness and self after Deep Brain Stimulation in pediatric dystonia: A narrative research. Eur J Paediatr Neurol 2020; 26:61-67. [PMID: 32147411 DOI: 10.1016/j.ejpn.2020.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/30/2019] [Accepted: 02/18/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Deep Brain Stimulation (DBS) is increasingly used in pediatric patients affected by isolated dystonia, with excellent results. Despite well documented long-term effects on motor functioning, information on quality of life and social adaptation is almost lacking. OBJECTIVES The present study aims to explore the experience of illness and the relation with the device in adult patients suffering from dystonia who underwent DBS surgery in pediatric age. METHODS A narrative inquiry approach was used to collect patients' narratives of their experience with dystonia and DBS stimulator. A written interview was administered to 8 patients over 18 years old with generalized isolated dystonia who had undergone pallidal DBS implantation in childhood. A thematic analysis was realized to examine the narratives collected. RESULTS Five main themes emerged: "relationship with the disease", "experience related to DBS procedure", "relationship with one's own body", "fears", "thoughts about future". Despite a general satisfaction in relation to DBS intervention, some patients expressed difficulties, such as the acceptance of changes in one's own body, concerns and fears regarding the device and the future, also considering the critical phase of transition from childhood to adulthood. CONCLUSIONS These results suggest that further research is needed to understand the contribution of psychological, as much as medical, aspects to the overall outcome of the intervention. The present explorative study encourages a deeper investigations of psychological aspects of patients, in order to plan a tailored care path and to decide whether to suggest a psychological support, both before and after the intervention.
Collapse
Affiliation(s)
- Chiara Scaratti
- Neurology, Public Health, Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanna Zorzi
- Department of Paediatric Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Erika Guastafierro
- Neurology, Public Health, Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Matilde Leonardi
- Neurology, Public Health, Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Claudia Toppo
- Neurology, Public Health, Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nardo Nardocci
- Department of Paediatric Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
25
|
Haberfehlner H, Goudriaan M, Bonouvrié LA, Jansma EP, Harlaar J, Vermeulen RJ, van der Krogt MM, Buizer AI. Instrumented assessment of motor function in dyskinetic cerebral palsy: a systematic review. J Neuroeng Rehabil 2020; 17:39. [PMID: 32138731 PMCID: PMC7057465 DOI: 10.1186/s12984-020-00658-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/13/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In this systematic review we investigate which instrumented measurements are available to assess motor impairments, related activity limitations and participation restrictions in children and young adults with dyskinetic cerebral palsy. We aim to classify these instrumented measurements using the categories of the international classification of functioning, disability and health for children and youth (ICF-CY) and provide an overview of the outcome parameters. METHODS A systematic literature search was performed in November 2019. We electronically searched Pubmed, Embase and Scopus databases. Search blocks included (a) cerebral palsy, (b) athetosis, dystonia and/or dyskinesia, (c) age 2-24 years and (d) instrumented measurements (using keywords such as biomechanics, sensors, smartphone, and robot). RESULTS Our search yielded 4537 articles. After inspection of titles and abstracts, a full text of 245 of those articles were included and assessed for further eligibility. A total of 49 articles met our inclusion criteria. A broad spectrum of instruments and technologies are used to assess motor function in dyskinetic cerebral palsy, with the majority using 3D motion capture and surface electromyography. Only for a small number of instruments methodological quality was assessed, with only one study showing an adequate assessment of test-retest reliability. The majority of studies was at ICF-CY function and structure level and assessed control of voluntary movement (29 of 49) mainly in the upper extremity, followed by assessment of involuntary movements (15 of 49), muscle tone/motor reflex (6 of 49), gait pattern (5 of 49) and muscle power (2 of 49). At ICF-CY level of activities and participation hand and arm use (9 of 49), fine hand use (5 of 49), lifting and carrying objects (3 of 49), maintaining a body position (2 of 49), walking (1 of 49) and moving around using equipment (1 of 49) was assessed. Only a few methods are potentially suitable outside the clinical environment (e.g. inertial sensors, accelerometers). CONCLUSION Although the current review shows the potential of several instrumented methods to be used as objective outcome measures in dyskinetic cerebral palsy, their methodological quality is still unknown. Future development should focus on evaluating clinimetrics, including validating against clinical meaningfulness. New technological developments should aim for measurements that can be applied outside the laboratory.
Collapse
Affiliation(s)
- Helga Haberfehlner
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, PO Box 7057, Amsterdam, 1007MB, The Netherlands.
| | - Marije Goudriaan
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, PO Box 7057, Amsterdam, 1007MB, The Netherlands
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Laura A Bonouvrié
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, PO Box 7057, Amsterdam, 1007MB, The Netherlands
| | - Elise P Jansma
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Amsterdam Public Health research institute, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Jaap Harlaar
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, PO Box 7057, Amsterdam, 1007MB, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - R Jeroen Vermeulen
- Department of Neurology, Section of Pediatric Neurology, Maastricht UMC+, Maastricht, The Netherlands
| | - Marjolein M van der Krogt
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, PO Box 7057, Amsterdam, 1007MB, The Netherlands
| | - Annemieke I Buizer
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, PO Box 7057, Amsterdam, 1007MB, The Netherlands
| |
Collapse
|
26
|
Investigation of the effect of task-orientated rehabilitation program on motor skills of children with childhood cancer: a randomized-controlled trial. Int J Rehabil Res 2020; 43:167-174. [PMID: 32097140 DOI: 10.1097/mrr.0000000000000400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Problems have been reported in the execution and development of motor skills and its treatment as a cause of cancer in children. The purpose of this study was to examine the effect of the task-orientated rehabilitation program (ToRP) on motor skills of children with childhood cancer. Following the consort guideline, 93 children (49 males and 44 females) with pediatric cancer were randomized to either study (n = 52; 12.35 ± 3.43 years) or control (n = 41; 11.89 ± 3.56 years) groups. The study group received ToRP, and the control group received a home-based therapeutic strategies program for 20 sessions. Motor skill outcomes were assessed with Bruininks-Oseretsky Test of Motor Proficiency, Short Form (BOTMP-SF) by assessor who was blind to group allocation and interventions. The groups were homogenous in terms of demographic characteristics and motor skills. The study group showed a significant increase in both gross and fine motor skills (P values for all subtests: P < 0.001), whereas running speed, bilateral coordination, strength, response speed and visual motor control did not show significant improvement with the control group (P > 0.05). The ToRP appears to provide beneficial effects in improving motor skills at the early stages of rehabilitation for children with childhood cancer.
Collapse
|
27
|
Sanger TD. Deep brain stimulation for cerebral palsy: where are we now? Dev Med Child Neurol 2020; 62:28-33. [PMID: 31211420 DOI: 10.1111/dmcn.14295] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2019] [Indexed: 12/12/2022]
Abstract
Cerebral palsy (CP) is a complex disorder and children frequently have multiple impairments. Dystonia is a particularly frustrating impairment that interferes with rehabilitation and function and is difficult to treat. Of the available treatments, deep brain stimulation (DBS) has emerged as an option with the potential for large effect size in a subgroup of children. While brain stimulation has been used in CP for more than 40 years, modern devices and targeting methods are improving both the safety and efficacy of the procedure. Successful use of DBS depends on appropriate selection of patients, identification of effective neuroanatomical targets in each patient, careful neurosurgical procedure, and detailed follow-up evaluation and programming. The use of functional neurosurgery for neuromodulation in CP remains a technology in its infancy, but improving experience and knowledge are likely to make this one of the safest and most effective interventions for children with moderate-to-severe motor disorders. This review summarizes the current procedures for patient and target selection, and surgical implantation of DBS electrodes for CP. The history of DBS and future directions when used in secondary dystonia are also examined. WHAT THIS PAPER ADDS: Selection of candidates for deep brain stimulation (DBS) requires understanding of dystonia in cerebral palsy . DBS could become a first-line treatment option in some children.
Collapse
Affiliation(s)
- Terence D Sanger
- Department of Biomedical Engineering, Neurology, Biokinesiology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Protocol: Using Single-Case Experimental Design to Evaluate Whole-Body Dynamic Seating on Activity, Participation, and Quality of Life in Dystonic Cerebral Palsy. Healthcare (Basel) 2019; 8:healthcare8010011. [PMID: 31906107 PMCID: PMC7151484 DOI: 10.3390/healthcare8010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/30/2019] [Indexed: 01/01/2023] Open
Abstract
Introduction: People with hyperkinetic movement disorders, including dystonia, experience often painful, involuntary movements affecting functioning. Seating comfort is a key unmet need identified by families. This paper reports a protocol to assess the feasibility and preliminary evidence for the efficacy of dynamic seating to improve functional outcomes for young children with dystonic cerebral palsy (DCP). Design: A series of single-case experimental design N-of-1 trials, with replications across participants, with a random baseline interval, and one treatment period (n = 6). Methods: Inclusion criteria: DCP; 21.5 cm < popliteal fossa to posterior sacrum < 35 cm; Gross Motor Function Classification System level IV-V; mini-Manual Ability Classification System level IV-V; difficulties with seating. Intervention: Trial of the seat (8 weeks), with multiple baseline before, during and after intervention and 2 month follow up. The baseline duration will be randomised per child (2-7 weeks). Primary outcomes: Performance Quality Rating Scale; Canadian Occupational Performance Measure; seating tolerance. The statistician will create the randomization, with allocation concealment by registration of participants prior to sending the allocation arm to the principal investigator. Primary outcomes will be assessed from video by an assessor blind to allocation. Analysis: Participant outcome data will be plotted over time, with parametric and non-parametric analysis including estimated size effect for N-of-1 trials.
Collapse
|
29
|
Abstract
This article overviews the surgical options for hypertonia management in cerebral palsy, both spasticity and dystonia. We review the history and use of intrathecal baclofen. We contrast its use with the indications for selective dorsal rhizotomy and review how it is the optimal technique to lower tone in the ambulatory spastic diplegic patient with cerebral palsy. This article reviews the advent of deep brain stimulation, with an emphasis on selection criteria and expected outcomes in this population. The article reviews the principles and use of selective peripheral neurotomy as it is applied to focal spasticity not requiring systemic tone reduction.
Collapse
Affiliation(s)
- Sruthi P Thomas
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, 6701 Fannin Street, Suite 1280, Houston, TX 77030, USA; Department of Neurosurgery, Section of Pediatric Neurosurgery, Baylor College of Medicine, 6701 Fannin Street, Suite 1230, Houston, TX 77030, USA. https://twitter.com/ThomasMDPhD
| | - Angela P Addison
- Department of Neurosurgery, Section of Pediatric Neurosurgery, Baylor College of Medicine, 6701 Fannin Street, Suite 1230, Houston, TX 77030, USA
| | - Daniel J Curry
- Department of Neurosurgery, Section of Pediatric Neurosurgery, Baylor College of Medicine, 6701 Fannin Street, Suite 1230, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Davidson B, Elkaim LM, Lipsman N, Ibrahim GM. Editorial. An ethical framework for deep brain stimulation in children. Neurosurg Focus 2019; 45:E11. [PMID: 30173615 DOI: 10.3171/2018.7.focus18219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Benjamin Davidson
- 1Division of Neurosurgery, Department of Surgery, University of Toronto, Ontario
| | - Lior M Elkaim
- 2Faculty of Medicine, Université de Montréal, Québec
| | - Nir Lipsman
- 1Division of Neurosurgery, Department of Surgery, University of Toronto, Ontario.,3Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario; and
| | - George M Ibrahim
- 1Division of Neurosurgery, Department of Surgery, University of Toronto, Ontario.,4Division of Neurosurgery, Hospital for Sick Children, Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, University of Toronto, Ontario, Canada
| |
Collapse
|
31
|
Badhiwala JH, Karmur B, Elkaim LM, Alotaibi NM, Morgan BR, Lipsman N, De Vloo P, Kalia SK, Lozano AM, Ibrahim GM. Clinical phenotypes associated with outcomes following deep brain stimulation for childhood dystonia. J Neurosurg Pediatr 2019; 24:442-450. [PMID: 31299640 DOI: 10.3171/2019.5.peds1973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/08/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Although deep brain stimulation (DBS) is an accepted treatment for childhood dystonia, there is significant heterogeneity in treatment response and few data are available to identify ideal surgical candidates. METHODS Data were derived from a systematic review and individual patient data meta-analysis of DBS for dystonia in children that was previously published. Outcomes were assessed using the Burke-Fahn-Marsden Dystonia Rating Scale for movement (BFMDRS-M) and for disability (BFMDRS-D). The authors used partial least squares, bootstrapping, and permutation statistics to extract patterns of contributions of specific preoperative characteristics to relationship with distinct outcomes, in all patients and in patients with primary and secondary dystonia separately. RESULTS Of 301 children undergoing DBS for dystonia, 167 had primary dystonia, 125 secondary dystonia, and 9 myoclonus dystonia. Three dissociable preoperative phenotypes (latent variables) were identified and associated with the following: 1) BFMDRS-M at last follow-up; 2) relative change in BFMDRS-M score; and 3) relative change in BFMDRS-D score. The phenotype of patients with secondary dystonia, with a high BFMDRS-M score and truncal involvement, undergoing DBS at a younger age, was associated with a worse postoperative BFMDRS-M score. Children with primary dystonia involving the trunk had greater improvement in BFMDRS-M and -D scores. Those with primary dystonia of shorter duration and proportion of life with disease, undergoing globus pallidus DBS, had greater improvements in BFMDRS-D scores at long-term follow-up. CONCLUSIONS In a comprehensive, data-driven, multivariate analysis of DBS for childhood dystonia, the authors identified novel and dissociable patient phenotypes associated with distinct outcomes. The findings of this report may inform surgical candidacy for DBS.
Collapse
Affiliation(s)
| | - Brij Karmur
- 2Faculty of Medicine, University of Toronto, Toronto, Ontario
| | - Lior M Elkaim
- 3Faculty of Medicine, Université de Montréal, Montréal, Québec
| | | | | | - Nir Lipsman
- 1Division of Neurosurgery, Department of Surgery, and
- 4Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, Ontario
| | - Philippe De Vloo
- 1Division of Neurosurgery, Department of Surgery, and
- 5Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario; and
| | - Suneil K Kalia
- 1Division of Neurosurgery, Department of Surgery, and
- 5Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario; and
| | - Andres M Lozano
- 1Division of Neurosurgery, Department of Surgery, and
- 5Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario; and
| | - George M Ibrahim
- 1Division of Neurosurgery, Department of Surgery, and
- 6Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Bonouvrié LA, Becher JG, Vles JSH, Vermeulen RJ, Buizer AI. The Effect of Intrathecal Baclofen in Dyskinetic Cerebral Palsy: The IDYS Trial. Ann Neurol 2019; 86:79-90. [PMID: 31050023 PMCID: PMC6617761 DOI: 10.1002/ana.25498] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 01/04/2023]
Abstract
Objective Intrathecal baclofen treatment is used for the treatment of dystonia in patients with severe dyskinetic cerebral palsy; however, the current level of evidence for the effect is low. The primary aim of this study was to provide evidence for the effect of intrathecal baclofen treatment on individual goals in patients with severe dyskinetic cerebral palsy. Methods This multicenter, randomized, double‐blind, placebo‐controlled trial was performed at 2 university medical centers in the Netherlands. Patients with severe dyskinetic cerebral palsy (Gross Motor Functioning Classification System level IV–V) aged 4 to 24 years who were eligible for intrathecal baclofen were included. Patients were assigned by block randomization (2:2) for treatment with intrathecal baclofen or placebo for 3 months via an implanted microinfusion pump. The primary outcome was goal attainment scaling of individual treatment goals (GAS T score). A linear regression model was used for statistical analysis with study site as a covariate. Safety analyses were done for number and type of (serious) adverse events. Results Thirty‐six patients were recruited from January 1, 2013, to March 31, 2018. Data for final analysis were available for 17 patients in the intrathecal baclofen group and 16 in the placebo group. Mean (standard deviation) GAS T score at 3 months was 38.9 (13.2) for intrathecal baclofen and 21.0 (4.6) for placebo (regression coefficient = 17.8, 95% confidence interval = 10.4‐25.0, p < 0.001). Number and types of (serious) adverse events were similar between groups. Interpretation Intrathecal baclofen treatment is superior to placebo in achieving treatment goals in patients with severe dyskinetic cerebral palsy. ANN NEUROL 2019
Collapse
Affiliation(s)
- Laura A Bonouvrié
- Amsterdam University Medical Center, Free University Amsterdam, Department of Rehabilitation Medicine, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jules G Becher
- Amsterdam University Medical Center, Free University Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Johan S H Vles
- Maastricht University Medical Center, Department of Child Neurology, Maastricht, the Netherlands
| | - R Jeroen Vermeulen
- Maastricht University Medical Center, Department of Child Neurology, Maastricht, the Netherlands.,Amsterdam University Medical Center, Free University Amsterdam, Department of Child Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Annemieke I Buizer
- Amsterdam University Medical Center, Free University Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | | |
Collapse
|
33
|
Tustin K, Elze MC, Lumsden DE, Gimeno H, Kaminska M, Lin JP. Gross motor function outcomes following deep brain stimulation for childhood-onset dystonia: A descriptive report. Eur J Paediatr Neurol 2019; 23:473-483. [PMID: 30846371 DOI: 10.1016/j.ejpn.2019.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/30/2019] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
Abstract
AIM To examine the impact of deep brain stimulation (DBS) on gross motor function in children with dystonic movement disorders. METHOD Prospective audit involving children implanted 2007-2015, followed for up to two years. Outcomes were evaluated across aetiological sub-groups (inherited, acquired, idiopathic) using the GMFM-88 and BFMDRS movement scale (BFM-M). The predictive value of proportion of life lived with dystonia (PLD) and baseline motor capacity were evaluated. RESULTS Data was available for 60 children (median surgery age 10y11mo). Inherited monogenetic dystonias demonstrated a median increase in GMFM-88 scores of 6.9% (p = 0.021) and 14.5% (p = 0.116) at one and two years. Heredodegenerative and idiopathic dystonias showed disparate responses, with non-significant changes seen in GMFM-88 and BFM-M scores, with the exception of improved one-year BFM-M scores in the idiopathic group [median change 5.5, p = 0.021]. Median GMFM-88 and BFM-M change scores were near zero for acquired dystonias, though improvement was noted in 9/18 CP cases with one-year GMFM-88 data. No significant relationship was found between PLD, or baseline GMFM-88, and GMFM-88 change following DBS. CONCLUSION Gross motor response to DBS is similar in profile to literature reporting results using impairment-based dystonia rating scales. Relatively consistent improvements were seen in inherited monogenetic ("primary") dystonias, while highly variable, often disappointing, gross motor responses were found in acquired, heredodegenerative, and idiopathic dystonias. In view of such response variability, alternatives to mean group studies, such as single case experimental designs with multiple replications, are needed to determine the efficacy of DBS in childhood-onset dystonias. Ongoing research is needed to identify factors that predict treatment response.
Collapse
Affiliation(s)
- Kylee Tustin
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2 Beckett House, Lambeth Palace Road, London, SE1 7EU, United Kingdom.
| | | | - Daniel E Lumsden
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2 Beckett House, Lambeth Palace Road, London, SE1 7EU, United Kingdom
| | - Hortensia Gimeno
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2 Beckett House, Lambeth Palace Road, London, SE1 7EU, United Kingdom; King's College London, Institute of Psychiatry, Psychology and Neurosciences, Psychology Department, London, SE5 8AF, United Kingdom
| | - Margaret Kaminska
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2 Beckett House, Lambeth Palace Road, London, SE1 7EU, United Kingdom
| | - Jean-Pierre Lin
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2 Beckett House, Lambeth Palace Road, London, SE1 7EU, United Kingdom
| |
Collapse
|
34
|
Elkaim LM, Alotaibi NM, Sigal A, Alotaibi HM, Lipsman N, Kalia SK, Fehlings DL, Lozano AM, Ibrahim GM. Deep brain stimulation for pediatric dystonia: a meta-analysis with individual participant data. Dev Med Child Neurol 2019; 61:49-56. [PMID: 30320439 DOI: 10.1111/dmcn.14063] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2018] [Indexed: 12/31/2022]
Abstract
AIM We performed a meta-analysis with individual participant data of deep brain stimulation (DBS) for dystonia in children and young people. METHOD Three databases (PubMed, Embase, and Web of Science) were queried from January 1999 to August 2017 with no language restrictions to identify case studies and cohort studies reporting on pediatric patients (age ≤21y) with dystonia. The primary outcomes were changes in Burke-Fahn-Marsden (BFM) or Barry-Albright Dystonia Scale scores. A mixed-effects regression was used to identify associations between clinical covariates and outcomes. RESULTS Of 2509 citations reviewed, 72 articles (321 children) were eligible. At last follow-up (median 12mo, 25th centile=9.0; 75th centile=32.2), 277 (86.3%) patients showed improvement in dystonia, while 66.1 percent showed clinically significant (>20%) BFM Dystonia Rating Scale-motor improvement. On multivariable hierarchical regression, older age at dystonia onset, inherited dystonia without nervous system pathology and idiopathic dystonia (vs inherited with nervous system pathology or acquired dystonia), and truncal involvement indicated a better outcome (p<0.05). INTERPRETATION The data suggest that DBS is effective and should be considered in selected children with inherited or idiopathic dystonia. WHAT THIS PAPER ADDS Deep brain stimulation is effective in selected children with inherited or idiopathic dystonia.
Collapse
Affiliation(s)
- Lior M Elkaim
- Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Naif M Alotaibi
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Alissa Sigal
- Faculty of Medicine, Université de Montréal, Montreal, Canada
| | | | - Nir Lipsman
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Canada
| | - Darcy L Fehlings
- Child Development Program, Holland Bloorview Rehabilitation Hospital, University of Toronto, Toronto, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Surgery, Institute of Biomaterials and Biomedical Engineering, Institute of Medical Science, University of Toronto, Toronto, Canada
| | | |
Collapse
|
35
|
Elkaim LM, De Vloo P, Kalia SK, Lozano AM, Ibrahim GM. Deep brain stimulation for childhood dystonia: current evidence and emerging practice. Expert Rev Neurother 2018; 18:773-784. [DOI: 10.1080/14737175.2018.1523721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Lior M. Elkaim
- Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Phillippe De Vloo
- Department of Neurosurgery, Great Ormond Street Hospital for Children, London, UK
| | - Suneil K. Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Canada
| | - Andres M. Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Canada
| | - George M. Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada
| |
Collapse
|
36
|
Pagliano E, Baranello G, Masson R, Foscan M, Arnoldi MT, Marchi A, Aprile G, Pantaleoni C. Outcome measures for children with movement disorders. Eur J Paediatr Neurol 2018; 22:346-353. [PMID: 29475818 DOI: 10.1016/j.ejpn.2018.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 11/30/2022]
Abstract
The huge contribution of advances in the pediatric neurosciences, improvements in clinical practice, and new therapeutic options, has led to the development of new models of treatment and rehabilitation for dystonia in the last decade. It is now generally agreed that a multidimensional therapeutic approach is needed for children with motor disorders, whose motor function-conceived as a complex perceptive, motor and cognitive process - is impaired at a crucial time in their development, with a fall out on how their various adaptive functions evolve. Neurophysiological studies, modern neuroimaging techniques, and advances in cognitive psychology have all contributed to improving our understanding of the potential effects of treatments in early age - not only on the symptoms, but also on plasticity processes and neuronal reorganization. The International Classification of Functioning, Disability and Health (ICF) promoted by the WHO, and the diffusion of family-centered models of healthcare have underscored the importance of the ecological perspective with a view to providing effective therapies and a satisfactory quality of life for dystonic children and their families. The advances made in this area have made it necessary to study and develope more appropriate treatment outcome measures. In the light of these aspects, there is still not enough literature on the generally-accepted, exhaustive dystonia assessment tools. Given these limits, it might be useful to discuss the strengths and weaknesses of the main tools currently used in this setting.
Collapse
Affiliation(s)
- Emanuela Pagliano
- Developmental Neurology Unit, C. Besta Neurological Institute Foundation, Milan, Italy.
| | - Giovanni Baranello
- Developmental Neurology Unit, C. Besta Neurological Institute Foundation, Milan, Italy
| | - Riccardo Masson
- Developmental Neurology Unit, C. Besta Neurological Institute Foundation, Milan, Italy
| | - Maria Foscan
- Developmental Neurology Unit, C. Besta Neurological Institute Foundation, Milan, Italy
| | - Maria Teresa Arnoldi
- Developmental Neurology Unit, C. Besta Neurological Institute Foundation, Milan, Italy
| | - Alessia Marchi
- Developmental Neurology Unit, C. Besta Neurological Institute Foundation, Milan, Italy
| | - Giorgia Aprile
- Developmental Neurology Unit, C. Besta Neurological Institute Foundation, Milan, Italy
| | - Chiara Pantaleoni
- Developmental Neurology Unit, C. Besta Neurological Institute Foundation, Milan, Italy
| |
Collapse
|
37
|
Fehlings D, Brown L, Harvey A, Himmelmann K, Lin JP, Macintosh A, Mink JW, Monbaliu E, Rice J, Silver J, Switzer L, Walters I. Pharmacological and neurosurgical interventions for managing dystonia in cerebral palsy: a systematic review. Dev Med Child Neurol 2018; 60:356-366. [PMID: 29405267 DOI: 10.1111/dmcn.13652] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 12/22/2022]
Abstract
AIM To systematically review evidence for pharmacological/neurosurgical interventions for managing dystonia in individuals with cerebral palsy (CP) to inform a care pathway. METHOD Searches included studies with a minimum of five participants with dystonia in CP receiving oral baclofen, benzodiazepines (clonazepam, diazepam, lorazepam), clonidine, gabapentin, levodopa, trihexyphenidyl, botulinum toxin, intrathecal baclofen (ITB), or deep brain stimulation (DBS). Evidence was classified according to American Academy of Neurology guidelines. RESULTS Twenty-eight articles underwent data extraction: one levodopa, five trihexyphenidyl, three botulinum toxin, six ITB, and 13 DBS studies. No articles for oral baclofen, benzodiazepines, clonidine, or gabapentin met the inclusion criteria. Evidence for reducing dystonia was level C (possibly effective) for ITB and DBS; level C (possibly ineffective) for trihexyphenidyl; and level U (inadequate data) for botulinum toxin. INTERPRETATION For dystonia reduction, ITB and DBS are possibly effective, whereas trihexyphenidyl was possibly ineffective. There is insufficient evidence to support oral medications or botulinum toxin to reduce dystonia. There is insufficient evidence for pharmacological and neurosurgical interventions to improve motor function, decrease pain, and ease caregiving. The majority of the pharmacological and neurosurgical management of dystonia in CP is based on clinical expert opinion. WHAT THIS PAPER ADDS Intrathecal baclofen and deep brain stimulation are possibly effective in reducing dystonia. Current evidence does not support effectiveness of oral medications or botulinum toxin to reduce dystonia. Evidence is inadequate for pharmacological/neurosurgical interventions impact on improving motor function, pain/comfort, and easing caregiving. The majority of the care pathway rests on expert opinion.
Collapse
Affiliation(s)
- Darcy Fehlings
- Department of Paediatrics, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, ON, Canada
| | - Leah Brown
- Department of Paediatrics, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, ON, Canada
| | - Adrienne Harvey
- Developmental Disability and Rehabilitation Research, Murdoch Childrens Research Institute, Parkville, Vic, Australia
| | - Kate Himmelmann
- Department of Pediatrics, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jean-Pierre Lin
- Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St Thomas', NHS Foundation Trust, Kings' Health Partners, London, UK
| | - Alexander Macintosh
- Department of Paediatrics, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, ON, Canada
| | - Jonathan W Mink
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Elegast Monbaliu
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - James Rice
- Paediatric Rehabilitation Department, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Jessica Silver
- Department of Paediatrics, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, ON, Canada
| | - Lauren Switzer
- Department of Paediatrics, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, ON, Canada
| | - Ilana Walters
- Department of Paediatrics, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Deep brain stimulation for dystonia due to cerebral palsy: A review. Eur J Paediatr Neurol 2018; 22:308-315. [PMID: 29396170 DOI: 10.1016/j.ejpn.2017.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/08/2023]
Abstract
Cerebral palsy (CP) is a heterogeneous group of syndromes that cause a non-progressive disorder of early onset, with abnormal control of movement and posture. Various aetiologies can cause the CP clinical spectrum, but all have a disruption of motor control in common. CP can be divided into four major types based on the motor disability: predominant spastic, dyskinetic, ataxic and mixed form. Dyskinetic CP (DCP) is the most common cause of acquired dystonia in children. The treatment of DCP is challenging because most individuals have mixed degrees of chorea, athetosis and dystonia. Pharmacological treatment is often unsatisfactory. Functional neurosurgery, in particular deep brain stimulation targeting the basal ganglia or the cerebellum, is emerging as a promising therapeutic approach in selected patients with DCP. We evaluated herein the effects of DBS on patients with DCP in a review of published patient data in the largest available studies.
Collapse
|
39
|
Towns M, Rosenbaum P, Palisano R, Wright FV. Should the Gross Motor Function Classification System be used for children who do not have cerebral palsy? Dev Med Child Neurol 2018; 60:147-154. [PMID: 29105760 DOI: 10.1111/dmcn.13602] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
Abstract
UNLABELLED This literature review addressed four questions. (1) In which populations other than cerebral palsy (CP) has the Gross Motor Function Classification System (GMFCS) been applied? (2) In what types of study, and why was it used? (3) How was it modified to facilitate these applications? (4) What justifications and evidence of psychometric adequacy were used to support its application? A search of PubMed, MEDLINE, and Embase databases (January 1997 to April 2017) using the terms: 'GMFCS' OR 'Gross Motor Function Classification System' yielded 2499 articles. 118 met inclusion criteria and reported children/adults with 133 health conditions/clinical descriptions other than CP. Three broad GMFCS applications were observed: as a categorization tool, independent variable, or outcome measure. While the GMFCS is widely used for children with health conditions/clinical description other than CP, researchers rarely provided adequate justification for these uses. We offer recommendations for development/validation of other condition-specific classification systems and discuss the potential need for a generic gross motor function classification system. WHAT THIS PAPER ADDS The Gross Motor Function Classification System should not be used outside cerebral palsy or as an outcome measure. The authors provide recommendations for development and validation of condition-specific or generic classification systems.
Collapse
Affiliation(s)
- Megan Towns
- Bloorview Research Institute, Toronto, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Peter Rosenbaum
- CanChild Centre for Childhood Disability Research, McMaster University, Hamilton, ON, Canada.,Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Robert Palisano
- CanChild Centre for Childhood Disability Research, McMaster University, Hamilton, ON, Canada.,Physical Therapy and Rehabilitation Science Department, Drexel University, Philadelphia, PA, USA
| | - F Virginia Wright
- Bloorview Research Institute, Toronto, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.,CanChild Centre for Childhood Disability Research, McMaster University, Hamilton, ON, Canada.,Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Somatosensory Evoked Potentials and Central Motor Conduction Times in children with dystonia and their correlation with outcomes from Deep Brain Stimulation of the Globus pallidus internus. Clin Neurophysiol 2017; 129:473-486. [PMID: 29254860 PMCID: PMC5786451 DOI: 10.1016/j.clinph.2017.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
A high proportion (47%) of children with dystonia have evidence of abnormal sensory pathway function. Central motor conduction times (CMCTs) and somatosensory evoked potentials (SEPs) show a significant relationship with deep brain stimulation (DBS) outcome, independent of aetiology or cranial MRI. CMCTs and SEPs can guide patient selection and help counsel families about potential benefit of DBS.
Objectives To report Somatosensory Evoked Potentials (SEPs) and Central Motor Conduction Times (CMCT) in children with dystonia and to test the hypothesis that these parameters predict outcome from Deep Brain Stimulation (DBS). Methods 180 children with dystonia underwent assessment for Globus pallidus internus (GPi) DBS, mean age 10 years (range 2.5–19). CMCT to each limb was calculated using Transcranial Magnetic Stimulation. Median and posterior tibial nerve SEPs were recorded over contralateral and midline centro-parietal scalp. Structural abnormalities were assessed with cranial MRI. One-year outcome from DBS was assessed as percentage improvement in Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS-m). Results Abnormal CMCTs and SEPs were found in 19% and 47% of children respectively and were observed more frequently in secondary than primary dystonia. Of children proceeding to DBS, better outcome was seen in those with normal (n = 78/89) versus abnormal CMCT (n = 11/89) (p = 0.002) and those with normal (n = 35/51) versus abnormal SEPs (n = 16/51) (p = 0.001). These relationships were independent of dystonia aetiology and cranial MRI findings. Conclusions CMCTs and SEPs provide objective evidence of motor and sensory pathway dysfunction in children with dystonia and relate to DBS outcome. Significance CMCTs and SEPs can contribute to patient selection and counselling of families about potential benefit from neuromodulation for dystonia.
Collapse
|
41
|
Spasticity, dyskinesia and ataxia in cerebral palsy: Are we sure we can differentiate them? Eur J Paediatr Neurol 2017; 21:703-706. [PMID: 28549726 DOI: 10.1016/j.ejpn.2017.04.1333] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/17/2017] [Accepted: 04/23/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Cerebral palsy (CP) can be classified as spastic, dyskinetic, ataxic or combined. Correct classification is essential for symptom-targeted treatment. This study aimed to investigate agreement among professionals on the phenotype of children with CP based on standardized videos. METHODS In a prospective, observational pilot study, videos of fifteen CP patients (8 boys, mean age 11 ± 5 y) were rated by three pediatric neurologists, three rehabilitation physicians and three movement disorder specialists. They scored the presence and severity of spasticity, ataxia or dyskinesias/dystonia. Inter- and intraobserver agreement were calculated using Cohen's and Fleiss' kappa. RESULTS We found a fair inter-observer (κ = 0.36) and moderate intra-observer agreement (κ = 0.51) for the predominant motor symptom. This only slightly differed within the three groups of specialists (κ = 0.33-0.55). CONCLUSION A large variability in the phenotyping of CP children was detected, not only between but also within clinicians, calling for a discussing on the operational definitions of spasticity, dystonia and ataxia. In addition, the low agreement found in our study questions the reliability of use of videos to measure intervention outcomes, such as deep brain stimulation in dystonic CP. Future studies should include functional domains to assess the true impact of management options in this highly challenging patient population.
Collapse
|
42
|
Johans SJ, Swong KN, Hofler RC, Anderson DE. A Stepwise Approach: Decreasing Infection in Deep Brain Stimulation for Childhood Dystonic Cerebral Palsy. J Child Neurol 2017; 32:871-875. [PMID: 28604158 DOI: 10.1177/0883073817713900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dystonia is a movement disorder characterized by involuntary muscle contractions, which cause twisting movements or abnormal postures. Deep brain stimulation has been used to improve the quality of life for secondary dystonia caused by cerebral palsy. Despite being a viable treatment option for childhood dystonic cerebral palsy, deep brain stimulation is associated with a high rate of infection in children. The authors present a small series of patients with dystonic cerebral palsy who underwent a stepwise approach for bilateral globus pallidus interna deep brain stimulation placement in order to decrease the rate of infection. Four children with dystonic cerebral palsy who underwent a total of 13 surgical procedures (electrode and battery placement) were identified via a retrospective review. There were zero postoperative infections. Using a multistaged surgical plan for pediatric patients with dystonic cerebral palsy undergoing deep brain stimulation may help to reduce the risk of infection.
Collapse
Affiliation(s)
- Stephen J Johans
- 1 Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Kevin N Swong
- 1 Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Ryan C Hofler
- 1 Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Douglas E Anderson
- 1 Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
43
|
Clonidine use in the outpatient management of severe secondary dystonia. Eur J Paediatr Neurol 2017; 21:621-626. [PMID: 28372940 DOI: 10.1016/j.ejpn.2017.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To evaluate the safety, efficacy and effective dosage of clonidine in the outpatient (OP) management of secondary dystonia. METHODS A retrospective analysis of children and young people (CAYP) prescribed clonidine in an OP clinic between January 2011 and November 2013 for dystonia management. Of 224 children receiving clonidine, 149/224 did not have a movement disorder and 12/224 had no data leaving 63 movement disorder cases, 15/63 managed as in-patients, 15/48 suffered from tics leaving 33/63 for OP evaluation. Clonidine effectiveness was assessed by 'yes/no' criteria in improving 5 areas: seating, sleep, pain, tone and involuntary movements. RESULTS 2/33 motor cases had insufficient data; 7/33 had concurrent therapy leaving 24/33 for analysis. Improvement in at least one area was reported by 20/24 (83%) CAYP: Improved seating tolerance 14/24, and sleep 15/24; reduced pain 15/24; improved tone 16/24 and involuntary movements 17/24. Starting doses ranged from 1 mcg/kg OD to 2 mcg/kg TDS with optimum doses reached on average at 9.5 months follow-up. Maximum dose reached was 75 mcg/kg/day given in 8 divided doses. Average maximum daily dose was 20 mcg/kg/day. The commonest frequency of administration was 8 hourly. Side effects were reported in 11/24 CAYP and discontinued in 1/24 for lack of clinical effectiveness, 1/24 for side effects and 4/24 due to both lack of effectiveness and side effects. CONCLUSION Clonidine was effective in secondary dystonia management in 83% of cases. A starting dose of 1 mcg/kg TDS was well tolerated and safely escalated. Prospective objective evaluation is now required to confirm the efficacy of clonidine.
Collapse
|
44
|
Bilateral globus pallidus internus deep brain stimulation for dyskinetic cerebral palsy supports success of cochlear implantation in a 5-year old ex-24 week preterm twin with absent cerebellar hemispheres. Eur J Paediatr Neurol 2017; 21:202-213. [PMID: 28017556 DOI: 10.1016/j.ejpn.2016.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Early onset dystonia (dyskinesia) and deafness in childhood pose significant challenges for children and carers and are the cause of multiple disability. It is particularly tragic when the child cannot make use of early cochlear implantation (CI) technology to relieve deafness and improve language and communication, because severe cervical and truncal dystonia brushes off the magnetic amplifier behind the ears. Bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) neuromodulation can reduce dyskinesia, thus supporting CI neuromodulation success. METHODS We describe the importance of the order of dual neuromodulation surgery for dystonia and deafness. First with bilateral GPi DBS using a rechargeable ACTIVA-RC neurostimulator followed 5 months later by unilateral CI with a Harmony (BTE) Advanced Bionics Hi Res 90 K cochlear device. This double neuromodulation was performed in series in a 12.5 kg 5 year-old ex-24 week gestation-born twin without a cerebellum. RESULTS Relief of dyskinesia enabled continuous use of the CI amplifier. Language understanding and communication improved. Dystonic storms abated. Tolerance of sitting increased with emergence of manual function. Status dystonicus ensued 10 days after ACTIVA-RC removal for infection-erosion at 3 years and 10 months. He required intensive care and DBS re-implantation 3 weeks later together with 8 months of hospital care. Today he is virtually back to the level of functioning before the DBS removal in 2012 and background medication continues to be slowly weaned. CONCLUSION This case illustrates that early neuromodulation with DBS for dystonic cerebral palsy followed by CI for deafness is beneficial. Both should be considered early i.e. under the age of five years. The DBS should precede the CI to maximise dystonia reduction and thus benefits from CI. This requires close working between the paediatric DBS and CI services.
Collapse
|
45
|
Hudson VE, Elniel A, Ughratdar I, Zebian B, Selway R, Lin JP. A comparative historical and demographic study of the neuromodulation management techniques of deep brain stimulation for dystonia and cochlear implantation for sensorineural deafness in children. Eur J Paediatr Neurol 2017; 21:122-135. [PMID: 27562095 DOI: 10.1016/j.ejpn.2016.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED Cochlear implants for sensorineural deafness in children is one of the most successful neuromodulation techniques known to relieve early chronic neurodisability, improving activity and participation. In 2012 there were 324,000 recipients of cochlear implants globally. AIM To compare cochlear implant (CI) neuromodulation with deep brain stimulation (DBS) for dystonia in childhood and explore relations between age and duration of symptoms at implantation and outcome. METHODS Comparison of published annual UK CI figures for 1985-2009 with a retrospective cohort of the first 9 years of DBS for dystonia in children at a single-site Functional Neurosurgery unit from 2006 to 14. RESULTS From 2006 to 14, DBS neuromodulation of childhood dystonia increased by a factor of 3.8 to a total of 126 cases over the first 9 years, similar to the growth in cochlear implants which increased by a factor of 4.1 over a similar period in the 1980s rising to 527 children in 2009. The CI saw a dramatic shift in practice from implantation at >5 years of age at the start of the programme towards earlier implantation by the mid-1990s. Best language results were seen for implantation <5 years of age and duration of cochlear neuromodulation >4 years, hence implantation <1 year of age, indicating that severely deaf, pre-lingual children could benefit from cochlear neuromodulation if implanted early. Similar to initial CI use, the majority of children receiving DBS for dystonia in the first 9 years were 5-15 years of age, when the proportion of life lived with dystonia exceeds 90% thus limiting benefits. CONCLUSION Early DBS neuromodulation for acquired motor disorders should be explored to maximise the benefits of dystonia reduction in a period of maximal developmental plasticity before the onset of disability. Learning from cochlear implantation, DBS can become an accepted management option in children under the age of 5 years who have a reduced proportion of life lived with dystonia, and not viewed as a last resort reserved for only the most severe cases where benefits may be at their most limited.
Collapse
Affiliation(s)
- V E Hudson
- Guys', King's and St Thomas' School of Medical Education, United Kingdom.
| | - A Elniel
- Guys', King's and St Thomas' School of Medical Education, United Kingdom
| | | | - B Zebian
- King's College Hospital, United Kingdom
| | - R Selway
- King's College Hospital, United Kingdom
| | - J P Lin
- Evelina London Children's Hospital, United Kingdom.
| |
Collapse
|
46
|
The International Classification of Functioning (ICF) to evaluate deep brain stimulation neuromodulation in childhood dystonia-hyperkinesia informs future clinical & research priorities in a multidisciplinary model of care. Eur J Paediatr Neurol 2017; 21:147-167. [PMID: 27707656 DOI: 10.1016/j.ejpn.2016.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022]
Abstract
The multidisciplinary team (MDT) approach illustrates how motor classification systems, assessments and outcome measures currently available have been applied to a national cohort of children and young people with dystonia and other hyperkinetic movement disorders (HMD) particularly with a focus on dyskinetic cerebral palsy (CP). The paper is divided in 3 sections. Firstly, we describe the service model adopted by the Complex Motor Disorders Service (CMDS) at Evelina London Children's Hospital and King's College Hospital (ELCH-KCH) for deep brain stimulation. We describe lessons learnt from available dystonia studies and discuss/propose ways to measure DBS and other dystonia-related intervention outcomes. We aim to report on current available functional outcome measures as well as some impairment-based assessments that can encourage and generate discussion among movement disorders specialists of different backgrounds regarding choice of the most important areas to be measured after DBS and other interventions for dystonia management. Finally, some recommendations for multi-centre collaboration in regards to functional clinical outcomes and research methodologies for dystonia-related interventions are proposed.
Collapse
|
47
|
Lin JP, Nardocci N. Recognizing the Common Origins of Dystonia and the Development of Human Movement: A Manifesto of Unmet Needs in Isolated Childhood Dystonias. Front Neurol 2016; 7:226. [PMID: 28066314 PMCID: PMC5165260 DOI: 10.3389/fneur.2016.00226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
Dystonia in childhood may be severely disabling and often unremitting and unrecognized. Considered a rare disorder, dystonic symptoms in childhood are pervasive in many conditions including disorders of developmental delay, cerebral palsy (CP), autism, neurometabolic, neuroinflammatory, and neurogenetic disorders. Collectively, there is a need to recognize the role of early postures and movements which characterize phases of normal fetal, infant, and child development as a backdrop to the many facets of dystonia in early childhood neurological disorders and to be aware of the developmental context of dystonic symptoms. The role of cocontraction is explored throughout infancy, childhood, young adulthood, and in the elderly. Under-recognition of pervasive dystonic disorders of childhood, including within CP is reviewed. Original descriptions of CP by Gowers are reviewed and contemporary physiological demonstrations are used to illustrate support for an interpretation of the tonic labyrinthine response as a manifestation of dystonia. Early recognition and molecular diagnosis of childhood dystonia where possible are desirable for appropriate clinical stratification and future precision medicine and functional neurosurgery where appropriate. A developmental neurobiological perspective could also be useful in exploring new clinical strategies for adult-onset dystonia disorders focusing on environmental and molecular interactions and systems behaviors.
Collapse
Affiliation(s)
| | - Nardo Nardocci
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta , Milano , Italy
| |
Collapse
|
48
|
Beaulieu-Boire I, Aquino CC, Fasano A, Poon YY, Fallis M, Lang AE, Hodaie M, Kalia SK, Lozano A, Moro E. Deep Brain Stimulation in Rare Inherited Dystonias. Brain Stimul 2016; 9:905-910. [PMID: 27743838 DOI: 10.1016/j.brs.2016.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/01/2016] [Accepted: 07/21/2016] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Rare causes of inherited movement disorders often present with a debilitating phenotype of dystonia, sometimes combined with parkinsonism and other neurological signs. Since these disorders are often resistant to medications, DBS may be considered as a possible treatment. METHODS Patients with identified genetic diseases (ataxia-telangiectasia, chorea-achantocytosis, dopa-responsive dystonia, congenital nemaline myopathy, methylmalonic aciduria, neuronal ceroid lipofuscinosis, spinocerebellar ataxia types 2 and 3, Wilson's disease, Woodhouse-Sakati syndrome, methylmalonic aciduria, and X trisomy) and disabling dystonia underwent bilateral GPi DBS (bilateral thalamic Vim nucleus in 1 case). The primary outcome was the difference in the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) between baseline, 1 year and last available follow-up. Preoperative factors such as age at surgery, disease duration at surgery, proportion of life lived with dystonia and severity of dystonia were correlated to the primary outcome. RESULTS Eleven patients were operated between February 2003 and December 2013. Age and duration of disease at time of surgery were 30 ± 19 and 12.5 ± 15.7 years, respectively. DBS effects on dystonia severity were variable but overall marginally effective, with a mean improvement of 7.9% (p = 0.39) at 1-year follow-up and 16.7% (p = 0.46) at last follow-up (mean 47.3 ± 19.9 months after surgery). No preoperative factors were identified to predict the surgical outcome. CONCLUSION Our findings support the current knowledge that DBS is modestly effective in treating rare inherited dystonias with a combined phenotype. However, the BFMDRS might not be the best tool to measure outcome in these severely affected patients.
Collapse
Affiliation(s)
- Isabelle Beaulieu-Boire
- Division of Neurology, Centre Hospitalier Universitaire de Sherbrooke, University of Sherbrooke, Sherbrooke, Québec, Canada; Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Camila C Aquino
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.
| | - Yu-Yan Poon
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Melanie Fallis
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Antony E Lang
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Andres Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Elena Moro
- Division of Neurology, CHU Grenoble, INSERM U836, Joseph Fourier University, Grenoble, France
| |
Collapse
|
49
|
Lumsden DE, Gimeno H, Lin JP. Classification of dystonia in childhood. Parkinsonism Relat Disord 2016; 33:138-141. [PMID: 27727009 DOI: 10.1016/j.parkreldis.2016.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/12/2016] [Accepted: 10/03/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The most recent international consensus update on dystonia classification proposed a system based on 2 axes, clinical characteristics and aetiology. We aimed to apply this system to Children and Young People (CAYP) selected for movement disorder surgery, and determine if meaningful groupings of cases could be extracted. METHODS The 2013 Consensus Committee classification system for dystonia was retrospectively applied to 145 CAYP with dystonic movement disorders. Two-step cluster analysis was applied to the resulting categorisations to identify groupings of CAYP with similar characteristics. RESULTS Classification resulted in a total of 43 unique groupings of categorisation. Cluster analysis detected 4 main clusters of CAYP, comparable to previously used patient groupings. CONCLUSIONS The 2013 consensus update on dystonia classification can be applied to CAYP with dystonia. The large number of categories provides a wealth of information for the clinician, and also facilitates data driven grouping into clinically meaningful subgroups.
Collapse
Affiliation(s)
- Daniel E Lumsden
- Complex Motor Disorders Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK.
| | - Hortensia Gimeno
- Complex Motor Disorders Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Jean-Pierre Lin
- Complex Motor Disorders Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
50
|
van den Heuvel CNAM, Tijssen MAJ, van de Warrenburg BPC, Delnooz CCS. The Symptomatic Treatment of Acquired Dystonia: A Systematic Review. Mov Disord Clin Pract 2016; 3:548-558. [PMID: 30363468 DOI: 10.1002/mdc3.12400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/12/2016] [Accepted: 05/23/2016] [Indexed: 12/27/2022] Open
Abstract
Background Acquired dystonia is caused by an acquired or exogenous event. Although the therapeutic armamentarium used in clinical practice is more or less similar to that used for inherited or idiopathic dystonia, formal proof of the efficacy of these interventions in acquired dystonia is lacking. Methods The authors attempt to provide a comprehensive and systematic review of the current evidence for medical and allied health care treatment strategies in acquired dystonias. The PubMed, Cochrane Library, MEDLINE, Web of Science, PiCarta, and PsycINFO databases were searched up to December 2015, including randomized controlled trials, patient-control studies, and case series or single case reports containing a report on clinical outcome. Results There are level 3 practice recommendations for botulinum toxin injections and globus pallidus pars interna deep brain stimulation for tardive dystonia and dystonic cerebral palsy as well as intrathecal baclofen for dystonic cerebral palsy. There are insufficient and conflicting data on the effect (vs. the hazard) of other pharmacological interventions, and limited work has been done on other forms of neurostimulation and allied health care. Because no class A1 or A2 studies were identified, level 1 or 2 practice recommendations could not be deducted for a specific treatment intervention. Conclusions To improve the current medical and allied health care treatment options for patients with acquired dystonia, high-quality trials that examine the efficacy of therapies need to be performed.
Collapse
Affiliation(s)
- Corina N A M van den Heuvel
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior Radboud University Medical Center Nijmegen the Netherlands
| | - Marina A J Tijssen
- Department of Neurology University Medical Center Groningen Groningen the Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior Radboud University Medical Center Nijmegen the Netherlands
| | - Cathérine C S Delnooz
- Department of Neurology University Medical Center Groningen Groningen the Netherlands
| |
Collapse
|