1
|
Cohen JD, You D, Sharma AK, Takai T, Hara H, Sales VT, Yukawa T, Cai B. In vitro human ion channel assays predictive of drug-induced seizure. Toxicol Sci 2025; 203:253-268. [PMID: 39661496 PMCID: PMC11775423 DOI: 10.1093/toxsci/kfae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Seizure is among the most severe FDA black box warnings of neurotoxicity reported on drug labels. Gaining a better mechanistic understanding of off-targets causative of seizure will improve the identification of potential seizure risks preclinically. In the present study, we evaluated an in vitro panel of 9 investigational (Cav2.1, Cav3.2, GlyRA1, AMPA, HCN1, Kv1.1, Kv7.2/7.3, NaV1.1, Nav1.2) and 2 standard (GABA-A, NMDA) ion channel targets with strong correlative links to seizure, using automated electrophysiology. Each target was assessed with a library of 34 preclinical compounds and 10 approved drugs with known effects of convulsion in vivo and/or in patients. Cav2.1 had the highest frequency of positive hits, 20 compounds with an EC30 or IC30 ≤ 30 µM, and the highest importance score relative to the 11 targets. An additional 35 approved drugs, with categorized low to frequent seizure risk in patients, were evaluated in the Cav2.1 assay. The Cav2.1 assay predicted preclinical compounds to cause convulsion in nonclinical species with a sensitivity of 52% and specificity of 78%, and approved drugs to cause seizure in nonclinical species or in patients with a sensitivity of 48% or 54% and specificity of 71% or 78%, respectively. The integrated panel of 11 ion channel targets predicted preclinical compounds to cause convulsion in nonclinical species with a sensitivity of 68%, specificity of 56%, and accuracy of 65%. This study highlights the utility of expanding the in vitro panel of targets evaluated for seizurogenic activity, in order to reduce compound attrition early on in drug discovery.
Collapse
Affiliation(s)
- Jennifer D Cohen
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, San Diego, CA 92121-1964, United States
| | - Dahea You
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, San Diego, CA 92121-1964, United States
| | - Ashok K Sharma
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, San Diego, CA 92121-1964, United States
| | - Takafumi Takai
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, San Diego, CA 92121-1964, United States
| | - Hideto Hara
- Drug Safety Research & Evaluation, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Vicencia T Sales
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | - Tomoya Yukawa
- Drug Safety Research & Evaluation, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Beibei Cai
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, San Diego, CA 92121-1964, United States
| |
Collapse
|
2
|
Rusina E, Simonti M, Duprat F, Cestèle S, Mantegazza M. Voltage-gated sodium channels in genetic epilepsy: up and down of excitability. J Neurochem 2024; 168:3872-3890. [PMID: 37654020 PMCID: PMC11591406 DOI: 10.1111/jnc.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
The past two decades have witnessed a wide range of studies investigating genetic variants of voltage-gated sodium (NaV) channels, which are involved in a broad spectrum of diseases, including several types of epilepsy. We have reviewed here phenotypes and pathological mechanisms of genetic epilepsies caused by variants in NaV α and β subunits, as well as of some relevant interacting proteins (FGF12/FHF1, PRRT2, and Ankyrin-G). Notably, variants of all these genes can induce either gain- or loss-of-function of NaV leading to either neuronal hyperexcitability or hypoexcitability. We present the results of functional studies obtained with different experimental models, highlighting that they should be interpreted considering the features of the experimental system used. These systems are models, but they have allowed us to better understand pathophysiological issues, ameliorate diagnostics, orientate genetic counseling, and select/develop therapies within a precision medicine framework. These studies have also allowed us to gain insights into the physiological roles of different NaV channels and of the cells that express them. Overall, our review shows the progress that has been made, but also the need for further studies on aspects that have not yet been clarified. Finally, we conclude by highlighting some significant themes of general interest that can be gleaned from the results of the work of the last two decades.
Collapse
Affiliation(s)
- Evgeniia Rusina
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Martina Simonti
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Fabrice Duprat
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| | - Sandrine Cestèle
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Massimo Mantegazza
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| |
Collapse
|
3
|
Gogus B, Elmas M, Turk Boru U. Genetic aspects of ataxias in a cohort of Turkish patients. Neurol Sci 2024; 45:4349-4365. [PMID: 38587696 PMCID: PMC11306380 DOI: 10.1007/s10072-024-07484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Ataxia is one of the clinical findings of the movement disorder disease group. Although there are many underlying etiological reasons, genetic etiology has an increasing significance thanks to the recently developing technology. The aim of this study is to present the variants detected in WES analysis excluding non-genetic causes, in patients with ataxia. METHODS Thirty-six patients who were referred to us with findings of ataxia and diagnosed through WES or other molecular genetic analysis methods were included in our study. At the same time, information such as the onset time of the complaints, consanguinity status between parents, and the presence of relatives with similar symptoms were evaluated. If available, the patient's biochemical and radiological test results were presented. RESULTS Thirty-six patients were diagnosed through WES or CES. The rate of detected autosomal recessive inheritance disease was 80.5%, while that of autosomal dominant inheritance disease was 19.5%. Abnormal cerebellum was detected on brain MRI images in 26 patients, while polyneuropathy was detected on EMG in eleven of them. While the majority of the patients were compatible with similar cases reported in the literature, five patients had different/additional features (variants in MCM3AP, AGTPBP1, GDAP2, and SH3TC2 genes). CONCLUSIONS The diagnosis of ataxia patients with unknown etiology is made possible thanks to these clues. Consideration of a genetic approach is recommended in patients with ataxia of unknown etiology.
Collapse
Affiliation(s)
- Basak Gogus
- Ministry of Health General Directorate of Public Health, Ankara, Turkey.
- Department of Medical Genetics, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| | - Muhsin Elmas
- Department of Medical Genetics, İstanbul Medipol University, Istanbul, Turkey
| | - Ulku Turk Boru
- Department of Neurology, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
4
|
Lyu H, Boßelmann CM, Johannesen KM, Koko M, Ortigoza-Escobar JD, Aguilera-Albesa S, Garcia-Navas Núñez D, Linnankivi T, Gaily E, van Ruiten HJA, Richardson R, Betzler C, Horvath G, Brilstra E, Geerdink N, Orsucci D, Tessa A, Gardella E, Fleszar Z, Schöls L, Lerche H, Møller RS, Liu Y. Clinical and electrophysiological features of SCN8A variants causing episodic or chronic ataxia. EBioMedicine 2023; 98:104855. [PMID: 38251463 PMCID: PMC10628346 DOI: 10.1016/j.ebiom.2023.104855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Variants in SCN8A are associated with a spectrum of epilepsies and neurodevelopmental disorders. Ataxia as a predominant symptom of SCN8A variation has not been well studied. We set out to investigate disease mechanisms and genotype-phenotype correlations of SCN8A-related ataxia. METHODS We collected genetic and electro-clinical data of ten individuals from nine unrelated families carrying novel SCN8A variants associated with chronic progressive or episodic ataxia. Electrophysiological characterizations of these variants were performed in ND7/23 cells and cultured neurons. FINDINGS Variants associated with chronic progressive ataxia either decreased Na+ current densities and shifted activation curves towards more depolarized potentials (p.Asn995Asp, p.Lys1498Glu and p.Trp1266Cys) or resulted in a premature stop codon (p.Trp937Ter). Three variants (p.Arg847Gln and biallelic p.Arg191Trp/p.Asp1525Tyr) were associated with episodic ataxia causing loss-of-function by decreasing Na+ current densities or a hyperpolarizing shift of the inactivation curve. Two additional episodic ataxia-associated variants caused mixed gain- and loss-of function effects in ND7/23 cells and were further examined in primary murine hippocampal neuronal cultures. Neuronal firing in excitatory neurons was increased by p.Arg1629His, but decreased by p.Glu1201Lys. Neuronal firing in inhibitory neurons was decreased for both variants. No functional effect was observed for p.Arg1913Trp. In four individuals, treatment with sodium channel blockers exacerbated symptoms. INTERPRETATION We identified episodic or chronic ataxia as predominant phenotypes caused by variants in SCN8A. Genotype-phenotype correlations revealed a more pronounced loss-of-function effect for variants causing chronic ataxia. Sodium channel blockers should be avoided under these conditions. FUNDING BMBF, DFG, the Italian Ministry of Health, University of Tuebingen.
Collapse
Affiliation(s)
- Hang Lyu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Christian M Boßelmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Katrine M Johannesen
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark; Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Centre (Member of the ERN EpiCARE), Dianalund, Denmark
| | - Mahmoud Koko
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Juan Dario Ortigoza-Escobar
- Movement Disorders Unit, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII and European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitario de Navarra, Pamplona, Spain; Navarrabiomed-Fundación Miguel Servet, Pamplona, Spain
| | | | - Tarja Linnankivi
- Department of Pediatric Neurology, New Children's Hospital and Pediatric Research Center, Epilepsia Helsinki, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Eija Gaily
- Department of Pediatric Neurology, New Children's Hospital and Pediatric Research Center, Epilepsia Helsinki, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Henriette J A van Ruiten
- Newcastle Upon Tyne Hospitals NHS Foundation Trust, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Ruth Richardson
- Northern Genetics Service, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, UK
| | - Cornelia Betzler
- Institute for Rehabilitation, Transition and Palliation, Paracelsus Medical University, Salzburg, Austria; Specialist Center for Paediatric Neurology, Neuro-Rehabilitation and Epileptology, Schön Klinik Vogtareuth, Germany
| | - Gabriella Horvath
- Adult Metabolic Diseases Clinic, BC Children's Hospital, Vancouver, Canada
| | - Eva Brilstra
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels Geerdink
- Department of Pediatrics, Rijnstate Hospital, Arnhem, the Netherlands
| | | | | | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Centre (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Denmark
| | - Zofia Fleszar
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Centre (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Denmark
| | - Yuanyuan Liu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
5
|
Barbieri R, Nizzari M, Zanardi I, Pusch M, Gavazzo P. Voltage-Gated Sodium Channel Dysfunctions in Neurological Disorders. Life (Basel) 2023; 13:life13051191. [PMID: 37240836 DOI: 10.3390/life13051191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
The pore-forming subunits (α subunits) of voltage-gated sodium channels (VGSC) are encoded in humans by a family of nine highly conserved genes. Among them, SCN1A, SCN2A, SCN3A, and SCN8A are primarily expressed in the central nervous system. The encoded proteins Nav1.1, Nav1.2, Nav1.3, and Nav1.6, respectively, are important players in the initiation and propagation of action potentials and in turn of the neural network activity. In the context of neurological diseases, mutations in the genes encoding Nav1.1, 1.2, 1.3 and 1.6 are responsible for many forms of genetic epilepsy and for Nav1.1 also of hemiplegic migraine. Several pharmacological therapeutic approaches targeting these channels are used or are under study. Mutations of genes encoding VGSCs are also involved in autism and in different types of even severe intellectual disability (ID). It is conceivable that in these conditions their dysfunction could indirectly cause a certain level of neurodegenerative processes; however, so far, these mechanisms have not been deeply investigated. Conversely, VGSCs seem to have a modulatory role in the most common neurodegenerative diseases such as Alzheimer's, where SCN8A expression has been shown to be negatively correlated with disease severity.
Collapse
Affiliation(s)
| | - Mario Nizzari
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Ilaria Zanardi
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Michael Pusch
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Paola Gavazzo
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| |
Collapse
|
6
|
Hassan A. Episodic Ataxias: Primary and Secondary Etiologies, Treatment, and Classification Approaches. Tremor Other Hyperkinet Mov (N Y) 2023; 13:9. [PMID: 37008993 PMCID: PMC10064912 DOI: 10.5334/tohm.747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Background Episodic ataxia (EA), characterized by recurrent attacks of cerebellar dysfunction, is the manifestation of a group of rare autosomal dominant inherited disorders. EA1 and EA2 are most frequently encountered, caused by mutations in KCNA1 and CACNA1A. EA3-8 are reported in rare families. Advances in genetic testing have broadened the KCNA1 and CACNA1A phenotypes, and detected EA as an unusual presentation of several other genetic disorders. Additionally, there are various secondary causes of EA and mimicking disorders. Together, these can pose diagnostic challenges for neurologists. Methods A systematic literature review was performed in October 2022 for 'episodic ataxia' and 'paroxysmal ataxia', restricted to publications in the last 10 years to focus on recent clinical advances. Clinical, genetic, and treatment characteristics were summarized. Results EA1 and EA2 phenotypes have further broadened. In particular, EA2 may be accompanied by other paroxysmal disorders of childhood with chronic neuropsychiatric features. New treatments for EA2 include dalfampridine and fampridine, in addition to 4-aminopyridine and acetazolamide. There are recent proposals for EA9-10. EA may also be caused by gene mutations associated with chronic ataxias (SCA-14, SCA-27, SCA-42, AOA2, CAPOS), epilepsy syndromes (KCNA2, SCN2A, PRRT2), GLUT-1, mitochondrial disorders (PDHA1, PDHX, ACO2), metabolic disorders (Maple syrup urine disease, Hartnup disease, type I citrullinemia, thiamine and biotin metabolism defects), and others. Secondary causes of EA are more commonly encountered than primary EA (vascular, inflammatory, toxic-metabolic). EA can be misdiagnosed as migraine, peripheral vestibular disorders, anxiety, and functional symptoms. Primary and secondary EA are frequently treatable which should prompt a search for the cause. Discussion EA may be overlooked or misdiagnosed for a variety of reasons, including phenotype-genotype variability and clinical overlap between primary and secondary causes. EA is highly treatable, so it is important to consider in the differential diagnosis of paroxysmal disorders. Classical EA1 and EA2 phenotypes prompt single gene test and treatment pathways. For atypical phenotypes, next generation genetic testing can aid diagnosis and guide treatment. Updated classification systems for EA are discussed which may assist diagnosis and management.
Collapse
|
7
|
Neuropsychiatric Adverse Drug Reactions with Tyrosine Kinase Inhibitors in Gastrointestinal Stromal Tumors: An Analysis from the European Spontaneous Adverse Event Reporting System. Cancers (Basel) 2023; 15:cancers15061851. [PMID: 36980737 PMCID: PMC10046586 DOI: 10.3390/cancers15061851] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are widely used in gastrointestinal stromal tumors (GISTs). The aim of this study is to evaluate the reporting frequency of neuropsychiatric adverse drug reactions (ADRs) for TKIs through the analysis of European individual case safety reports (ICSRs). All ICSRs collected in EudraVigilance up to 31 December 2021 with one TKI having GISTs as an indication (imatinib (IM), sunitinib (SU), avapritinib (AVA), regorafenib (REG), and ripretinib (RIP)) were included. A disproportionality analysis was performed to assess the frequency of reporting for each TKI compared to all other TKIs. The number of analyzed ICSRs was 8512, of which 57.9% were related to IM. Neuropsychiatric ADRs were reported at least once in 1511 ICSRs (17.8%). A higher reporting probability of neuropsychiatric ADRs was shown for AVA. Most neuropsychiatric ADRs were known, except for a higher frequency of lumbar spinal cord and nerve root disorders (reporting odds ratio, ROR 4.46; confidence interval, CI 95% 1.58–12.54), olfactory nerve disorders (8.02; 2.44–26.33), and hallucinations (22.96; 8.45–62.36) for AVA. The analyses of European ICSRs largely confirmed the safety profiles of TKIs in GISTs, but some ADRs are worthy of discussion. Further studies are needed to increase the knowledge of the neuropsychiatric disorders of newly approved TKIs.
Collapse
|
8
|
Murray M, Martindale JM, Otallah SI. SCN2A- Associated Episodic and Persistent Ataxia with Cerebellar Atrophy: A Case Report. Child Neurol Open 2023; 10:2329048X231163944. [PMID: 36950068 PMCID: PMC10026144 DOI: 10.1177/2329048x231163944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
SCN2A, a gene that codes for a sodium channel highly expressed in the cerebellum, has been linked to a heterogeneous phenotype, including episodic ataxia (EA) and epilepsy, among other symptoms1. Given the rarity of SCN2A-associated EA and its recent description, it is important the genotype-phenotype relationship of SCN2A-associated EA be better defined for prognosis and optimizing future management. Thus, we describe a 2-year-old boy with a SCN2A variant causing an initial prolonged episode of profound ataxia lasting 4 months, cerebellar atrophy, and persistent mild ataxia with episodic exacerbations. Due to the patient's lack of early epilepsy, prolonged initial episode of ataxia, and cerebellar atrophy, this case broadens the scope of the SCN2A variant phenotype. SCN2A should be considered as a cause of early onset ataxia in children with targeted testing or as part of Whole Exome Sequencing (WES) in patients with new onset persistent or EA with or without seizures.
Collapse
Affiliation(s)
- Maeve Murray
- Division of Pediatric Neurology, Department of Neurology, Wake Forest University/Brenner
Children's Hospital, Medical Center Boulevard, JT9, Winston-Salem, NC, 27157,
USA
- Maeve Murray,
| | - Jaclyn M. Martindale
- Division of Pediatric Neurology, Department of Neurology, Wake Forest University/Brenner
Children's Hospital, Medical Center Boulevard, JT9, Winston-Salem, NC, 27157,
USA
| | - Scott I. Otallah
- Division of Pediatric Neurology, Department of Neurology, Wake Forest University/Brenner
Children's Hospital, Medical Center Boulevard, JT9, Winston-Salem, NC, 27157,
USA
| |
Collapse
|
9
|
Erro R, Magrinelli F, Bhatia KP. Paroxysmal movement disorders: Paroxysmal dyskinesia and episodic ataxia. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:347-365. [PMID: 37620078 DOI: 10.1016/b978-0-323-98817-9.00033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Paroxysmal movement disorders have traditionally been classified into paroxysmal dyskinesia (PxD), which consists in attacks of involuntary movements (mainly dystonia and/or chorea) without loss of consciousness, and episodic ataxia (EA), which features spells of cerebellar dysfunction with or without interictal neurological manifestations. In this chapter, PxD will be discussed first according to the trigger-based classification, thus reviewing clinical, genetic, and molecular features of paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia, and paroxysmal exercise-induced dyskinesia. EA will be presented thereafter according to their designated gene or genetic locus. Clinicogenetic similarities among paroxysmal movement disorders have progressively emerged, which are herein highlighted along with growing evidence that their pathomechanisms overlap those of epilepsy and migraine. Advances in our comprehension of the biological pathways underlying paroxysmal movement disorders, which involve ion channels as well as proteins associated with the vesical synaptic cycle or implicated in neuronal energy metabolism, may represent the cornerstone for defining a shared pathophysiologic framework and developing target-specific therapies.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Salerno, Italy
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
10
|
Hu X, Jing M, Wang Y, Liu Y, Hua Y. Functional analysis of a novel de novo SCN2A variant in a patient with seizures refractory to oxcarbazepine. Front Mol Neurosci 2023; 16:1159649. [PMID: 37152433 PMCID: PMC10158977 DOI: 10.3389/fnmol.2023.1159649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Objective We admitted a female patient with infantile onset epilepsy (<3-month-old). The use of oxcarbazepine exacerbated epileptic seizures in the patient. In the present study, we aimed to identify the genetic basis of the infantile onset epilepsy in the patient, and determine the correlations among genotype, phenotype, and clinical drug response. Methods We described the clinical characteristics of an infant with refractory epilepsy. Whole exome sequencing (WES) was used to screen for the pathogenic variant. Whole-cell patch-clamp was performed to determine functional outcomes of the variant. Results WES identified a novel de novo SCN2A variant (c.468 G > C, p.K156N) in the patient. In comparison with wildtype, electrophysiology revealed that SCN2A-K156N variant in transfected cells demonstrated reduced sodium current density, delayed activation and accelerated inactivation process of Na+ channel, all of which suggested a loss-of-function (LOF) of Nav1.2 channel. Conclusion We showed the importance of functional analysis for a SCN2A variant with unknown significance to determine pathogenicity, drug reactions, and genotype-phenotype correlations. For patients suffering from early infantile epilepsies, the use of oxcarbazepine in some SCN2A-related epilepsies requires vigilance to assess the possibility of epilepsy worsening.
Collapse
Affiliation(s)
- Xiaoyue Hu
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Miao Jing
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Yanping Wang
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Yanshan Liu
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
- *Correspondence: Yanshan Liu,
| | - Ying Hua
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
- Ying Hua,
| |
Collapse
|
11
|
Johannesen KM, Liu Y, Koko M, Gjerulfsen CE, Sonnenberg L, Schubert J, Fenger CD, Eltokhi A, Rannap M, Koch NA, Lauxmann S, Krüger J, Kegele J, Canafoglia L, Franceschetti S, Mayer T, Rebstock J, Zacher P, Ruf S, Alber M, Sterbova K, Lassuthová P, Vlckova M, Lemke JR, Platzer K, Krey I, Heine C, Wieczorek D, Kroell-Seger J, Lund C, Klein KM, Au PYB, Rho JM, Ho AW, Masnada S, Veggiotti P, Giordano L, Accorsi P, Hoei-Hansen CE, Striano P, Zara F, Verhelst H, Verhoeven JS, Braakman HMH, van der Zwaag B, Harder AVE, Brilstra E, Pendziwiat M, Lebon S, Vaccarezza M, Le NM, Christensen J, Grønborg S, Scherer SW, Howe J, Fazeli W, Howell KB, Leventer R, Stutterd C, Walsh S, Gerard M, Gerard B, Matricardi S, Bonardi CM, Sartori S, Berger A, Hoffman-Zacharska D, Mastrangelo M, Darra F, Vøllo A, Motazacker MM, Lakeman P, Nizon M, Betzler C, Altuzarra C, Caume R, Roubertie A, Gélisse P, Marini C, Guerrini R, Bilan F, Tibussek D, Koch-Hogrebe M, Perry MS, Ichikawa S, Dadali E, Sharkov A, Mishina I, Abramov M, Kanivets I, Korostelev S, Kutsev S, Wain KE, Eisenhauer N, Wagner M, Savatt JM, Müller-Schlüter K, Bassan H, Borovikov A, Nassogne MC, et alJohannesen KM, Liu Y, Koko M, Gjerulfsen CE, Sonnenberg L, Schubert J, Fenger CD, Eltokhi A, Rannap M, Koch NA, Lauxmann S, Krüger J, Kegele J, Canafoglia L, Franceschetti S, Mayer T, Rebstock J, Zacher P, Ruf S, Alber M, Sterbova K, Lassuthová P, Vlckova M, Lemke JR, Platzer K, Krey I, Heine C, Wieczorek D, Kroell-Seger J, Lund C, Klein KM, Au PYB, Rho JM, Ho AW, Masnada S, Veggiotti P, Giordano L, Accorsi P, Hoei-Hansen CE, Striano P, Zara F, Verhelst H, Verhoeven JS, Braakman HMH, van der Zwaag B, Harder AVE, Brilstra E, Pendziwiat M, Lebon S, Vaccarezza M, Le NM, Christensen J, Grønborg S, Scherer SW, Howe J, Fazeli W, Howell KB, Leventer R, Stutterd C, Walsh S, Gerard M, Gerard B, Matricardi S, Bonardi CM, Sartori S, Berger A, Hoffman-Zacharska D, Mastrangelo M, Darra F, Vøllo A, Motazacker MM, Lakeman P, Nizon M, Betzler C, Altuzarra C, Caume R, Roubertie A, Gélisse P, Marini C, Guerrini R, Bilan F, Tibussek D, Koch-Hogrebe M, Perry MS, Ichikawa S, Dadali E, Sharkov A, Mishina I, Abramov M, Kanivets I, Korostelev S, Kutsev S, Wain KE, Eisenhauer N, Wagner M, Savatt JM, Müller-Schlüter K, Bassan H, Borovikov A, Nassogne MC, Destrée A, Schoonjans AS, Meuwissen M, Buzatu M, Jansen A, Scalais E, Srivastava S, Tan WH, Olson HE, Loddenkemper T, Poduri A, Helbig KL, Helbig I, Fitzgerald MP, Goldberg EM, Roser T, Borggraefe I, Brünger T, May P, Lal D, Lederer D, Rubboli G, Heyne HO, Lesca G, Hedrich UBS, Benda J, Gardella E, Lerche H, Møller RS. Genotype-phenotype correlations in SCN8A-related disorders reveal prognostic and therapeutic implications. Brain 2022; 145:2991-3009. [PMID: 34431999 PMCID: PMC10147326 DOI: 10.1093/brain/awab321] [Show More Authors] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/24/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel Nav1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups were identified: Group 1, benign familial infantile epilepsy (n = 15, normal cognition, treatable seizures); Group 2, intermediate epilepsy (n = 33, mild intellectual disability, partially pharmaco-responsive); Group 3, developmental and epileptic encephalopathy (n = 177, severe intellectual disability, majority pharmaco-resistant); Group 4, generalized epilepsy (n = 20, mild to moderate intellectual disability, frequently with absence seizures); Group 5, unclassifiable epilepsy (n = 127); and Group 6, neurodevelopmental disorder without epilepsy (n = 20, mild to moderate intellectual disability). Those in Groups 1-3 presented with focal or multifocal seizures (median age of onset: 4 months) and focal epileptiform discharges, whereas the onset of seizures in patients with generalized epilepsy was later (median: 42 months) with generalized epileptiform discharges. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin-insensitive human Nav1.6 channels and whole-cell patch-clamping. Two variants causing developmental and epileptic encephalopathy showed a strong gain-of-function (hyperpolarizing shift of steady-state activation, strongly increased neuronal firing rate) and one variant causing benign familial infantile epilepsy or intermediate epilepsy showed a mild gain-of-function (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (reduced current amplitudes, depolarizing shift of steady-state activation, reduced neuronal firing). Functional effects were known for 170 individuals. All 136 individuals carrying a functionally tested gain-of-function variant had either focal (n = 97, Groups 1-3) or unclassifiable (n = 39) epilepsy, whereas 34 individuals with a loss-of-function variant had either generalized (n = 14), no (n = 11) or unclassifiable (n = 6) epilepsy; only three had developmental and epileptic encephalopathy. Computational modelling in the gain-of-function group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. Gain-of-function variant carriers responded significantly better to sodium channel blockers than to other anti-seizure medications, and the same applied for all individuals in Groups 1-3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of loss-of-function variant carriers and the extent of the electrophysiological dysfunction of the gain-of-function variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that sodium channel blockers present a treatment option in SCN8A-related focal epilepsy with onset in the first year of life.
Collapse
Affiliation(s)
- Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Center, 4293 Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, 5230 Odense, Denmark
| | - Yuanyuan Liu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Mahmoud Koko
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Cathrine E Gjerulfsen
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Center, 4293 Dianalund, Denmark
| | - Lukas Sonnenberg
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
- Institute for Neurobiology, University of Tuebingen, 72072 Tuebingen, Germany
| | - Julian Schubert
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Christina D Fenger
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Center, 4293 Dianalund, Denmark
| | - Ahmed Eltokhi
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Maert Rannap
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Nils A Koch
- Institute for Neurobiology, University of Tuebingen, 72072 Tuebingen, Germany
| | - Stephan Lauxmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
- Institute for Neurobiology, University of Tuebingen, 72072 Tuebingen, Germany
| | - Johanna Krüger
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Josua Kegele
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Laura Canafoglia
- Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologio Carlo Besta, 20125 Milan, Italy
| | - Silvana Franceschetti
- Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologio Carlo Besta, 20125 Milan, Italy
| | - Thomas Mayer
- Epilepsy Center Kleinwachau, 01454 Dresden-Radeberg, Germany
| | | | - Pia Zacher
- Epilepsy Center Kleinwachau, 01454 Dresden-Radeberg, Germany
| | - Susanne Ruf
- Department of Pediatric Neurology and Developmental Medicine, University Children’s Hospital, 72072 Tuebingen, Germany
| | - Michael Alber
- Department of Pediatric Neurology and Developmental Medicine, University Children’s Hospital, 72072 Tuebingen, Germany
| | - Katalin Sterbova
- Department of Child Neurology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, 10000 Prague, Czech Republic
| | - Petra Lassuthová
- Department of Child Neurology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, 10000 Prague, Czech Republic
| | - Marketa Vlckova
- Department of Child Neurology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, 10000 Prague, Czech Republic
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 4275 Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 4275 Leipzig, Germany
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 4275 Leipzig, Germany
| | - Constanze Heine
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 4275 Leipzig, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, University Clinic, Heinrich-Heine-University, 40210 Düsseldorf, Germany
| | - Judith Kroell-Seger
- Children’s Department, Swiss Epilepsy Centre, Clinic Lengg, 8001 Zurich, Switzerland
| | - Caroline Lund
- National Centre for Rare Epilepsy-Related Disorders, Oslo University Hospital, 0001 Oslo, Norway
| | - Karl Martin Klein
- Departments of Clinical Neurosciences, Medical Genetics and Community Health Sciences, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2P 0A1, Canada
| | - P Y Billie Au
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, University of Calgary, AB T6G 2T4, Canada
| | - Jong M Rho
- Section of Pediatric Neurology, Alberta Children’s Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB T2P 0A1, Canada
| | - Alice W Ho
- Section of Pediatric Neurology, Alberta Children’s Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB T2P 0A1, Canada
| | - Silvia Masnada
- Department of Child Neurology, V. Buzzi Children’s Hospital, 20125 Milan, Italy
| | - Pierangelo Veggiotti
- Department of Child Neurology, V. Buzzi Children’s Hospital, 20125 Milan, Italy
- ‘L. Sacco’ Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Lucio Giordano
- Child Neuropsychiatric Unit, Civilian Hospital, 25100 Brescia, Italy
| | - Patrizia Accorsi
- Child Neuropsychiatric Unit, Civilian Hospital, 25100 Brescia, Italy
| | - Christina E Hoei-Hansen
- Department of Pediatrics, Copenhagen University Hospital Rigshospitalet, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16121 Genova, Italy
- IRCCS ‘G. Gaslini’ Institute, 16121 Genoa, Italy
| | | | - Helene Verhelst
- Department of Pediatrics, Division of Pediatric Neurology, Gent University Hospital, 9042 Gent, Belgium
| | - Judith S Verhoeven
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, 5591 Heeze, The Netherlands
| | - Hilde M H Braakman
- Department of Pediatric Neurology, Amalia Children’s Hospital, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| | - Bert van der Zwaag
- Department of Genetics, University Medical Center Utrecht, Utrecht University, 3553 Utrecht, The Netherlands
| | - Aster V E Harder
- Department of Genetics, University Medical Center Utrecht, Utrecht University, 3553 Utrecht, The Netherlands
| | - Eva Brilstra
- Department of Genetics, University Medical Center Utrecht, Utrecht University, 3553 Utrecht, The Netherlands
| | - Manuela Pendziwiat
- Department of Neuropediatrics, Universitätsklinikum Schleswig Holstein Campus Kiel, 24106 Kiel, Germany
| | - Sebastian Lebon
- Pediatric Neurology and Neurorehabilitation Unit, Woman Mother Child Department, Lausanne University Hospital (CHUV), 1000 Lausanne, Switzerland
- University of Lausanne, 1000 Lausanne, Switzerland
| | - Maria Vaccarezza
- Department of Pediatric Neurology, Hospital Italiano de Buenos Aires, C1428 Buenos Aires, Argentina
| | - Ngoc Minh Le
- Center for Pediatric Neurology, Cleveland Clinic, Cleveland, OH 44102, USA
| | - Jakob Christensen
- Department of Neurology, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Sabine Grønborg
- Center for Rare Diseases, Department of Pediatrics and Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2200 Copenhagen, Denmark
| | - Stephen W Scherer
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON 66777, Canada
- The Centre for Applied Genomics and Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON 66777, Canada
| | - Jennifer Howe
- Department of Neuropediatrics, University Hospital Bonn, 53229 Bonn, Germany
| | - Walid Fazeli
- Institute for Molecular and Behavioral Neuroscience, University of Cologne, 50667 Cologne, Germany
- Neurology Department, The Royal Children’s Hospital Melbourne, 3002 Melbourne, Australia
| | - Katherine B Howell
- Neurology Department, The Royal Children’s Hospital Melbourne, 3002 Melbourne, Australia
- Murdoch Children’s Research Institute, 3052 Parkville, Australia
- Department of Pediatrics, University of Melbourne, Royal Children’s Hospital, 3052 Parkville, Australia
| | - Richard Leventer
- Neurology Department, The Royal Children’s Hospital Melbourne, 3002 Melbourne, Australia
- Murdoch Children’s Research Institute, 3052 Parkville, Australia
- Department of Pediatrics, University of Melbourne, Royal Children’s Hospital, 3052 Parkville, Australia
| | - Chloe Stutterd
- Murdoch Children’s Research Institute, 3052 Parkville, Australia
- Department of Pediatrics, University of Melbourne, Royal Children’s Hospital, 3052 Parkville, Australia
| | - Sonja Walsh
- Department of Neuropediatrics, Children’s Hospital, University Hospital Carl Gustav Carus, Technical University, 1099 Dresden, Germany
| | - Marion Gerard
- Genetics Department, CHU Côte de Nacre, 14118 Caen, France
| | | | - Sara Matricardi
- Child Neurology and Psychiatry Unit, Children’s Hospital G. Salesi, 60121 Ancona, Italy
| | - Claudia M Bonardi
- Department of Woman’s and Child’s Health, Padova University Hospital, 35100 Padova, Italy
| | - Stefano Sartori
- Child Neurology and Clinical Neurophysiology Unit, Padova University Hospital, 35100 Padova, Italy
| | - Andrea Berger
- Department of Neuropediatrics, Klinikum Weiden, Kliniken Nordoberpfalz AG, 92637 Weiden, Germany
| | | | - Massimo Mastrangelo
- Pediatric Neurology Unit, Vittore Buzzi Hospital, ASST Fatebenefratelli Sacco, 20100 Milan, Italy
| | - Francesca Darra
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37121 Verona, Italy
| | - Arve Vøllo
- Department of Pediatrics, Oestfold Hospital, 1712 Graalum, Norway
| | - M Mahdi Motazacker
- Laboratory of Genome Diagnostics, Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, 1019 Amsterdam, Netherlands
| | - Phillis Lakeman
- Department of Clinical Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, 1019 Amsterdam, Netherlands
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, 44093 Nantes, France
| | - Cornelia Betzler
- Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schön Klinik, 83569 Vogtareuth, Germany
- Research Institute ‘Rehabilitation, Transition, Palliation’, PMU Salzburg, 5020 Salzburg, Austria
| | - Cecilia Altuzarra
- Department of Pediatrics, St. Jacques Hospital, 25000 Besançon, France
| | - Roseline Caume
- Clinique de Génétique Guy Fontaine, CHU Lille, 59000, Lille, France
| | - Agathe Roubertie
- Département de Neuropédiatrie, INSERM, CHU Montpellier, 34000 Montpellier, France
| | - Philippe Gélisse
- Département de Neuropédiatrie, INSERM, CHU Montpellier, 34000 Montpellier, France
| | - Carla Marini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, 50131 Florence, Italy
| | | | - Frederic Bilan
- Service de Génétique, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Daniel Tibussek
- Child Neurology, Center for Pediatric and Teenage Health Care, 53757 Sankt Augustin, Germany
| | | | - M Scott Perry
- Justin Neurosciences Center, Cook Children’s Medical Center, Fort Worth, TX 76101, USA
| | - Shoji Ichikawa
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA 92637, USA
| | - Elena Dadali
- Research Centre for Medical Genetics, 115522 Moscow, Russia
- Veltischev Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University, 125412 Moscow, Russia
| | - Artem Sharkov
- Veltischev Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University, 125412 Moscow, Russia
- Genomed Ltd., 100000 Moscow, Russia
| | - Irina Mishina
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Mikhail Abramov
- Veltischev Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University, 125412 Moscow, Russia
| | - Ilya Kanivets
- Svt. Luka’s Institute of Child Neurology & Epilepsy, 100000 Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, 100000 Moscow, Russia
| | - Sergey Korostelev
- Svt. Luka’s Institute of Child Neurology & Epilepsy, 100000 Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, 100000 Moscow, Russia
| | - Sergey Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Karen E Wain
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA 17837, USA
| | - Nancy Eisenhauer
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA 17837, USA
| | - Monisa Wagner
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA 17837, USA
| | - Juliann M Savatt
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA 17837, USA
| | - Karen Müller-Schlüter
- Epilepsy Center for Children, University Hospital Neuruppin, Brandenburg Medical School, 16816 Neuruppin, Germany
| | - Haim Bassan
- Pediatric Neurology & Development Center, Shamir Medical Center (Assaf Harofe), Be'er Ya'akov, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 5296001 Tel Aviv, Israel
| | | | - Marie Cecile Nassogne
- Pediatric Neurology Unit, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1000 Brussels, Belgium
| | - Anne Destrée
- Institute for Pathology and Genetics, 6040 Gosselies, Belgium
| | - An Sofie Schoonjans
- Department of Pediatrics and Pediatric Neurology, Antwerp University Hospital, University of Antwerp, 2650 Edegem, Belgium
| | - Marije Meuwissen
- Pediatric Neurology, Marie Curie Hospital—CHU Charleroi, 6032 Charleroi, Belgium
| | - Marga Buzatu
- Pediatric Neurology, Marie Curie Hospital—CHU Charleroi, 6032 Charleroi, Belgium
| | - Anna Jansen
- Pediatric Neurology Unit, Department of Pediatrics, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Emmanuel Scalais
- Pediatric Neurology Unit, Department of Pediatrics, Centre Hospitalier de Luxembourg, 1313 Luxembourg, Luxembourg
| | - Siddharth Srivastava
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02108, USA
| | - Wen Hann Tan
- Department of Genetics, Boston Children’s Hospital, Boston, MA 02108, USA
| | - Heather E Olson
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02108, USA
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, MA 02108, USA
| | - Tobias Loddenkemper
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02108, USA
| | - Annapurna Poduri
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02108, USA
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, MA 02108, USA
| | - Katherine L Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy Neurogenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy Neurogenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
- Department of Neuropediatrics, Kiel University, 24105 Kiel, Germany
| | - Mark P Fitzgerald
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy Neurogenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | - Ethan M Goldberg
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy Neurogenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Timo Roser
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Haunersches Children’s Hospital, Ludwig-Maximilian-University of Munich, 80331 Munich, Germany
| | - Ingo Borggraefe
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Haunersches Children’s Hospital, Ludwig-Maximilian-University of Munich, 80331 Munich, Germany
- Comprehensive Epilepsy Center, Ludwig-Maximilian- University of Munich, 80331 Munich, Germany
| | - Tobias Brünger
- Luxembourg Centre for Systems Biomedicine (LCSB), University Luxembourg, L-4243 Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44102, USA
| | - Dennis Lal
- Luxembourg Centre for Systems Biomedicine (LCSB), University Luxembourg, L-4243 Esch-sur-Alzette, Luxembourg
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44102, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T., Cambridge, MA 02138, USA
- Cologne Center for Genomics (CCG), University of Cologne, 50667 Cologne, Germany
| | - Damien Lederer
- Institute for Pathology and Genetics, 6040 Gosselies, Belgium
| | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Center, 4293 Dianalund, Denmark
- University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrike O Heyne
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 4275 Leipzig, Germany
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, 320 Helsinki, Finland
- Program for Medical and Population Genetics/Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02108, USA
| | - Gaetan Lesca
- Department of Medical Genetics, Groupement Hospitalier Est and ERN EpiCARE, University Hospitals of Lyon (HCL), 69001 Lyon, France
- Institut Neuromyogène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, 69001 Lyon, France
| | - Ulrike B S Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Jan Benda
- Institute for Neurobiology, University of Tuebingen, 72072 Tuebingen, Germany
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Center, 4293 Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, 5230 Odense, Denmark
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Center, 4293 Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
12
|
Johannesen KM, Gardella E, Ahring PK, Møller RS. De novo SCN3A missense variant associated with self-limiting generalized epilepsy with fever sensitivity. Eur J Med Genet 2022; 65:104577. [DOI: 10.1016/j.ejmg.2022.104577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/09/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
|
13
|
Functional correlates of clinical phenotype and severity in recurrent SCN2A variants. Commun Biol 2022; 5:515. [PMID: 35637276 PMCID: PMC9151917 DOI: 10.1038/s42003-022-03454-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/05/2022] [Indexed: 01/24/2023] Open
Abstract
In SCN2A-related disorders, there is an urgent demand to establish efficient methods for determining the gain- (GoF) or loss-of-function (LoF) character of variants, to identify suitable candidates for precision therapies. Here we classify clinical phenotypes of 179 individuals with 38 recurrent SCN2A variants as early-infantile or later-onset epilepsy, or intellectual disability/autism spectrum disorder (ID/ASD) and assess the functional impact of 13 variants using dynamic action potential clamp (DAPC) and voltage clamp. Results show that 36/38 variants are associated with only one phenotypic group (30 early-infantile, 5 later-onset, 1 ID/ASD). Unexpectedly, we revealed major differences in outcome severity between individuals with the same variant for 40% of early-infantile variants studied. DAPC was superior to voltage clamp in predicting the impact of mutations on neuronal excitability and confirmed GoF produces early-infantile phenotypes and LoF later-onset phenotypes. For one early-infantile variant, the co-expression of the α1 and β2 subunits of the Nav1.2 channel was needed to unveil functional impact, confirming the prediction of 3D molecular modeling. Neither DAPC nor voltage clamp reliably predicted phenotypic severity of early-infantile variants. Genotype, phenotypic group and DAPC are accurate predictors of the biophysical impact of SCN2A variants, but other approaches are needed to predict severity. A comprehensive biophysical analysis of disease-associated mutations in the voltage-gated sodium channel gene, SCN2A, suggests that dynamic action potential clamp may be a better predictor than voltage clamp of how these mutations alter neuronal excitability, though other approaches are needed to predict severity.
Collapse
|
14
|
Mangano GD, Fontana A, Antona V, Salpietro V, Mangano GR, Giuffrè M, Nardello R. Commonalities and distinctions between two neurodevelopmental disorder subtypes associated with SCN2A and SCN8A variants and literature review. Mol Genet Genomic Med 2022; 10:e1911. [PMID: 35348308 PMCID: PMC9034667 DOI: 10.1002/mgg3.1911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 01/29/2023] Open
Abstract
This study was aimed to analyze the commonalities and distinctions of voltage-gated sodium channels, Nav1.2, Nav1.6, in neurodevelopmental disorders. An observational study was performed including two patients with neurodevelopmental disorders. The demographic, electroclinical, genetic, and neuropsychological characteristics were analyzed and compared with each other and then with the subjects carrying the same genetic variants reported in the literature. The clinical features of one of them argued for autism spectrum disorder and developmental delay, the other for intellectual disability, diagnoses confirmed by the neuropsychological assessment. The first patient was a carrier of SCN2A (p.R379H) variant while the second was carrier of SCN8A (p.E936K) variant, both involving the pore loop of the two channels. The results of this study suggest that the neurodevelopmental disorders without overt epilepsy of both patients can be the consequences of loss of function of Nav1.2/Nav1.6 channels. Notably, the SCN2A variant, with an earlier expression timing in brain development, resulted in a more severe phenotype as autism spectrum disorder and developmental delay, while the SCN8A variant, with a later expression timing, resulted in a less severe phenotype as intellectual disability.
Collapse
Affiliation(s)
- Giuseppe Donato Mangano
- Department of Health Promotion, Mother and Child CareInternal Medicine and Medical Specialities “G. D'Alessandro,” University of PalermoPalermoItaly
| | - Antonina Fontana
- Department of Health Promotion, Mother and Child CareInternal Medicine and Medical Specialities “G. D'Alessandro,” University of PalermoPalermoItaly
| | - Vincenzo Antona
- Department of Health Promotion, Mother and Child CareInternal Medicine and Medical Specialities “G. D'Alessandro,” University of PalermoPalermoItaly
| | - Vincenzo Salpietro
- Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa; Pediatric Neurology and Muscular Diseases UnitIRCCS Giannina Gaslini InstituteGenoaItaly
| | - Giuseppa Renata Mangano
- Department of Psychology, Educational Sciences and Human MovementUniversity of PalermoPalermoItaly
| | - Mario Giuffrè
- Department of Health Promotion, Mother and Child CareInternal Medicine and Medical Specialities “G. D'Alessandro,” University of PalermoPalermoItaly
| | - Rosaria Nardello
- Department of Health Promotion, Mother and Child CareInternal Medicine and Medical Specialities “G. D'Alessandro,” University of PalermoPalermoItaly
| |
Collapse
|
15
|
Zeng Q, Yang Y, Duan J, Niu X, Chen Y, Wang D, Zhang J, Chen J, Yang X, Li J, Yang Z, Jiang Y, Liao J, Zhang Y. SCN2A-Related Epilepsy: The Phenotypic Spectrum, Treatment and Prognosis. Front Mol Neurosci 2022; 15:809951. [PMID: 35431799 PMCID: PMC9005871 DOI: 10.3389/fnmol.2022.809951] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The aim of this study was to analyze the phenotypic spectrum, treatment, and prognosis of 72 Chinese children with SCN2A variants. METHODS The SCN2A variants were detected by next-generation sequencing. All patients were followed up at a pediatric neurology clinic in our hospital or by telephone. RESULTS In 72 patients with SCN2A variants, the seizure onset age ranged from the first day of life to 2 years and 6 months. The epilepsy phenotypes included febrile seizures (plus) (n = 2), benign (familial) infantile epilepsy (n = 9), benign familial neonatal-infantile epilepsy (n = 3), benign neonatal epilepsy (n = 1), West syndrome (n = 16), Ohtahara syndrome (n = 15), epilepsy of infancy with migrating focal seizures (n = 2), Dravet syndrome (n = 1), early infantile epileptic encephalopathy (n = 15), and unclassifiable developmental and epileptic encephalopathy (n = 8). Approximately 79.2% (57/72) patients had varying degrees of developmental delay. All patients had abnormal MRI findings with developmental delay. 91.7% (55/60) patients with de novo SCN2A variants had development delay, while only 16.7% (2/12) patients with inherited SCN2A variants had abnormal development. 83.9% (26/31) SCN2A variants that were located in transmembrane regions of the protein were detected in patients with development delay. Approximately 69.2% (9/13) SCN2A variants detected in patients with normal development were located in the non-transmembrane regions. Approximately 54.2% (39/72) patients were seizure-free at a median age of 8 months. Oxcarbazepine has been used by 38 patients, and seizure-free was observed in 11 of them (11/38, 28.9%), while 6 patients had seizure worsening by oxcarbazepine. All 3 patients used oxcarbazepine and with seizure onset age > 1 year presented seizure exacerbation after taking oxcarbazepine. Valproate has been used by 53 patients, seizure-free was observed in 22.6% (12/53) of them. CONCLUSION The phenotypic spectrum of SCN2A-related epilepsy was broad, ranging from benign epilepsy in neonate and infancy to severe epileptic encephalopathy. Oxcarbazepine and valproate were the most effective drugs in epilepsy patients with SCN2A variants. Sodium channel blockers often worsen seizures in patients with seizure onset beyond 1 year of age. Abnormal brain MRI findings and de novo variations were often related to poor prognosis. Most SCN2A variants located in transmembrane regions were related to patients with developmental delay.
Collapse
Affiliation(s)
- Qi Zeng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jing Duan
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xueyang Niu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yi Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Dan Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jing Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiaoyang Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jinliang Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
16
|
Heighway J, Sedo A, Garg A, Eldershaw L, Perreau V, Berecki G, Reid CA, Petrou S, Maljevic S. Sodium channel expression and transcript variation in the developing brain of human, Rhesus monkey, and mouse. Neurobiol Dis 2022; 164:105622. [PMID: 35031483 DOI: 10.1016/j.nbd.2022.105622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
Genetic variation in voltage-gated sodium (NaV) channels is a significant contributor to neurodevelopmental disorders. NaV channel alpha subunits are encoded by the SCNxA family and four are predominately expressed in the brain: SCN1A, SCN2A, SCN3A, and SCN8A. Gene expression is developmentally regulated, and they are known to express functionally distinct transcript variants. Precision therapies targeting these genes and their transcript variants are currently in preclinical development, yet the developmental expression of these transcripts in the human brain is yet to be fully understood. Additionally, the functional consequences of some mutations differ depending on the studied channel isoform, suggesting differential transcript variant expression can affect disease prognoses. We characterise the expression of the four SCNxAs and their transcript variants in human, Rhesus monkey and mouse brain using publicly available RNA-sequencing data and analysis tools, demonstrating that this approach can be used to answer important biological questions of gene and transcript developmental regulation. We find that gene expression and transcript variant regulation are conserved across species at similar developmental stages and determine the developmental milestones for transcript variant expression. Our study provides a guide to researchers testing therapies and clinicians advising prognoses based on the expression of channel isoforms.
Collapse
Affiliation(s)
- Jacqueline Heighway
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Alicia Sedo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Anjali Garg
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Lauren Eldershaw
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Victoria Perreau
- Melbourne Bioinformatics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Géza Berecki
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia; Praxis Precision Medicines, Inc., Cambridge, MA 02142, USA; Department of the Florey Institute, University of Melbourne, Parkville, VIC 3050, Australia.
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
17
|
Richardson R, Baralle D, Bennett C, Briggs T, Bijlsma EK, Clayton-Smith J, Constantinou P, Foulds N, Jarvis J, Jewell R, Johnson DS, McEntagart M, Parker MJ, Radley JA, Robertson L, Ruivenkamp C, Rutten JW, Tellez J, Turnpenny PD, Wilson V, Wright M, Balasubramanian M. Further delineation of phenotypic spectrum of SCN2A-related disorder. Am J Med Genet A 2022; 188:867-877. [PMID: 34894057 DOI: 10.1002/ajmg.a.62595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/28/2021] [Accepted: 11/20/2021] [Indexed: 01/12/2023]
Abstract
SCN2A-related disorders include intellectual disability, autism spectrum disorder, seizures, episodic ataxia, and schizophrenia. In this study, the phenotype-genotype association in SCN2A-related disorders was further delineated by collecting detailed clinical and molecular characteristics. Using previously proposed genotype-phenotype hypotheses based on variant function and position, the potential of phenotype prediction from the variants found was examined. Patients were identified through the Deciphering Developmental Disorders study and gene matching strategies. Phenotypic information and variant interpretation evidence were collated. Seventeen previously unreported patients and five patients who had been previously reported (but with minimal phenotypic and segregation data) were included (10 males, 12 females; median age 10.5 years). All patients had developmental delays and the majority had intellectual disabilities. Seizures were reported in 15 of 22 (68.2%), four of 22 (18.2%) had autism spectrum disorder and no patients were reported with episodic ataxia. The majority of variants were de novo. One family had presumed gonadal mosaicism. The correlation of the use of sodium channel-blocking antiepileptic drugs with phenotype or genotype was variable. These data suggest that variant type and position alone can provide some predictive information about the phenotype in a proportion of cases, but more precise assessment of variant function is needed for meaningful phenotype prediction.
Collapse
Affiliation(s)
- Ruth Richardson
- Northern Genetics Service, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle, UK
| | - Diana Baralle
- University Hospital of Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Christopher Bennett
- Yorkshire Regional Genetics Service, The Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Tracy Briggs
- NW Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jill Clayton-Smith
- NW Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | | | - Nicola Foulds
- University Hospital of Southampton NHS Foundation Trust, Southampton, UK
| | - Joanna Jarvis
- Clinical Genetics Unit, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, The Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Diana S Johnson
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Meriel McEntagart
- South West Thames Regional Genetics Centre, St. George's Healthcare NHS Trust, St. George's, University of London, London, UK
| | - Michael J Parker
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Jessica A Radley
- London North West Regional Genetics Service, St. Mark's and Northwick Park Hospitals, London, UK
| | | | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Julie W Rutten
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - James Tellez
- Northern Genetics Service, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle, UK
| | - Peter D Turnpenny
- Clinical Genetics Department, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Valerie Wilson
- Northern Genetics Service, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle, UK
| | - Michael Wright
- Northern Genetics Service, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle, UK
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
- Academic Unit of Child Health, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
18
|
Genetic paroxysmal neurological disorders featuring episodic ataxia and epilepsy. Eur J Med Genet 2022; 65:104450. [DOI: 10.1016/j.ejmg.2022.104450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 01/25/2023]
|
19
|
Lauxmann S, Sonnenberg L, Koch NA, Bosselmann C, Winter N, Schwarz N, Wuttke TV, Hedrich UBS, Liu Y, Lerche H, Benda J, Kegele J. Therapeutic Potential of Sodium Channel Blockers as a Targeted Therapy Approach in KCNA1-Associated Episodic Ataxia and a Comprehensive Review of the Literature. Front Neurol 2021; 12:703970. [PMID: 34566847 PMCID: PMC8459024 DOI: 10.3389/fneur.2021.703970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction: Among genetic paroxysmal movement disorders, variants in ion channel coding genes constitute a major subgroup. Loss-of-function (LOF) variants in KCNA1, the gene coding for KV1.1 channels, are associated with episodic ataxia type 1 (EA1), characterized by seconds to minutes-lasting attacks including gait incoordination, limb ataxia, truncal instability, dysarthria, nystagmus, tremor, and occasionally seizures, but also persistent neuromuscular symptoms like myokymia or neuromyotonia. Standard treatment has not yet been developed, and different treatment efforts need to be systematically evaluated. Objective and Methods: Personalized therapeutic regimens tailored to disease-causing pathophysiological mechanisms may offer the specificity required to overcome limitations in therapy. Toward this aim, we (i) reviewed all available clinical reports on treatment response and functional consequences of KCNA1 variants causing EA1, (ii) examined the potential effects on neuronal excitability of all variants using a single compartment conductance-based model and set out to assess the potential of two sodium channel blockers (SCBs: carbamazepine and riluzole) to restore the identified underlying pathophysiological effects of KV1.1 channels, and (iii) provide a comprehensive review of the literature considering all types of episodic ataxia. Results: Reviewing the treatment efforts of EA1 patients revealed moderate response to acetazolamide and exhibited the strength of SCBs, especially carbamazepine, in the treatment of EA1 patients. Biophysical dysfunction of KV1.1 channels is typically based on depolarizing shifts of steady-state activation, leading to an LOF of KCNA1 variant channels. Our model predicts a lowered rheobase and an increase of the firing rate on a neuronal level. The estimated concentration dependent effects of carbamazepine and riluzole could partially restore the altered gating properties of dysfunctional variant channels. Conclusion: These data strengthen the potential of SCBs to contribute to functional compensation of dysfunctional KV1.1 channels. We propose riluzole as a new drug repurposing candidate and highlight the role of personalized approaches to develop standard care for EA1 patients. These results could have implications for clinical practice in future and highlight the need for the development of individualized and targeted therapies for episodic ataxia and genetic paroxysmal disorders in general.
Collapse
Affiliation(s)
- Stephan Lauxmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Lukas Sonnenberg
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany
| | - Nils A. Koch
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany
| | - Christian Bosselmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Natalie Winter
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Niklas Schwarz
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Thomas V. Wuttke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Ulrike B. S. Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Yuanyuan Liu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jan Benda
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany
| | - Josua Kegele
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Gazulla J, Izquierdo-Alvarez S, Ruiz-Fernández E, Lázaro-Romero A, Berciano J. Episodic Vestibulocerebellar Ataxia Associated with a CACNA1G Missense Variant. Case Rep Neurol 2021; 13:347-354. [PMID: 34248568 PMCID: PMC8255690 DOI: 10.1159/000515974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 03/14/2021] [Indexed: 11/29/2022] Open
Abstract
Episodic vestibulocerebellar ataxias are rare diseases, frequently linked to mutations in different ion channels. Our objective in this work was to describe a kindred with episodic vestibular dysfunction and ataxia, associated with a novel CACNA1G variant. Two individuals from successive generations developed episodes of transient dizziness, gait unsteadiness, a sensation of fall triggered by head movements, headache, and cheek numbness. These were suppressed by carbamazepine (CBZ) administration in the proband, although acetazolamide and topiramate worsened instability, and amitriptyline and flunarizine did not prevent headache spells. On examination, the horizontal head impulse test (HIT) yielded saccadic responses bilaterally and was accompanied by cerebellar signs. Two additional family members were asymptomatic, with normal neurological examinations. Reduced vestibulo-ocular reflex gain values, overt and covert saccades were shown by video-assisted HIT in affected subjects. Hearing acuity was normal. Whole-exome sequencing demonstrated the heterozygous CACNA1G missense variant c.6958G>T (p.Gly2320Cys) in symptomatic individuals. It was absent in 1 unaffected member (not tested in the other asymptomatic individual) and should be considered likely pathogenic. CACNA1G encodes for the pore-forming, α1G subunit of the T-type voltage-gated calcium channel (VGCC), in which currents are transient owing to fast inactivation, and tiny, due to small conductance. Mutations in CACNA1G cause generalized absence epilepsy and adult-onset, dominantly inherited, spinocerebellar ataxia type 42. In this kindred, the aforementioned CACNA1G variant segregated with disease, which was consistent with episodic vestibulocerebellar ataxia. CBZ proved successful in bout prevention and provided symptomatic benefit in the proband, probably as a result of interaction of this drug with VGCC. Further studies are needed to fully determine the vestibular and neurological manifestations of this form of episodic vestibulocerebellar ataxia. This novel disease variant could be designated episodic vestibulocerebellar ataxia type 10.
Collapse
Affiliation(s)
- José Gazulla
- Department of Neurology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Silvia Izquierdo-Alvarez
- Section of Genetics, Department of Clinical Biochemistry, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | - Alba Lázaro-Romero
- Department of Neurology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - José Berciano
- Department of Neurology, Hospital Universitario Marqués de Valdecilla (IDIVAL), University of Cantabria, CIBERNED, Santander, Spain
| |
Collapse
|
21
|
Yang R, Qian R, Chen K, Yi W, Sima X. Genetic polymorphisms in SCN2A are not associated with epilepsy risk and AEDs response: evidence from a meta-analysis. Neurol Sci 2021; 42:2705-2711. [PMID: 33914194 DOI: 10.1007/s10072-021-05242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/09/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Previous studies have investigated the association between rs2304016 and rs17183814 polymorphisms in sodium voltage-gated channel alpha subunit 2 (SCN2A) and epilepsy risk and responsiveness to antiepileptic drugs (AEDs) but with conflicting results. Our aim was to reevaluate the relationship by performing a systematic review and meta-analysis. METHODS By searching PubMed, Medline, and CNKI, 14 studies were selected. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were computed to measure the association between rs17183814 and rs2304016 polymorphisms and the risk of epilepsy and AEDs response using the fixed-effects model or the random-effects model. RESULTS No significant association between the rs17183814 in SCN2A and the risk of epilepsy was observed (heterozygous comparison: OR = 0.78, 95% CI: 0.61-1.00; homozygous comparison: OR = 1.34, 95% CI: 0.63-2.86; dominant model: OR = 0.82, 95% CI: 0.64-1.04; recessive model: OR = 1.44, 95% CI: 0.68-3.05; allele comparison: OR = 0.88, 95%CI: 0.71-1.10). Moreover, neither the rs17183814 nor the rs2304016 was associated with AEDs response. CONCLUSION This meta-analysis suggests that the rs17183814 and rs2304016 polymorphisms in SCN2A are not associated with the risk of epilepsy and response to AEDs.
Collapse
Affiliation(s)
- Ruiqing Yang
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruiyi Qian
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kerun Chen
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Yi
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiutian Sima
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
22
|
Genetic Neonatal-Onset Epilepsies and Developmental/Epileptic Encephalopathies with Movement Disorders: A Systematic Review. Int J Mol Sci 2021; 22:ijms22084202. [PMID: 33919646 PMCID: PMC8072943 DOI: 10.3390/ijms22084202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Despite expanding next generation sequencing technologies and increasing clinical interest into complex neurologic phenotypes associating epilepsies and developmental/epileptic encephalopathies (DE/EE) with movement disorders (MD), these monogenic conditions have been less extensively investigated in the neonatal period compared to infancy. We reviewed the medical literature in the study period 2000–2020 to report on monogenic conditions characterized by neonatal onset epilepsy and/or DE/EE and development of an MD, and described their electroclinical, genetic and neuroimaging spectra. In accordance with a PRISMA statement, we created a data collection sheet and a protocol specifying inclusion and exclusion criteria. A total of 28 different genes (from 49 papers) leading to neonatal-onset DE/EE with multiple seizure types, mainly featuring tonic and myoclonic, but also focal motor seizures and a hyperkinetic MD in 89% of conditions, with neonatal onset in 22%, were identified. Neonatal seizure semiology, or MD age of onset, were not always available. The rate of hypokinetic MD was low, and was described from the neonatal period only, with WW domain containing oxidoreductase (WWOX) pathogenic variants. The outcome is characterized by high rates of associated neurodevelopmental disorders and microcephaly. Brain MRI findings are either normal or nonspecific in most conditions, but serial imaging can be necessary in order to detect progressive abnormalities. We found high genetic heterogeneity and low numbers of described patients. Neurological phenotypes are complex, reflecting the involvement of genes necessary for early brain development. Future studies should focus on accurate neonatal epileptic phenotyping, and detailed description of semiology and time-course, of the associated MD, especially for the rarest conditions.
Collapse
|
23
|
Praticò AD, Giallongo A, Arrabito M, D'Amico S, Gauci MC, Lombardo G, Polizzi A, Falsaperla R, Ruggieri M. SCN2A and Its Related Epileptic Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractEpilepsies due to SCN2A mutations can present with a broad range of phenotypes that are still not fully understood. Clinical characteristics of SNC2A-related epilepsy may vary from neonatal benign epilepsy to early-onset epileptic encephalopathy, including Ohtahara syndrome and West syndrome, and epileptic encephalopathies occurring at later ages (usually within the first 10 years of life). Some patient may present with intellectual disability and/or autism or movement disorders and without epilepsy. The heterogeneity of the phenotypes associated to such genetic mutations does not always allow the clinician to address his suspect on this gene. For this reason, diagnosis is usually made after a multiple gene panel examination through next generation sequencing (NGS) or after whole exome sequencing (WES) or whole genome sequencing (WGS). Subsequently, confirmation by Sanger sequencing can be obtained. Mutations in SCN2A are inherited as an autosomal dominant trait. Most individuals diagnosed with SCN2A–benign familial neonatal-infantile seizures (BFNIS) have an affected parent; however, hypothetically, a child may present SCN2A-BNFNIS as the result of a de novo pathogenic variant. Almost all individuals with SCN2A and severe epileptic encephalopathies have a de novo pathogenic variant. SNC2A-related epilepsies have not shown a clear genotype–phenotype correlation; in some cases, a same variant may lead to different presentations even within the same family and this could be due to other genetic factors or to environmental causes. There is no “standardized” treatment for SCN2A-related epilepsy, as it varies in relation to the clinical presentation and the phenotype of the patient, according to its own gene mutation. Treatment is based mainly on antiepileptic drugs, which include classic wide-spectrum drugs, such as valproic acid, levetiracetam, and lamotrigine. However, specific agents, which act directly modulating the sodium channels activity (phenytoin, carbamazepine, oxcarbamazepine, lamotrigine, and zonisamide), have shown positive result, as other sodium channel blockers (lidocaine and mexiletine) or even other drugs with different targets (phenobarbital).
Collapse
Affiliation(s)
- Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Alessandro Giallongo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marta Arrabito
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Silvia D'Amico
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Cristina Gauci
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Giulia Lombardo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
24
|
Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev 2021; 101:1633-1689. [PMID: 33769100 DOI: 10.1152/physrev.00025.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, skeletal muscle, and other electrically excitable cells. Mutations in them cause a wide range of diseases. These channelopathy mutations affect every aspect of sodium channel function, including voltage sensing, voltage-dependent activation, ion conductance, fast and slow inactivation, and both biosynthesis and assembly. Mutations that cause different forms of periodic paralysis in skeletal muscle were discovered first and have provided a template for understanding structure, function, and pathophysiology at the molecular level. More recent work has revealed multiple sodium channelopathies in the brain. Here we review the well-characterized genetics and pathophysiology of the periodic paralyses of skeletal muscle and then use this information as a foundation for advancing our understanding of mutations in the structurally homologous α-subunits of brain sodium channels that cause epilepsy, migraine, autism, and related comorbidities. We include studies based on molecular and structural biology, cell biology and physiology, pharmacology, and mouse genetics. Our review reveals unexpected connections among these different types of sodium channelopathies.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France
| | | |
Collapse
|
25
|
Ademuwagun IA, Rotimi SO, Syrbe S, Ajamma YU, Adebiyi E. Voltage Gated Sodium Channel Genes in Epilepsy: Mutations, Functional Studies, and Treatment Dimensions. Front Neurol 2021; 12:600050. [PMID: 33841294 PMCID: PMC8024648 DOI: 10.3389/fneur.2021.600050] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Genetic epilepsy occurs as a result of mutations in either a single gene or an interplay of different genes. These mutations have been detected in ion channel and non-ion channel genes. A noteworthy class of ion channel genes are the voltage gated sodium channels (VGSCs) that play key roles in the depolarization phase of action potentials in neurons. Of huge significance are SCN1A, SCN1B, SCN2A, SCN3A, and SCN8A genes that are highly expressed in the brain. Genomic studies have revealed inherited and de novo mutations in sodium channels that are linked to different forms of epilepsies. Due to the high frequency of sodium channel mutations in epilepsy, this review discusses the pathogenic mutations in the sodium channel genes that lead to epilepsy. In addition, it explores the functional studies on some known mutations and the clinical significance of VGSC mutations in the medical management of epilepsy. The understanding of these channel mutations may serve as a strong guide in making effective treatment decisions in patient management.
Collapse
Affiliation(s)
- Ibitayo Abigail Ademuwagun
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Solomon Oladapo Rotimi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Steffen Syrbe
- Clinic for Pediatric and Adolescent Medicine, Heidelberg University, Heidelberg, Germany
| | | | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
26
|
de Gusmão CM, Garcia L, Mikati MA, Su S, Silveira-Moriyama L. Paroxysmal Genetic Movement Disorders and Epilepsy. Front Neurol 2021; 12:648031. [PMID: 33833732 PMCID: PMC8021799 DOI: 10.3389/fneur.2021.648031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
Paroxysmal movement disorders include paroxysmal kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, paroxysmal exercise-induced dyskinesia, and episodic ataxias. In recent years, there has been renewed interest and recognition of these disorders and their intersection with epilepsy, at the molecular and pathophysiological levels. In this review, we discuss how these distinct phenotypes were constructed from a historical perspective and discuss how they are currently coalescing into established genetic etiologies with extensive pleiotropy, emphasizing clinical phenotyping important for diagnosis and for interpreting results from genetic testing. We discuss insights on the pathophysiology of select disorders and describe shared mechanisms that overlap treatment principles in some of these disorders. In the near future, it is likely that a growing number of genes will be described associating movement disorders and epilepsy, in parallel with improved understanding of disease mechanisms leading to more effective treatments.
Collapse
Affiliation(s)
- Claudio M. de Gusmão
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil
| | - Lucas Garcia
- Department of Medicine, Universidade 9 de Julho, São Paulo, Brazil
| | - Mohamad A. Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, NC, United States
| | - Samantha Su
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, NC, United States
| | - Laura Silveira-Moriyama
- Department of Neurology, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil
- Department of Medicine, Universidade 9 de Julho, São Paulo, Brazil
- Education Unit, University College London Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
27
|
Abstract
The voltage-gated sodium channel α-subunit genes comprise a highly conserved gene family. Mutations of three of these genes, SCN1A, SCN2A and SCN8A, are responsible for a significant burden of neurological disease. Recent progress in identification and functional characterization of patient variants is generating new insights and novel approaches to therapy for these devastating disorders. Here we review the basic elements of sodium channel function that are used to characterize patient variants. We summarize a large body of work using global and conditional mouse mutants to characterize the in vivo roles of these channels. We provide an overview of the neurological disorders associated with mutations of the human genes and examples of the effects of patient mutations on channel function. Finally, we highlight therapeutic interventions that are emerging from new insights into mechanisms of sodium channelopathies.
Collapse
|
28
|
von Stülpnagel C, van Baalen A, Borggraefe I, Eschermann K, Hartlieb T, Kiwull L, Pringsheim M, Wolff M, Kudernatsch M, Wiegand G, Striano P, Kluger G. Network for Therapy in Rare Epilepsies (NETRE): Lessons From the Past 15 Years. Front Neurol 2021; 11:622510. [PMID: 33519703 PMCID: PMC7840830 DOI: 10.3389/fneur.2020.622510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 01/14/2023] Open
Abstract
Background: In 2005, Network for Therapy in Rare Epilepsies (NETRE)-was initiated in order to share treatment experiences among clinicians in patients with rare epilepsies. Here we describe the structure of the rapidly growing NETRE and summarize some of the findings of the last 15 years. Methodology/Structure of NETRE: NETRE is organized in distinct groups (currently >270). Starting point is always a patient with a rare epilepsy/ epileptic disorder. This creates a new group, and next, a medical coordinator is appointed. The exchange of experiences is established using a data entry form, which the coordinator sends to colleagues. The primary aim is to exchange experiences (retrospectively, anonymously, MRI results also non-anonymously) of the epilepsy treatment as well as on clinical presentation and comorbidities NETRE is neither financed nor sponsored. Results: Some of the relevant results: (1) first description of FIRES as a new epilepsy syndrome and its further investigation, (2) in SCN2A, the assignment to gain- vs. loss-of-function mutations has a major impact on clinical decisions to use or avoid treatment with sodium channel blockers, (3) the important aspect of avoiding overtreatment in CDKL5 patients, due to loss of effects of anticonvulsants after 12 months, (4) pathognomonic MRI findings in FOXG1 patients, (5) the first description of pathognomonic chewing-induced seizures in SYNGAP1 patients, and the therapeutic effect of statins as anticonvulsant in these patients, (6) the phenomenon of another reflex epilepsy-bathing epilepsy associated with a SYN1 mutation. Of special interest is also a NETRE group following twins with genetic and/or structural epilepsies [including vanishing-twin-syndrome and twin-twin-transfusion syndrome) [= "Early Neuroimpaired Twin Entity" (ENITE)]. Discussion and Perspective: NETRE enables clinicians to quickly exchange information on therapeutic experiences in rare diseases with colleagues at an international level. For both parents and clinicians/scientist this international exchange is both reassuring and helpful. In collaboration with other groups, personalized therapeutic approaches are sought, but the present limitations of currently available therapies are also highlighted. Presently, the PATRE Project (PATient based phenotyping and evaluation of therapy for Rare Epilepsies) is commencing, in which information on therapies will be obtained directly from patients and their caregivers.
Collapse
Affiliation(s)
- Celina von Stülpnagel
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics and Epilepsy Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
- Institute for Transition, Rehabilitation and Palliation, Paracelsus Medical University, Salzburg, Austria
| | - Andreas van Baalen
- Clinic for Child and Adolescent Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ingo Borggraefe
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics and Epilepsy Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Kirsten Eschermann
- Institute for Transition, Rehabilitation and Palliation, Paracelsus Medical University, Salzburg, Austria
| | - Till Hartlieb
- Institute for Transition, Rehabilitation and Palliation, Paracelsus Medical University, Salzburg, Austria
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen Klinik Vogtareuth, Vogtareuth, Germany
| | - Lorenz Kiwull
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics and Epilepsy Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
- Institute for Transition, Rehabilitation and Palliation, Paracelsus Medical University, Salzburg, Austria
- Institute of Social Pediatrics and Adolescent Medicine, Ludwig-Maximilian-University, Munich, Germany
| | - Milka Pringsheim
- Institute for Transition, Rehabilitation and Palliation, Paracelsus Medical University, Salzburg, Austria
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen Klinik Vogtareuth, Vogtareuth, Germany
| | - Markus Wolff
- Department of Pediatric Neurology, Vivantes Hospital Neukölln, Berlin, Germany
| | - Manfred Kudernatsch
- Institute for Transition, Rehabilitation and Palliation, Paracelsus Medical University, Salzburg, Austria
- Clinic for Neurosurgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Gert Wiegand
- Clinic for Child and Adolescent Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
- Neuropediatrics Section of the Department of Pediatrics, Asklepios Clinic Hamburg Nord-Heidberg, Hamburg, Germany
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Istituto die Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Gerhard Kluger
- Institute for Transition, Rehabilitation and Palliation, Paracelsus Medical University, Salzburg, Austria
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen Klinik Vogtareuth, Vogtareuth, Germany
| | | |
Collapse
|
29
|
Passi GR, Mohammad SS. Dominant SCN2A mutation with variable phenotype in two generations. Brain Dev 2021; 43:166-169. [PMID: 32893078 DOI: 10.1016/j.braindev.2020.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND SCN2A mutations are some of the commonest causes of neurodevelopmental disorders including epilepsy, movement disorders, autism spectrum disorder, intellectual disability and rarely episodic ataxia. CASE REPORT We present a patient with a dominantly inherited SCN2A mutation presenting as episodic ataxia in a boy and episodic hemiplegia in his father. We have briefly reviewed the literature of SCN2A mutations presenting with episodic ataxia. CONCLUSION Our report has expanded the phenotype for SCN2A mutations.
Collapse
Affiliation(s)
- Gouri Rao Passi
- Department of Pediatrics, Choithram Hospital & Research Centre, Indore, India.
| | - Shekeeb S Mohammad
- Discipline of Child and Adolescent Health, Children's Hospital at Westmead Clinical School, University of Sydney, Australia.
| |
Collapse
|
30
|
Chivukula AS, Suslova M, Kortzak D, Kovermann P, Fahlke C. Functional consequences of SLC1A3 mutations associated with episodic ataxia 6. Hum Mutat 2020; 41:1892-1905. [PMID: 32741053 DOI: 10.1002/humu.24089] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 11/09/2022]
Abstract
The episodic ataxias (EA) are a group of inherited neurological diseases characterized by paroxysmal cerebellar incoordination. There exist nine forms of episodic ataxia with distinct neurological symptoms and genetic origins. Episodic ataxia type 6 (EA6) differs from other EA forms in long attack duration, epilepsy and absent myokymia, nystagmus, and tinnitus. It has been described in seven families, and mutations in SLC1A3, the gene encoding the glial glutamate transporter EAAT1, were reported in each family. How these mutations affect EAAT1 expression, subcellular localization, and function, and how such alterations result in the complex neurological phenotype of EA6 is insufficiently understood. We here compare the functional consequences of all currently known mutations by heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch clamp recordings of EAAT1 transport and anion currents. We observed impairments of multiple EAAT1 properties ranging from changes in transport function, impaired trafficking to increased protein expression. Many mutations caused only slight changes illustrating how sensitively the cerebellum reacts on impaired EAAT1 functions.
Collapse
Affiliation(s)
- Aparna S Chivukula
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| | - Mariia Suslova
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Kortzak
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| | - Peter Kovermann
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
31
|
Giunti P, Mantuano E, Frontali M. Episodic Ataxias: Faux or Real? Int J Mol Sci 2020; 21:ijms21186472. [PMID: 32899446 PMCID: PMC7555854 DOI: 10.3390/ijms21186472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022] Open
Abstract
The term Episodic Ataxias (EA) was originally used for a few autosomal dominant diseases, characterized by attacks of cerebellar dysfunction of variable duration and frequency, often accompanied by other ictal and interictal signs. The original group subsequently grew to include other very rare EAs, frequently reported in single families, for some of which no responsible gene was found. The clinical spectrum of these diseases has been enormously amplified over time. In addition, episodes of ataxia have been described as phenotypic variants in the context of several different disorders. The whole group is somewhat confused, since a strong evidence linking the mutation to a given phenotype has not always been established. In this review we will collect and examine all instances of ataxia episodes reported so far, emphasizing those for which the pathophysiology and the clinical spectrum is best defined.
Collapse
Affiliation(s)
- Paola Giunti
- Laboratory of Neurogenetics, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC2N 5DU, UK
- Correspondence: (P.G.); (M.F.)
| | - Elide Mantuano
- Laboratory of Neurogenetics, Institute of Translational Pharmacology, National Research Council of Italy, 00133 Rome, Italy;
| | - Marina Frontali
- Laboratory of Neurogenetics, Institute of Translational Pharmacology, National Research Council of Italy, 00133 Rome, Italy;
- Correspondence: (P.G.); (M.F.)
| |
Collapse
|
32
|
Comprehensive Exonic Sequencing of Known Ataxia Genes in Episodic Ataxia. Biomedicines 2020; 8:biomedicines8050134. [PMID: 32466254 PMCID: PMC7277596 DOI: 10.3390/biomedicines8050134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
Episodic Ataxias (EAs) are a small group (EA1–EA8) of complex neurological conditions that manifest as incidents of poor balance and coordination. Diagnostic testing cannot always find causative variants for the phenotype, however, and this along with the recently proposed EA type 9 (EA9), suggest that more EA genes are yet to be discovered. We previously identified disease-causing mutations in the CACNA1A gene in 48% (n = 15) of 31 patients with a suspected clinical diagnosis of EA2, and referred to our laboratory for CACNA1A gene testing, leaving 52% of these cases (n = 16) with no molecular diagnosis. In this study, whole exome sequencing (WES) was performed on 16 patients who tested negative for CACNA1A mutations. Tiered analysis of WES data was performed to first explore (Tier-1) the ataxia and ataxia-associated genes (n = 170) available in the literature and databases for comprehensive EA molecular genetic testing; we then investigated 353 ion channel genes (Tier-2). Known and potential causal variants were identified in n = 8/16 (50%) patients in 8 genes (SCN2A, p.Val1325Phe; ATP1A3, p.Arg756His; PEX7, p.Tyr40Ter; and KCNA1, p.Arg167Met; CLCN1, p.Gly945ArgfsX39; CACNA1E, p.Ile614Val; SCN1B, p.Cys121Trp; and SCN9A, p.Tyr1217Ter). These results suggest that mutations in these genes might cause an ataxia phenotype or that combinations of more than one mutation contribute to ataxia disorders.
Collapse
|
33
|
Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias. Int J Mol Sci 2020; 21:ijms21103603. [PMID: 32443735 PMCID: PMC7279391 DOI: 10.3390/ijms21103603] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Paroxysmal movement disorders (PMDs) are rare neurological diseases typically manifesting with intermittent attacks of abnormal involuntary movements. Two main categories of PMDs are recognized based on the phenomenology: Paroxysmal dyskinesias (PxDs) are characterized by transient episodes hyperkinetic movement disorders, while attacks of cerebellar dysfunction are the hallmark of episodic ataxias (EAs). From an etiological point of view, both primary (genetic) and secondary (acquired) causes of PMDs are known. Recognition and diagnosis of PMDs is based on personal and familial medical history, physical examination, detailed reconstruction of ictal phenomenology, neuroimaging, and genetic analysis. Neurophysiological or laboratory tests are reserved for selected cases. Genetic knowledge of PMDs has been largely incremented by the advent of next generation sequencing (NGS) methodologies. The wide number of genes involved in the pathogenesis of PMDs reflects a high complexity of molecular bases of neurotransmission in cerebellar and basal ganglia circuits. In consideration of the broad genetic and phenotypic heterogeneity, a NGS approach by targeted panel for movement disorders, clinical or whole exome sequencing should be preferred, whenever possible, to a single gene approach, in order to increase diagnostic rate. This review is focused on clinical and genetic features of PMDs with the aim to (1) help clinicians to recognize, diagnose and treat patients with PMDs as well as to (2) provide an overview of genes and molecular mechanisms underlying these intriguing neurogenetic disorders.
Collapse
|
34
|
Identification of common genetic markers of paroxysmal neurological disorders using a network analysis approach. Neurol Sci 2020; 41:851-857. [DOI: 10.1007/s10072-019-04113-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/15/2019] [Indexed: 01/11/2023]
|
35
|
Reynolds C, King MD, Gorman KM. The phenotypic spectrum of SCN2A-related epilepsy. Eur J Paediatr Neurol 2020; 24:117-122. [PMID: 31924505 DOI: 10.1016/j.ejpn.2019.12.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
Abstract
Pathogenic variants in SCN2A are reported in a spectrum of neurodevelopmental disorders including developmental and epileptic encephalopathies, benign familial neonatal-infantile seizures, episodic ataxia, and autism spectrum disorder and intellectual disability with and without seizures. To date, more than 300 patients with SCN2A variants have been published, the majority presenting with epilepsy. Large cohort studies and variant-specific electrophysiology, have enabled the delineation of different SCN2A-epilepsy phenotypes, phenotype-genotype correlations, prediction of pharmacosensitivity to sodium channel blockers and long-term prognostication for clinicians and families. Herein, we summarise the core phenotypes of SCN2A-related epilepsy, genotype-phenotype correlations, response to medication and future research.
Collapse
Affiliation(s)
- Claire Reynolds
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland
| | - Mary D King
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland; School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Kathleen M Gorman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland; School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
36
|
Bartolini E, Campostrini R, Kiferle L, Pradella S, Rosati E, Chinthapalli K, Palumbo P. Epilepsy and brain channelopathies from infancy to adulthood. Neurol Sci 2019; 41:749-761. [PMID: 31838630 DOI: 10.1007/s10072-019-04190-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023]
Abstract
Genetic brain channelopathies result from inherited or de novo mutations of genes encoding ion channel subunits within the central nervous system. Most neurological channelopathies arise in childhood with paroxysmal or episodic symptoms, likely because of a transient impairment of homeostatic mechanisms regulating membrane excitability, and the prototypical expression of this impairment is epilepsy. Migraine, episodic ataxia and alternating hemiplegia can also occur, as well as chronic phenotypes, such as spinocerebellar ataxias, intellectual disability and autism spectrum disorder. Voltage-gated and ligand-gated channels may be involved. In most cases, a single gene may be associated with a phenotypical spectrum that shows variable expressivity. Different clinical features may arise at different ages and the adult phenotype may be remarkably modified from the syndrome onset in childhood or adolescence. Recognizing the prominent phenotypical traits of brain channelopathies is essential to perform appropriate diagnostic investigations and to provide the better care not only in the paediatric setting but also for adult patients and their caregivers. Herein, we provide an overview of genetic brain channelopathies associated with epilepsy, highlight the different molecular mechanisms and describe the different clinical characteristics which may prompt the clinician to suspect specific syndromes and to possibly establish tailored treatments.
Collapse
Affiliation(s)
- Emanuele Bartolini
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy.
| | - Roberto Campostrini
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Lorenzo Kiferle
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Silvia Pradella
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Eleonora Rosati
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | | | - Pasquale Palumbo
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| |
Collapse
|