1
|
Otu W, Sudhakaran R, Garza-Garcia G, Parekh K, Sheikh IS. MECP2 duplication syndrome-Typical EEG characteristics. Epileptic Disord 2025. [PMID: 40167402 DOI: 10.1002/epd2.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Affiliation(s)
- Walter Otu
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ritu Sudhakaran
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - German Garza-Garcia
- Division of Epilepsy, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Krishna Parekh
- Division of Epilepsy, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Irfan S Sheikh
- Division of Epilepsy, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Sauna A, Sciuto L, Criscione R, Messina G, Presti S, Soma R, Oliva C, Salafia S, Falsaperla R. MECP2-Related Disorders and Epilepsy Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:283-291. [DOI: 10.1055/s-0041-1728643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
MECP2 (methyl-CpG binding protein-2) gene, located on chromosome Xq28, encodes for a protein particularly abundant in the brain that is required for maturation of astrocytes and neurons and is developmentally regulated. A defective homeostasis of MECP2 expression, either by haploinsufficiency or overexpression, leads to a neurodevelopmental phenotype. As MECP2 is located on chromosome X, the clinical presentation varies in males and females ranging from mild learning disabilities to severe encephalopathies and early death. Typical Rett syndrome (RTT), the most frequent phenotype associated with MECP2 mutations, primarily affects girls and it was previously thought to be lethal in males; however, MECP2 duplication syndrome, resulting from a duplication of the Xq28 region including MECP2, leads to a severe neurodevelopmental disorder in males. RTT and MECP2 duplication syndrome share overlapping clinical phenotypes including intellectual disabilities, motor deficits, hypotonia, progressive spasticity, and epilepsy. In this manuscript we reviewed literature on epilepsy related to MECP2 disorders, focusing on clinical presentation, genotype–phenotype correlation, and treatment.
Collapse
Affiliation(s)
- Alessandra Sauna
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberta Criscione
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giulia Messina
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Santiago Presti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rachele Soma
- Unit of Rare Diseases of the Nervous Systemin Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Claudia Oliva
- Unit of Rare Diseases of the Nervous Systemin Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | | | | |
Collapse
|
3
|
Pehlivan D, Ak M, Glaze DG, Suter B, Motil KJ. Exploring gastrointestinal health in MECP2 duplication syndrome. Neurogastroenterol Motil 2023; 35:e14601. [PMID: 37122114 PMCID: PMC10524027 DOI: 10.1111/nmo.14601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND MECP2 duplication syndrome (MDS) is a rare neurogenetic syndrome caused by duplications of MECP2 at the Xq28 region. Although constipation and gastrointestinal reflux are reported in MDS, a comprehensive characterization of gastrointestinal health has not been fully explored. METHODS We conducted a parent survey to explore the characteristics of gastrointestinal health in individuals with MDS using a secure online registry and compared differences in gastrointestinal symptoms between individuals with MDS and those with Rett syndrome (RTT). KEY RESULTS One hundred six surveys were analyzed. Symptoms commonly associated with constipation occurred in 72% to 89% of MDS individuals. Eleven percent of MDS individuals underwent surgery for complications associated with constipation. We observed a bimodal distribution for gastroesophageal reflux disease (GERD) and gastrostomy feeding, with higher prevalence in 0-3 and >12-year-old MDS individuals. Constipation and GERD were significantly more common, and gas bloating was significantly less common in MDS than in RTT. Biliary tract disease requiring surgery was an unrecognized problem in 5% of MDS individuals. We determined that gastrointestinal problems in MDS individuals contribute to caretaker burden. CONCLUSION AND INFERENCES Our study is the first in-depth investigation that characterizes gastrointestinal health in MDS and enumerates differences in gastrointestinal symptoms between MDS and RTT. Strategies to reduce gastrointestinal symptoms will alleviate caregiver burden in MDS. Further studies are needed to examine the mechanisms that cause gastrointestinal problems in MDS.
Collapse
Affiliation(s)
- Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Blue Bird Circle Rett Center, Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Muharrem Ak
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Daniel G. Glaze
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Blue Bird Circle Rett Center, Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Bernhard Suter
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Blue Bird Circle Rett Center, Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Kathleen J. Motil
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Inoue T, Kuki I, Uda T, Kunihiro N, Umaba R, Koh S, Nukui M, Okazaki S, Otsubo H. Comparing late-onset epileptic spasm outcomes after corpus callosotomy and subsequent disconnection surgery between post-encephalitis/encephalopathy and non-encephalitis/encephalopathy. Epilepsia Open 2023; 8:346-359. [PMID: 36692212 PMCID: PMC10235586 DOI: 10.1002/epi4.12698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE We aimed to analyze the efficiency of corpus callosotomy (CC) and subsequent disconnection surgeries in patients with late-onset epileptic spasms (LOES) by comparing post-encephalitis/encephalopathy (PE) and non-encephalitis/encephalopathy (NE). We hypothesized these surgeries can control potential focal onset epileptic spasms (ES) in the NE group but not in the PE group. METHODS We retrospectively included 23 patients (12 with PE and 11 with NE) who initially underwent CC and subsequent disconnection surgeries (five NE). We compared the clinical courses, seizure types, MRI, video-EEG, epilepsy surgery, and seizure outcomes between the two groups. RESULTS The median age of LOES onset in the PE group was 2.8 (range 1.0-10.1 years) and 2.9 years (range 1.1-12.6) in the NE group. Bilateral MRI abnormalities were observed in both groups (PE, n = 12; NE, n = 3; P < 0.05). The PE group presented ES alone (n = 2), ES + focal seizures (FS) (n = 3), ES + generalized seizures (GS) (n = 3), and ES + FS + GS (n = 4) in addition to stimulus-induced startle seizures (SS) (n = 8) (mean 3.1 seizure types/patient). The NE group presented ES alone (n = 1), ES + FS (n = 2), and ES + FS + GS (n = 8) (mean 2.7 seizure types/patient). In the PE group, CC stopped ES (n = 1) and SS (n = 1) and achieved <50% SS (n = 3). In the NE group, CC achieved immediate ES-free status (n = 2) and < 50% ES (n = 1), and additional disconnection surgeries subsided all seizure types (n = 3) based on lateralized interictal/ictal EEG findings. LOES was significantly remitted by surgery in the NE group (6/11 [55%]) compared with the PE group (1/12 [8%]) (P < 0.05). SIGNIFICANCE LOES is a drug-resistant, focal/generalized/unknown onset ES. Lateralization of ES in NE could be achieved after CC and eliminated by further disconnection surgeries because of potential focal onset ES. LOES in PE had little benefit from CC for generalized onset ES. However, CC might reduce SS in patients in the PE group with multiple seizure types.
Collapse
Affiliation(s)
- Takeshi Inoue
- Department of Pediatric NeurologyOsaka City General HospitalOsakaJapan
| | - Ichiro Kuki
- Department of Pediatric NeurologyOsaka City General HospitalOsakaJapan
| | - Takehiro Uda
- Department of Pediatric NeurosurgeryOsaka City General HospitalOsakaJapan
- Department of NeurosurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Noritsugu Kunihiro
- Department of Pediatric NeurosurgeryOsaka City General HospitalOsakaJapan
| | - Ryoko Umaba
- Department of Pediatric NeurosurgeryOsaka City General HospitalOsakaJapan
| | - Saya Koh
- Department of NeurosurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Megumi Nukui
- Department of Pediatric NeurologyOsaka City General HospitalOsakaJapan
- Department of Pediatric LogopedicsOsaka City General HospitalOsakaJapan
| | - Shin Okazaki
- Department of Pediatric NeurologyOsaka City General HospitalOsakaJapan
- Department of Pediatric LogopedicsOsaka City General HospitalOsakaJapan
| | - Hiroshi Otsubo
- Division of NeurologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| |
Collapse
|
5
|
Gottschalk I, Kölsch U, Wagner DL, Kath J, Martini S, Krüger R, Puel A, Casanova JL, Jezela-Stanek A, Rossi R, Chehadeh SE, Van Esch H, von Bernuth H. IRAK1 Duplication in MECP2 Duplication Syndrome Does Not Increase Canonical NF-κB-Induced Inflammation. J Clin Immunol 2023; 43:421-439. [PMID: 36319802 PMCID: PMC9628328 DOI: 10.1007/s10875-022-01390-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Besides their developmental and neurological phenotype, most patients with MECP2/IRAK1 duplication syndrome present with recurrent and severe infections, accompanied by strong inflammation. Respiratory infections are the most common cause of death. Standardized pneumological diagnostics, targeted anti-infectious treatment, and knowledge of the underlying pathomechanism that triggers strong inflammation are unmet clinical needs. We investigated the influence of IRAK1 overexpression on the canonical NF-κB signaling as a possible cause for excessive inflammation in these patients. METHODS NF-κB signaling was examined by measuring the production of proinflammatory cytokines and evaluating the IRAK1 phosphorylation and degradation as well as the IκBα degradation upon stimulation with IL-1β and TLR agonists in SV40-immortalized fibroblasts, PBMCs, and whole blood of 9 patients with MECP2/IRAK1 duplication syndrome, respectively. RESULTS Both, MECP2/IRAK1-duplicated patients and healthy controls, showed similar production of IL-6 and IL-8 upon activation with IL-1β and TLR2/6 agonists in immortalized fibroblasts. In PBMCs and whole blood, both patients and controls had a similar response of cytokine production after stimulation with IL-1β and TLR4/2/6 agonists. Patients and controls had equivalent patterns of IRAK1 phosphorylation and degradation as well as IκBα degradation upon stimulation with IL-1β. CONCLUSION Patients with MECP2/IRAK1 duplication syndrome do not show increased canonical NF-κB signaling in immortalized fibroblasts, PBMCs, and whole blood. Therefore, we assume that these patients do not benefit from a therapeutic suppression of this pathway.
Collapse
Affiliation(s)
- Ilona Gottschalk
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Uwe Kölsch
- Labor Berlin GmbH, Department of Immunology, Berlin, Germany
| | - Dimitrios L Wagner
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Campus Virchow-Klinikum, Berlin, Germany
| | - Jonas Kath
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Stefania Martini
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Rainer Rossi
- Childrens' Hospital Neukölln, Vivantes GmbH, Berlin, Germany
| | | | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Louvain, Belgium
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Labor Berlin GmbH, Department of Immunology, Berlin, Germany.
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Yan L, Deng Y, Chen J, Hu Y, Hong S, Jiang L. Clinical and electroencephalography characteristics of 41 children with epileptic spasms onset after 1 year of age. Epilepsy Behav 2022; 135:108902. [PMID: 36081241 DOI: 10.1016/j.yebeh.2022.108902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/03/2022]
Abstract
The incidence of epileptic spasms (ES) that begin after the first year of life is much lower than that before 1 year of age. The aim of this study was to identify clinical and electroencephalography (EEG) characteristics, etiologies, treatments, and prognoses in pediatric patients with ES onset after 1 year of age. Forty-one children were retrospectively identified in Children's Hospital of Chongqing Medical University between January 1, 2020 and December 1, 2021. ES onset after 1 year of age have diverse presentations. Although most occur in clusters, are symmetrical and flexional, and occur frequently during awakening, some are characterized as isolated and asymmetrical, have a tonic component, and can also occur during sleep. The hypsarrhythmia variants and focal or multifocal discharges occur alternately in the interictal period, and the focal spikes and slow waves predominated in the unilateral temporal or frontotemporal areas. These patients had diverse etiologies, including structural (51.2 % of patients) and genetic (22.0 %) ones, and 11 patients (26.8 %) had an unknown etiology. No patients in our study had an infectious or immune-mediated etiology. Forty-eight percent of patients responded to hydrocortisone and/or adrenocorticotropic hormone. The efficacy of antiepileptic drug therapy was lower in patients who did not receive concurrent steroid therapy. However, ES onset after 1 year of age caused by a tumor, brain malformation, or other focal lesions, may be cured by focal cortical resection despite a lack of clearly localized EEG surface anomalies. Delays in motor, language, and cognitive development, or behavioral problems were observed in all but three patients.
Collapse
Affiliation(s)
- Lisi Yan
- Department of Neurology, Children's Hospital of Chongqing Medical University, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders (Chongqing), NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China
| | - Yu Deng
- Department of Neurology, Children's Hospital of Chongqing Medical University, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders (Chongqing), NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China
| | - Jin Chen
- Department of Neurology, Children's Hospital of Chongqing Medical University, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders (Chongqing), NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China.
| | - Yue Hu
- Department of Neurology, Children's Hospital of Chongqing Medical University, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders (Chongqing), NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China
| | - Siqi Hong
- Department of Neurology, Children's Hospital of Chongqing Medical University, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders (Chongqing), NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders (Chongqing), NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China
| |
Collapse
|
7
|
A brief history of MECP2 duplication syndrome: 20-years of clinical understanding. Orphanet J Rare Dis 2022; 17:131. [PMID: 35313898 PMCID: PMC8939085 DOI: 10.1186/s13023-022-02278-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
MECP2 duplication syndrome (MDS) is a rare, X-linked, neurodevelopmental disorder caused by a duplication of the methyl-CpG-binding protein 2 (MECP2) gene-a gene in which loss-of-function mutations lead to Rett syndrome (RTT). MDS has an estimated live birth prevalence in males of 1/150,000. The key features of MDS include intellectual disability, developmental delay, hypotonia, seizures, recurrent respiratory infections, gastrointestinal problems, behavioural features of autism and dysmorphic features-although these comorbidities are not yet understood with sufficient granularity. This review has covered the past two decades of MDS case studies and series since the discovery of the disorder in 1999. After comprehensively reviewing the reported characteristics, this review has identified areas of limited knowledge that we recommend may be addressed by better phenotyping this disorder through an international data collection. This endeavour would also serve to delineate the clinical overlap between MDS and RTT.
Collapse
|
8
|
MECP2 duplication syndrome: The electroclinical features of a case with long-term evolution. Epilepsy Behav Rep 2022; 19:100541. [PMID: 35520952 PMCID: PMC9062211 DOI: 10.1016/j.ebr.2022.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
A longitudinal spectrum of electroclinical features can be defined in MECP2 duplication syndrome (MDS). Burst suppression pattern is a new finding in MDS, appearing in later stages of disease. Sleep study in MDS may provide further information on disease progression.
MECP2 duplication syndrome (MDS) is a rare and severe neurodevelopmental disorder frequently associated with epilepsy. Different seizure types and electroencephalographic (EEG) patterns were described in patients with MDS, although it lacks a specific phenotype. We report on an adult patient with long-term epilepsy showing an evolution of the EEG pattern that progressively changed into burst suppression (BS) during sleep. As BS has not been previously reported in MDS, this report expands the neurophysiological phenotype of MDS and further suggest the possible occurrence of a longitudinal spectrum of seizure types and EEG patterns in MDS.
Collapse
|
9
|
Abstract
OBJECTIVE MECP2 duplication syndrome (MECP2DS) is an x-linked recessive syndrome characterized by infantile hypotonia, severe neurodevelopmental delay, intellectual disability, progressive spasticity, recurrent infections, and seizures. More than 50% of cases have been associated with epilepsy. Seizure semiology and electroencephalogram (EEG) findings in these patients are poorly described. METHODS In this case series, the authors describe the electroclinical features of children with MECP2DS presenting to their institution. In addition, they reviewed seizure types and therapies used. RESULTS Eight out of 9 patients with MECP2DS developed epilepsy, with 56% having normal initial EEG. Generalized slowing with generalized and focal/multifocal discharges was the most common EEG pattern which is consistent with prior studies. Atonic seizure was the most common semiology. Majority were pharmacoresistant (63%). CONCLUSION The goal of this case series is to better define the clinical and electrophysiological aspects of the epilepsy associated with MECP2 duplication syndrome and provide practical guidance regarding management.
Collapse
Affiliation(s)
- Jocelyn Lorenzo
- University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Medical Center, Dallas, TX, USA
| | - Alison Dolce
- University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Medical Center, Dallas, TX, USA
| | - Andrea Lowden
- University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Reviewing Evidence for the Relationship of EEG Abnormalities and RTT Phenotype Paralleled by Insights from Animal Studies. Int J Mol Sci 2021; 22:ijms22105308. [PMID: 34069993 PMCID: PMC8157853 DOI: 10.3390/ijms22105308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurodevelopmental disorder that is usually caused by mutations of the MECP2 gene. Patients with RTT suffer from severe deficits in motor, perceptual and cognitive domains. Electroencephalogram (EEG) has provided useful information to clinicians and scientists, from the very first descriptions of RTT, and yet no reliable neurophysiological biomarkers related to the pathophysiology of the disorder or symptom severity have been identified to date. To identify consistently observed and potentially informative EEG characteristics of RTT pathophysiology, and ascertain areas most worthy of further systematic investigation, here we review the literature for EEG abnormalities reported in patients with RTT and in its disease models. While pointing to some promising potential EEG biomarkers of RTT, our review identify areas of need to realize the potential of EEG including (1) quantitative investigation of promising clinical-EEG observations in RTT, e.g., shift of mu rhythm frequency and EEG during sleep; (2) closer alignment of approaches between patients with RTT and its animal models to strengthen the translational significance of the work (e.g., EEG measurements and behavioral states); (3) establishment of large-scale consortium research, to provide adequate Ns to investigate age and genotype effects.
Collapse
|
11
|
CASK related disorder: Epilepsy and developmental outcome. Eur J Paediatr Neurol 2021; 31:61-69. [PMID: 33640666 DOI: 10.1016/j.ejpn.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE CASK pathogenic variants are associated with variable features, as intellectual disability, optic atrophy, brainstem/cerebellar hypoplasia, and epileptic encephalopathy. Few studies describe the electroclinical features of epilepsy in patients with CASK pathogenic variants and their relationship with developmental delay. METHODS this national multicentre cohort included genetically confirmed patients with different CASK pathogenic variants. Our findings were compared with cohorts reported in the literature. RESULTS we collected 34 patients (29 females) showing from moderate (4 patients) to severe (22) and profound (8) developmental delay; all showed pontine and cerebellar hypoplasia, all except three with microcephaly. Seventeen out of 34 patients (50%) suffered from epileptic seizures, including spasms (11 patients, 32.3%), generalized (5) or focal seizures (1). In 8/17 individuals (47.1%), epilepsy started at or beyond the age of 24 months. Seven (3 males) out of the 11 children with spasms showed EEG features and a course supporting the diagnosis of a developmental and epileptic encephalopathy (DEE). Drug resistance was frequent in our cohort (52.9% of patients with epilepsy). EEG abnormalities included poorly organized background activity with diffuse or multifocal epileptiform abnormalities and sleep-activation, with possible appearance over the follow-up period. Developmental delay degree was not statistically different among patients with or without seizures but feeding difficulties were more frequent in patients with epilepsy. CONCLUSIONS epilepsy is a frequent comorbidity with a high incidence of spasms and drug resistance. Overall developmental disability does not seem to be more severe in the group of patients with epilepsy nor to be linked to specific epilepsy/EEG characteristics. A childhood onset of epilepsy is frequent, with possible worsening over time, so that serial and systematic monitoring is mandatory.
Collapse
|
12
|
Zhao Y, Lu C, Wang H, Lin Q, Cai L, Meng F, Tesfaye EB, Lai HC, Tzeng CM. Identification of hsa-miR-1275 as a Novel Biomarker Targeting MECP2 for Human Epilepsy of Unknown Etiology. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:398-410. [PMID: 33251277 PMCID: PMC7677659 DOI: 10.1016/j.omtm.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022]
Abstract
Epilepsy affects around 70 million people worldwide, with a 65% rate of unknown etiology. This rate is known as epilepsy of unknown etiology (EUE). Dysregulation of microRNAs (miRNAs) is recognized to contribute to mental disorders, including epilepsy. However, miRNA dysregulation is poorly understood in EUE. Here, we conducted miRNA expression profiling of EUE by microarray technology and identified 57 pathogenic changed miRNAs with significance. The data and bioinformatic analysis results indicated that among these miRNAs, hsa-microRNA (miR)-1275 was highly associated with neurological disorders. Subsequently, new samples of serum and cerebrospinal fluid were collected for validation of hsa-miR-1275 expression by TaqMan assays. Results show that hsa-miR-1275 in serums of EUE were increased significantly, but in cerebrospinal fluid, the miRNA was decreased. Moreover, the MECP2 gene was selected as a hsa-miR-1275 target based on target prediction tools and gene ontology analysis. Validation of in vitro tests proved that MECP2 expression was specifically inhibited by hsa-miR-1275. Additionally, overexpression of hsa-miR-1275 can elevate expression of nuclear factor κB (NF-κB) and promote cell apoptosis. Taken together, hsa-miR-1275 might represent a novel biomarker targeting MECP2 for human EUE.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China.,Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing Tech University, Nanjing 211800, China
| | - Congxia Lu
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Fujian 361003, China
| | - Huiling Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Qing Lin
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Fujian 361003, China.,Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Fujian 361003, China
| | - Liangliang Cai
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Fujian 361003, China
| | - Fanrong Meng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Enque Biniam Tesfaye
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan
| | - Chi-Meng Tzeng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China.,Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Fujian 361003, China
| |
Collapse
|
13
|
Cutri-French C, Armstrong D, Saby J, Gorman C, Lane J, Fu C, Peters SU, Percy A, Neul JL, Marsh ED. Comparison of Core Features in Four Developmental Encephalopathies in the Rett Natural History Study. Ann Neurol 2020; 88:396-406. [PMID: 32472944 DOI: 10.1002/ana.25797] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Rett syndrome, CDKL5-deficiency disorder, FOXG1 disorder, and MECP2 duplication disorder are developmental encephalopathies with shared and distinct features. Although they are historically linked, no direct comparison has been performed. The first head-to-head comparison of clinical features in these conditions is presented. METHODS Comprehensive clinical information was collected from 793 individuals enrolled in the Rett and Rett-Related Disorders Natural History Study. Clinical features including clinical severity, regression, and seizures were cross-sectionally compared between diagnoses to test the hypothesis that these are 4 distinct disorders. RESULTS Distinct patterns of clinical severity, seizure onset age, and regression were present. Individuals with CDKL5-deficency disorder were the most severely affected and had the youngest age at seizure onset (2 months), whereas children with MECP2 duplication syndrome had the oldest median age at seizure onset (64 months) and lowest severity scores. Rett syndrome and FOGX1 were intermediate in both features. Smaller head circumference correlates with increased severity in all disorders and earlier age at seizure onset in MECP2 duplication syndrome. Developmental regression occurred in all Rett syndrome participants (median = 18 months) but only 23 to 34% of the other disorders. Seizure incidence prior to the baseline visit was highest for CDKL5 deficiency disorder (96.2%) and lowest for Rett syndrome (47.5%). Other clinical features including seizure types and frequency differed among groups. INTERPRETATION Although these developmental encephalopathies share many clinical features, clear differences in severity, regression, and seizures warrant considering them as unique disorders. These results will aid in the development of disease-specific severity scales, precise therapeutics, and future clinical trials. ANN NEUROL 2020;88:396-406.
Collapse
Affiliation(s)
- Clare Cutri-French
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dallas Armstrong
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joni Saby
- Division of Radiology Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Casey Gorman
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jane Lane
- Department of Pediatrics, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cary Fu
- Department of Pediatrics, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sarika U Peters
- Department of Pediatrics, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alan Percy
- Department of Pediatrics, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeffrey L Neul
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eric D Marsh
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Electroencephalographic and epilepsy findings in mecp2 duplication syndrome. A family study. Brain Dev 2019; 41:456-459. [PMID: 30642617 DOI: 10.1016/j.braindev.2018.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/05/2018] [Accepted: 12/26/2018] [Indexed: 11/23/2022]
Abstract
MECP2 duplication syndrome (MECP2 DS) is an X-linked disorder characterized by early-onset hypotonia, poor speech development, recurrent respiratory infections, epilepsy and progressive spasticity. Epilepsy occurs in more than 50% of the affected patients. Generalized tonic-clonic seizures (GTCS) are the most common seizure-type described but atonic seizures, absences and myoclonic seizures have also been reported. Electroencephalographic (EEG) and seizure types occurring in MECP2 DS have been poorly investigated. Here we report on two male siblings carrying a maternally-inherited MECP2 duplication. Patients underwent several EEG recordings and long-lasting video-EEG monitoring. The most represented seizure types were myoclonic and atonic seizures. GTCS were rarely observed. In patients, we found a slowing of the background activity with multifocal paroxysmal activity, prominent on the frontal areas. In conclusion, our observations seem to suggest that MECP2 syndrome seem to have a peculiar epileptic pattern mainly characterized by the occurrence of myoclonic seizures, the recognition of which is important in order to undertake an appropriate treatment.
Collapse
|
15
|
Marafi D, Suter B, Schultz R, Glaze D, Pavlik VN, Goldman AM. Spectrum and time course of epilepsy and the associated cognitive decline in MECP2 duplication syndrome. Neurology 2018; 92:e108-e114. [PMID: 30552298 DOI: 10.1212/wnl.0000000000006742] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE We characterized the epilepsy features and contribution to cognitive regression in 47 patients with MECP2 duplication syndrome (MDS) and reviewed these characteristics in over 280 MDS published cases. METHODS The institutional review board approved this retrospective review of medical records and case histories of patients with MDS. RESULTS The average age at enrollment was 10 ± 7 years. Patients with epilepsy were older (13 ± 7 years vs 8 ± 5 years, p = 0.004) and followed for a longer time (11.8 ± 6.5 years vs 6.3 ± 4.2 years, p = 0.003) than patients without a seizure disorder. Epilepsy affected 22/47 (47%) patients with MDS. It was treatment-refractory and consistent with epileptic encephalopathy in 18/22 (82%) cases. Lennox-Gastaut syndrome (LGS) was present in 12/22 (55%) patients and manifested between late childhood and adulthood in 83% of cases. The emergence of neurologic regression coincided with the onset of epilepsy. The MECP2 duplication size and gene content did not correlate with epilepsy presence, type, age at onset, or treatment responsiveness. CONCLUSION Epilepsy in MDS is common, often severe, and medically refractory. LGS occurs frequently and may have a late onset. Developmental regression often follows the onset of epilepsy. The MECP2 duplication extent and gene content do not discriminate between patients with or without epilepsy. Our findings inform clinical care and family counseling with respect to early epilepsy recognition, diagnosis, specialty referral, and implementation of aggressive seizure therapy to minimize detrimental effect of uncontrolled seizures on cognitive functions or preexisting neurologic deficits.
Collapse
Affiliation(s)
- Dana Marafi
- From the Departments of Neurology (D.M., B.S., R.S., D.G., V.N.P., A.M.G.) and Pediatrics (R.S., D.G.), Baylor College of Medicine, Houston, TX
| | - Bernhard Suter
- From the Departments of Neurology (D.M., B.S., R.S., D.G., V.N.P., A.M.G.) and Pediatrics (R.S., D.G.), Baylor College of Medicine, Houston, TX
| | - Rebecca Schultz
- From the Departments of Neurology (D.M., B.S., R.S., D.G., V.N.P., A.M.G.) and Pediatrics (R.S., D.G.), Baylor College of Medicine, Houston, TX
| | - Daniel Glaze
- From the Departments of Neurology (D.M., B.S., R.S., D.G., V.N.P., A.M.G.) and Pediatrics (R.S., D.G.), Baylor College of Medicine, Houston, TX
| | - Valory N Pavlik
- From the Departments of Neurology (D.M., B.S., R.S., D.G., V.N.P., A.M.G.) and Pediatrics (R.S., D.G.), Baylor College of Medicine, Houston, TX
| | - Alica M Goldman
- From the Departments of Neurology (D.M., B.S., R.S., D.G., V.N.P., A.M.G.) and Pediatrics (R.S., D.G.), Baylor College of Medicine, Houston, TX.
| |
Collapse
|
16
|
Myers KA, Johnstone DL, Dyment DA. Epilepsy genetics: Current knowledge, applications, and future directions. Clin Genet 2018; 95:95-111. [PMID: 29992546 DOI: 10.1111/cge.13414] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022]
Abstract
The rapid pace of disease gene discovery has resulted in tremendous advances in the field of epilepsy genetics. Clinical testing with comprehensive gene panels, exomes, and genomes are now available and have led to higher diagnostic rates and insights into the underlying disease processes. As such, the contribution to the care of patients by medical geneticists, neurogeneticists and genetic counselors are significant; the dysmorphic examination, the necessary pre- and post-test counseling, the selection of the appropriate next-generation sequencing-based test(s), and the interpretation of sequencing results require a care provider to have a comprehensive working knowledge of the strengths and limitations of the available testing technologies. As the underlying mechanisms of the encephalopathies and epilepsies are better understood, there may be opportunities for the development of novel therapies based on an individual's own specific genotype. Drug screening with in vitro and in vivo models of epilepsy can potentially facilitate new treatment strategies. The future of epilepsy genetics will also probably include other-omic approaches such as transcriptomes, metabolomes, and the expanded use of whole genome sequencing to further improve our understanding of epilepsy and provide better care for those with the disease.
Collapse
Affiliation(s)
- K A Myers
- Department of Pediatrics, University of McGill, Montreal, Canada.,Research Institute of the McGill University Health Centre, Montreal, Canada
| | - D L Johnstone
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - D A Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| |
Collapse
|
17
|
Rajaprakash M, Richer J, Sell E. Valproic acid as a monotherapy in drug-resistant methyl-CpG-binding protein 2 gene (MECP2) duplication-related epilepsy. EPILEPSY & BEHAVIOR CASE REPORTS 2018; 10:133-136. [PMID: 30425922 PMCID: PMC6222037 DOI: 10.1016/j.ebcr.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 04/11/2023]
Abstract
Duplication of the methyl-CpG-binding protein 2 gene (MECP2) is a rare condition that results in epilepsy in half of the cases. Although this condition has been well characterized in the literature, there is a lack of research on MECP2 duplication-related epilepsy and its management. We present the case of an eleven-year old male with MECP2 duplication and epilepsy, who was resistant to polytherapy. The patient responded well to valproic acid (VPA) initially and upon re-challenge. This case report provides evidence for the use of VPA as an initial monotherapy for treatment of drug-resistant MECP2 duplication-related epilepsy.
Collapse
Affiliation(s)
- Meghna Rajaprakash
- Department of Pediatric Neurology, Children's Hospital of Eastern Ontario (CHEO), 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
- University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
- Corresponding author at: Department of Pediatrics, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada.
| | - Julie Richer
- Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
- University of Ottawa, 75 Laurier Avenue E, Ottawa, ON K1N 6N5, Canada
| | - Erick Sell
- Department of Pediatric Neurology, Children's Hospital of Eastern Ontario (CHEO), 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
- University of Ottawa, 75 Laurier Avenue E, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
18
|
Li X, Xie H, Chen Q, Yu X, Yi Z, Li E, Zhang T, Wang J, Zhong J, Chen X. Clinical and molecular genetic characterization of familial MECP2 duplication syndrome in a Chinese family. BMC MEDICAL GENETICS 2017; 18:131. [PMID: 29141583 PMCID: PMC5688748 DOI: 10.1186/s12881-017-0486-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/24/2017] [Indexed: 01/09/2023]
Abstract
Background Chromosomal duplication at the Xq28 region including the MECP2 gene, share consistent clinical phenotypes and a distinct facial phenotype known as MECP2 duplication syndrome. The typical clinical features include infantile hypotonia, mild dysmorphic features, a broad range of neurodevelopmental disorders, recurrent infections, and progressive spasticity. Methods This Chinese MECP2 duplication syndrome family includes six patients (five males and one female), and four asymptomatic female carriers. Two kinds of chips including 4x180K CNV + SNP chip and custom 8x60K CNV chip were used to detect MECP2 duplication, and then fluorescent in situ hybridization (FISH) analysis was performed to identify the exact copy number of MECP2. X-chromosome inactivation (XCI) analysis on AR gene was detected for all female family members, and the microsatellite analysis on MECP2 was used to validate the recombination event on MECP2 region. Results The affected male subjects presented with a broad range of neurodevelopmental symptoms (severe intellectual disability, developmental delay, seizure, language deficit, and autism spectrum disorder) as well as facial dysmorphism and other symptoms which were consistent with that of Western patients previous reported. Seizure is reported in Chinese patients for the first time. In addition, we validated three recombination events for the MECP2-duplication allele during maternal transmission due to X homologous recombination. Conclusions We provided the largest known Chinese pedigree with MECP2 duplication syndrome. The detailed clinical description and molecular genetic characterization in all affected family members further delineate the typical phenotype of this genomic disorder in Chinese population. Electronic supplementary material The online version of this article (10.1186/s12881-017-0486-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Neurology, Jiangxi Children's Hospital, Yangming Road, Donghu District, Nanchang, 330006, China.,Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Room 616, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Hua Xie
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Room 616, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China.,Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Qian Chen
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Xiongying Yu
- Department of Neurology, Jiangxi Children's Hospital, Yangming Road, Donghu District, Nanchang, 330006, China
| | - Zhaoshi Yi
- Department of Neurology, Jiangxi Children's Hospital, Yangming Road, Donghu District, Nanchang, 330006, China
| | - Erzhen Li
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Room 616, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Jian Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianmin Zhong
- Department of Neurology, Jiangxi Children's Hospital, Yangming Road, Donghu District, Nanchang, 330006, China.
| | - Xiaoli Chen
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Room 616, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China. .,Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
19
|
Lim Z, Downs J, Wong K, Ellaway C, Leonard H. Expanding the clinical picture of the MECP2 Duplication syndrome. Clin Genet 2016; 91:557-563. [PMID: 27247049 DOI: 10.1111/cge.12814] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/15/2022]
Abstract
Individuals with two or more copies of the MECP2 gene, located at Xq28, share clinical features and a distinct facial phenotype known as MECP2 Duplication syndrome. We have examined perinatal characteristics, early childhood development and medical co-morbidities in this disorder. The International Rett Syndrome Phenotype Database (InterRett), which collects information from caregivers and clinicians on individuals with Rett syndrome and MECP2 associated disorders, was used as the data source. Data were available on 56 cases (49 males and 7 females) with MECP2 Duplication syndrome. Median age at ascertainment was 7.9 years (range: 1.2-37.6 years) and at diagnosis 3.0 years (range: 3 weeks-37 years). Less than a third (29%) learned to walk. Speech deterioration was reported in 34% and only 20% used word approximations or better at ascertainment. Over half (55%) had been hospitalised for respiratory infections in the first 2 years of life. Just under half (44%) had seizures, occurring daily in nearly half of this group. The majority (89%) had gastrointestinal problems and a third had a gastrostomy. Following the recent demonstration of phenotype reversal in a mouse model of MECP2 Duplication, a clear understanding of the natural history is crucial to the design and implementation of future therapeutic strategies.
Collapse
Affiliation(s)
- Z Lim
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - J Downs
- Telethon Kids Institute, University of Western Australia, Perth, Australia.,School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia
| | - K Wong
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - C Ellaway
- Discipline of Genetic Medicine, The University of Sydney, Sydney, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, The Children's Hospital at Westmead, Sydney, Australia.,Western Sydney Genetic Program, Sydney Children's Hospitals Network (Westmead), Sydney, NSW, Australia
| | - H Leonard
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| |
Collapse
|
20
|
Nakajiri T, Kobayashi K, Okamoto N, Oka M, Miya F, Kosaki K, Yoshinaga H. Late-onset epileptic spasms in a female patient with a CASK mutation. Brain Dev 2015; 37:919-23. [PMID: 25765806 DOI: 10.1016/j.braindev.2015.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/06/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
We report a female patient with late-onset epileptic spasms (ESs) of a rare form, distinct from those seen in typical West syndrome, in association with a heterozygous frameshift CASK mutation (c.1896dupC (p.C633fs(∗)2)). She has a phenotype of microcephaly with pontine and cerebellar hypoplasia (MICPCH), and has had intractable ESs in clusters since 3 years 8 months of age with multifocal, particularly bifrontal, epileptic discharges in electroencephalogram. The available literature on patients with both ESs and CASK mutations has been reviewed, revealing that four of the five female children, including the present girl, had late-onset ESs, in contrast to the four males, who tended toward early-onset ESs.
Collapse
Affiliation(s)
- Tomoshi Nakajiri
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan; Department of Pediatrics, Kakogawa West City Hospital, Kakogawa, Japan
| | - Katsuhiro Kobayashi
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan.
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Makio Oka
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Fuyuki Miya
- Laboratory for Medical Science Mathematics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Harumi Yoshinaga
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| |
Collapse
|