1
|
Dell'Isola GB, Perinelli MG, Frulli A, D'Onofrio G, Fattorusso A, Siciliano M, Ferrara P, Striano P, Verrotti A. Exploring neurodevelopment in CDKL5 deficiency disorder: Current insights and future directions. Epilepsy Behav 2025; 171:110504. [PMID: 40414190 DOI: 10.1016/j.yebeh.2025.110504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 05/20/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
CDKL5 Deficiency Disorder (CDD) is a rare and severe neurodevelopmental condition marked by profound developmental delays, early-onset epilepsy, and significant impairments in motor and communication skills. The outcomes in CDD are shaped by various factors, including early-onset epilepsy and environmental influences. Genotype-phenotype correlations reveal that specific CDKL5 mutations impact developmental milestones, although considerable variability persists. Recent advancements have introduced novel antiseizure medications and emerging treatments such as gene therapy and targeted molecular interventions. Despite these promising developments, managing CDD effectively requires a comprehensive approach that integrates pharmacological treatments with neuro-rehabilitation strategies. Research has progressed in developing validated tools for assessing motor and language abilities in CDD, but monitoring neurodevelopment remains challenging due to the absence of longitudinal studies and standardized measures. This study delves into the developmental delays associated with CDD, providing an in-depth analysis of its clinical characteristics, pathogenetic mechanisms, and genetic background. It aims to uncover the pathways disrupted by CDKL5 mutations and their effects on neuronal development and function. Additionally, the study reviews potential therapeutic strategies to mitigate CDD's impact, offering a comprehensive overview of interventions to enhance patient outcomes.
Collapse
Affiliation(s)
- Giovanni Battista Dell'Isola
- Saint Camillus International University of Health Sciences, Rome, Italy; Department of Developmental Disabilities, IRCCS San Raffaele Roma, Rome, Italy.
| | - Martina Giorgia Perinelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
| | - Alessia Frulli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
| | - Gianluca D'Onofrio
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
| | | | - Margherita Siciliano
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Pietro Ferrara
- Unit of Pediatrics, Campus Bio-Medico University, Rome, Italy.
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Giannina Gaslini Institute, Scientific Institute for Research and Health Care, Genoa, Italy.
| | | |
Collapse
|
2
|
Feng X, Zhu ZA, Wang HT, Zhou HW, Liu JW, Shen Y, Zhang YX, Xiong ZQ. A Novel Mouse Model Unveils Protein Deficiency in Truncated CDKL5 Mutations. Neurosci Bull 2025; 41:805-820. [PMID: 40042769 PMCID: PMC12014890 DOI: 10.1007/s12264-024-01346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/25/2024] [Indexed: 04/23/2025] Open
Abstract
Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) cause a severe neurodevelopmental disorder, yet the impact of truncating mutations remains unclear. Here, we introduce the Cdkl5492stop mouse model, mimicking C-terminal truncating mutations in patients. 492stop/Y mice exhibit altered dendritic spine morphology and spontaneous seizure-like behaviors, alongside other behavioral deficits. After creating cell lines with various Cdkl5 truncating mutations, we found that these mutations are regulated by the nonsense-mediated RNA decay pathway. Most truncating mutations result in CDKL5 protein loss, leading to multiple disease phenotypes, and offering new insights into the pathogenesis of CDKL5 disorder.
Collapse
Affiliation(s)
- Xue Feng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Ai Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Tao Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hui-Wen Zhou
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Wei Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ya Shen
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu-Xian Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Saldaris JM, Jacoby P, Downs J, Marsh ED, Leonard H, Pestana-Knight E, Rajaraman R, Weisenberg J, Suter B, Olson HE, Price D, Hong W, Prange E, Benke TA, Demarest S. Psychometric evaluation of clinician- and caregiver-reported clinical severity assessments for individuals with CDKL5 deficiency disorder. Epilepsia 2024; 65:3064-3075. [PMID: 39190322 PMCID: PMC11495992 DOI: 10.1111/epi.18094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVE The CDKL5 Clinical Severity Assessment (CCSA) is a comprehensive, content-validated measurement tool capturing the diverse challenges of cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD), a genetically caused developmental epileptic encephalopathy (DEE). The CCSA is divided into clinician-reported (CCSA-Clinician) and caregiver-reported (CCSA-Caregiver) assessments. The aim of this study was to evaluate the factor structure of these measures through confirmatory factor analysis (CFA) and evaluate their validity and reliability. METHODS Participants were recruited from the International CDKL5 Clinical Research Network to take part in an in-clinic CCSA-Clinician evaluation (n = 148) and/or complete the CCSA-Caregiver questionnaire (n = 198). CFA was used to determine domains, and factor loadings and validity were assessed. For the CCSA-Clinician, inter-rater reliability was assessed by nine CDD experienced clinicians via 14 pre-recorded evaluations. Eight clinicians re-viewed and re-scored the videos after 4 weeks to evaluate intra-rater reliability. The CCSA-Caregiver was completed on a second occasion by 34 caregivers after 2-4 weeks to assess test-retest reliability. RESULTS CFA resulted in three domains for the CCSA-Clinician (motor and movement, communication, vision) and four domains for the CCSA-Caregiver (seizures, behavior, alertness, feeding), with good item loadings across both measures. Structural statistics, internal consistency, discriminant validity, and reliability were satisfactory for both measures, and scores were consistent between known groups. SIGNIFICANCE This study provides strong evidence that the CCSA measures are suitable to assess the clinical severity of individuals with CDD, supporting their use in clinical trials. Further evaluation of responsiveness to change in a longitudinal assessment is planned. Use may also be appropriate in similar DEEs but would require validation in those populations.
Collapse
Affiliation(s)
- Jacinta M Saldaris
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Peter Jacoby
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Jenny Downs
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia
- Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
| | - Eric D Marsh
- Departments of Neurology and Pediatrics, Division of Child Neurology and University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Helen Leonard
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia
| | | | | | - Judith Weisenberg
- St. Louis Children's Hospital and Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bernhard Suter
- Department of Pediatrics & Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Heather E Olson
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Dana Price
- NYU Langone Health and Department of Neurology, New York University, New York City, New York, USA
| | - William Hong
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Erin Prange
- Departments of Neurology and Pediatrics, Division of Child Neurology and University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tim A Benke
- Departments of Pediatrics, Neurology and Pharmacology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Scott Demarest
- Departments of Pediatrics and Neurology, Precision Medicine Institute, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
4
|
Lombardo A, Sinibaldi L, Genovese S, Catino G, Mei V, Pompili D, Sallicandro E, Falasca R, Liambo MT, Faggiano MV, Roberti MC, Di Donato M, Vitelli A, Russo S, Giannini R, Micalizzi A, Pietrafusa N, Digilio MC, Novelli A, Fusco L, Alesi V. A Case of CDKL5 Deficiency Due to an X Chromosome Pericentric Inversion: Delineation of Structural Rearrangements as an Overlooked Recurrent Pathological Mechanism. Int J Mol Sci 2024; 25:6912. [PMID: 39000022 PMCID: PMC11241409 DOI: 10.3390/ijms25136912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024] Open
Abstract
CDKL5 deficiency disorder (CDD) is an X-linked dominant epileptic encephalopathy, characterized by early-onset and drug-resistant seizures, psychomotor delay, and slight facial features. Genomic variants inactivating CDKL5 or impairing its protein product kinase activity have been reported, making next-generation sequencing (NGS) and chromosomal microarray analysis (CMA) the standard diagnostic tests. We report a suspicious case of CDD in a female child who tested negative upon NGS and CMA and harbored an X chromosome de novo pericentric inversion. The use of recently developed genomic techniques (optical genome mapping and whole-genome sequencing) allowed us to finely characterize the breakpoints, with one of them interrupting CDKL5 at intron 1. This is the fifth case of CDD reported in the scientific literature harboring a structural rearrangement on the X chromosome, providing evidence for the hypothesis that this type of anomaly can represent a recurrent pathogenic mechanism, whose frequency is likely underestimated, with it being overlooked by standard techniques. The identification of the molecular etiology of the disorder is extremely important in evaluating the pathological outcome and to better investigate the mechanisms associated with drug resistance, paving the way for the development of specific therapies. Karyotype and genomic techniques should be considered in all cases presenting with CDD without molecular confirmation.
Collapse
Affiliation(s)
- Antonietta Lombardo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Lorenzo Sinibaldi
- Medical Genetics Unit, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy
| | - Silvia Genovese
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Giorgia Catino
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Valerio Mei
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Daniele Pompili
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Ester Sallicandro
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Roberto Falasca
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Maria Teresa Liambo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Maria Vittoria Faggiano
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Maria Cristina Roberti
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Maddalena Di Donato
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Anna Vitelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Serena Russo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Rosalinda Giannini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Alessia Micalizzi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Medical Genetics Unit, San Pietro Fatebenefratelli Hospital, 00189 Rome, Italy
| | - Nicola Pietrafusa
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù, IRCCS Children’s Hospital, 00165 Rome, Italy
| | | | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Lucia Fusco
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù, IRCCS Children’s Hospital, 00165 Rome, Italy
| | - Viola Alesi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
5
|
Simões de Oliveira L, O'Leary HE, Nawaz S, Loureiro R, Davenport EC, Baxter P, Louros SR, Dando O, Perkins E, Peltier J, Trost M, Osterweil EK, Hardingham GE, Cousin MA, Chattarji S, Booker SA, Benke TA, Wyllie DJA, Kind PC. Enhanced hippocampal LTP but normal NMDA receptor and AMPA receptor function in a rat model of CDKL5 deficiency disorder. Mol Autism 2024; 15:28. [PMID: 38877552 PMCID: PMC11177379 DOI: 10.1186/s13229-024-00601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause a severe neurological disorder characterised by early-onset epileptic seizures, autism and intellectual disability (ID). Impaired hippocampal function has been implicated in other models of monogenic forms of autism spectrum disorders and ID and is often linked to epilepsy and behavioural abnormalities. Many individuals with CDKL5 deficiency disorder (CDD) have null mutations and complete loss of CDKL5 protein, therefore in the current study we used a Cdkl5-/y rat model to elucidate the impact of CDKL5 loss on cellular excitability and synaptic function of CA1 pyramidal cells (PCs). We hypothesised abnormal pre and/or post synaptic function and plasticity would be observed in the hippocampus of Cdkl5-/y rats. METHODS To allow cross-species comparisons of phenotypes associated with the loss of CDKL5, we generated a loss of function mutation in exon 8 of the rat Cdkl5 gene and assessed the impact of the loss of CDLK5 using a combination of extracellular and whole-cell electrophysiological recordings, biochemistry, and histology. RESULTS Our results indicate that CA1 hippocampal long-term potentiation (LTP) is enhanced in slices prepared from juvenile, but not adult, Cdkl5-/y rats. Enhanced LTP does not result from changes in NMDA receptor function or subunit expression as these remain unaltered throughout development. Furthermore, Ca2+ permeable AMPA receptor mediated currents are unchanged in Cdkl5-/y rats. We observe reduced mEPSC frequency accompanied by increased spine density in basal dendrites of CA1 PCs, however we find no evidence supporting an increase in silent synapses when assessed using a minimal stimulation protocol in slices. Additionally, we found no change in paired-pulse ratio, consistent with normal release probability at Schaffer collateral to CA1 PC synapses. CONCLUSIONS Our data indicate a role for CDKL5 in hippocampal synaptic function and raise the possibility that altered intracellular signalling rather than synaptic deficits contribute to the altered plasticity. LIMITATIONS This study has focussed on the electrophysiological and anatomical properties of hippocampal CA1 PCs across early postnatal development. Studies involving other brain regions, older animals and behavioural phenotypes associated with the loss of CDKL5 are needed to understand the pathophysiology of CDD.
Collapse
MESH Headings
- Animals
- Male
- Rats
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/pathology
- CA1 Region, Hippocampal/physiopathology
- Disease Models, Animal
- Epileptic Syndromes/genetics
- Epileptic Syndromes/metabolism
- Excitatory Postsynaptic Potentials
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Genetic Diseases, X-Linked/physiopathology
- Hippocampus/metabolism
- Long-Term Potentiation
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Pyramidal Cells/metabolism
- Pyramidal Cells/pathology
- Receptors, AMPA/metabolism
- Receptors, AMPA/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/genetics
- Spasms, Infantile/genetics
- Spasms, Infantile/metabolism
- Synapses/metabolism
Collapse
Affiliation(s)
- Laura Simões de Oliveira
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Heather E O'Leary
- School of Medicine, University of Colorado, Denver, CO, USA
- Department of Pharmacology, University of Colorado Denver, 12800 East 19th Ave, Aurora, CO, 80045, USA
| | - Sarfaraz Nawaz
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, 560065, India
- Centre for Brain Development and Repair, Instem, Bangalore, India
| | - Rita Loureiro
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | | | - Paul Baxter
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Owen Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Emma Perkins
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Julien Peltier
- Faculty of Medical Sciences, Newcastle University Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK
| | - Matthias Trost
- Faculty of Medical Sciences, Newcastle University Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK
| | - Emily K Osterweil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
- Centre for Brain Development and Repair, Instem, Bangalore, India
| | - Sumantra Chattarji
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, 560065, India
- Centre for Brain Development and Repair, Instem, Bangalore, India
| | - Sam A Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Tim A Benke
- School of Medicine, University of Colorado, Denver, CO, USA.
- Department of Pharmacology, University of Colorado Denver, 12800 East 19th Ave, Aurora, CO, 80045, USA.
| | - David J A Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.
- Centre for Brain Development and Repair, Instem, Bangalore, India.
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh, EH8 9XD, UK.
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.
- Centre for Brain Development and Repair, Instem, Bangalore, India.
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
6
|
Charfi Triki C, Zouari Mallouli S, Ben Jdila M, Ben Said M, Kamoun Feki F, Weckhuysen S, Masmoudi S, Fakhfakh F. First report of Tunisian patients with CDKL5-related encephalopathy. Epilepsia Open 2024; 9:906-917. [PMID: 37701975 PMCID: PMC11145601 DOI: 10.1002/epi4.12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023] Open
Abstract
OBJECTIVE Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) are associated with a wide spectrum of clinical presentations. Early-onset epileptic encephalopathy (EOEE) is the most recognized phenotype. Here we describe phenotypic features in eight Tunisian patients with CDKL5-related encephalopathy. METHODS We included all cases with clinical features consistent with CDKL5-related encephalopathy: infantile epileptic spasm, acquired microcephaly, movement disorders and visual impairment. We collected data about seizure types, electroencephalogram, magnetic resonance imaging, and metabolic analysis. The diagnosis of CDKL5 mutation was made thanks to Sanger sequencing with an ABI PRISM 3100-Avant automated DNA sequencer using a Big Dye Terminator Cycle Sequencing Reaction Kit v1.1. and Next Generation Sequencing (NGS) since the development of a gene panel responsible for DEE within the framework of "Strengthening the Sfax University Expertise for diagnosis and management of epileptic encephalopathies". RESULTS We collected four boys and four girls aged meanly 6 years old with confirmed mutation on CDKL5 gene. Overall, we identified five de novo CDKL5 mutations including three Frame-shift mutations, one missense mutation, and a splicing variant. The mean age at first seizure onset was 4 months. The first seizure type was infantile epileptic spasm (4/8) followed by tonic (2/8) and myoclonic seizures (2/8). Out of eight cases, four exhibited two stages epileptic course while epilepsy in three other patients progressed on three stages. Regarding development, most cases (6/8) had psychomotor retardation from the start whilst the two others showed psychomotor regression with the onset of seizures. Additional clinical features included visual impairment (7/8), tone abnormalities (7/8), stereotypies (7/8), and acquired microcephaly (6/8). SIGNIFICANCE Our present report delineates an unusual phenotype of CDKL5-related encephalopathy with male gender predominance and delayed onset epilepsy. It interestingly described new phenotypic features and uncommon benign developmental profiles in boys, different patterns of CDKL5-epilepsy, neuroimaging findings, and CDKL5 mutational spectrum.
Collapse
Affiliation(s)
- Chahnez Charfi Triki
- Child Neurology Department, Hedi Chaker Sfax University Hospital, and Research Laboratory LR19ES15University of SfaxSfaxTunisia
| | - Salma Zouari Mallouli
- Child Neurology Department, Hedi Chaker Sfax University Hospital, and Research Laboratory LR19ES15University of SfaxSfaxTunisia
| | - Marwa Ben Jdila
- Laboratory of Molecular and Functional Genetics, Faculty of Science of SfaxUniversity of SfaxSfaxTunisia
| | - Mariem Ben Said
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Fatma Kamoun Feki
- Child Neurology Department, Hedi Chaker Sfax University Hospital, and Research Laboratory LR19ES15University of SfaxSfaxTunisia
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIBUniversity of AntwerpAntwerpBelgium
- Department of NeurologyAntwerp University HospitalAntwerpBelgium
- Translational Neurosciences, Faculty of Medicine and Health ScienceUniversity of AntwerpAntwerpBelgium
| | - Sabeur Masmoudi
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Science of SfaxUniversity of SfaxSfaxTunisia
| |
Collapse
|
7
|
Olson HE, Amin S, Bahi-Buisson N, Devinsky O, Marsh ED, Pestana-Knight E, Rajaraman RR, Aimetti AA, Rybak E, Kong F, Miller I, Hulihan J, Demarest S. Long-term treatment with ganaxolone for seizures associated with cyclin-dependent kinase-like 5 deficiency disorder: Two-year open-label extension follow-up. Epilepsia 2024; 65:37-45. [PMID: 37950390 DOI: 10.1111/epi.17826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE In the placebo-controlled, double-blind phase of the Marigold study (NCT03572933), ganaxolone significantly reduced major motor seizure frequency (MMSF) in patients with cyclin-dependent kinase-like 5 deficiency disorder (CDD). We report 2-year safety and clinical outcomes data from the open-label extension (OLE) phase of Marigold. METHODS Patients with CDD who completed the double-blind phase were eligible to continue in the OLE. Efficacy assessments included MMSF reduction from prerandomization baseline, responder rates, and Clinical Global Impression-Improvement scores, including assessment of seizure intensity and duration (CGI-CSID). Safety assessments included treatment-emergent adverse events (TEAEs) and TEAEs leading to discontinuation. RESULTS Of 101 patients who enrolled in Marigold, 88 (87.1%) entered the OLE (median age = 5 years, 79.5% female). Median 28-day MMSF at baseline was 50.6. At 2 years in the OLE (months 22-24), MMSF was reduced by a median of 48.2% (n = 50); when missing data were imputed, median reduction in MMSF was 43.8% using a mixed effects model and 27.4% using a last observation carried forward model. During months 22-24, 23 of 50 (46.0%) patients experienced reductions in MMSF of ≥50%; 12 of 50 (24.0%) patients experienced MMSF reductions of ≥75%. During months 22-24, 40 of 49 (81.6%) patients were rated by caregivers as having improvement in seizure-related outcomes based on CGI-CSID scores. Thirty-seven patients discontinued ganaxolone due to lack of efficacy (n = 13), withdrawal by caregiver (n = 12), adverse event (n = 10), physician decision (n = 1), or death (n = 1; unrelated to study drug). The most common treatment-related TEAEs were somnolence (17.0%), seizure (11.4%), and decreased appetite (5.7%). Patients reported serious TEAEs (n = 28, 31.8%); those reported in ≥3% of patients were seizure (n = 6), pneumonia (n = 5), acute respiratory failure (n = 3), aspiration pneumonia (n = 3), and dehydration (n = 3). SIGNIFICANCE Sustained reductions in MMSF at 2 years in the OLE support the efficacy of ganaxolone in seizures associated with CDD. Safety findings in the OLE were consistent with the double-blind phase.
Collapse
Affiliation(s)
- Heather E Olson
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sam Amin
- University Hospitals Bristol and Weston, Bristol, UK
| | - Nadia Bahi-Buisson
- Pediatric Neurology, Necker Enfants Malades University Hospital, Paris, France
| | - Orrin Devinsky
- New York University Langone Comprehensive Epilepsy Center, New York, New York, USA
| | - Eric D Marsh
- Departments of Neurology and Pediatrics, University of Pennsylvania Perelman School of Medicine and Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | - Alex A Aimetti
- Marinus Pharmaceuticals, Inc., Radnor, Pennsylvania, USA
| | - Eva Rybak
- Marinus Pharmaceuticals, Inc., Radnor, Pennsylvania, USA
| | - Fanhui Kong
- Marinus Pharmaceuticals, Inc., Radnor, Pennsylvania, USA
| | - Ian Miller
- Marinus Pharmaceuticals, Inc., Radnor, Pennsylvania, USA
| | - Joseph Hulihan
- Marinus Pharmaceuticals, Inc., Radnor, Pennsylvania, USA
| | - Scott Demarest
- Department of Pediatrics and Neurology, University of Colorado School of Medicine, Precision Medicine Institute, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
8
|
Sampedro-Castañeda M, Baltussen LL, Lopes AT, Qiu Y, Sirvio L, Mihaylov SR, Claxton S, Richardson JC, Lignani G, Ultanir SK. Epilepsy-linked kinase CDKL5 phosphorylates voltage-gated calcium channel Cav2.3, altering inactivation kinetics and neuronal excitability. Nat Commun 2023; 14:7830. [PMID: 38081835 PMCID: PMC10713615 DOI: 10.1038/s41467-023-43475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of rare childhood disorders characterized by severe epilepsy and cognitive deficits. Numerous DEE genes have been discovered thanks to advances in genomic diagnosis, yet putative molecular links between these disorders are unknown. CDKL5 deficiency disorder (CDD, DEE2), one of the most common genetic epilepsies, is caused by loss-of-function mutations in the brain-enriched kinase CDKL5. To elucidate CDKL5 function, we looked for CDKL5 substrates using a SILAC-based phosphoproteomic screen. We identified the voltage-gated Ca2+ channel Cav2.3 (encoded by CACNA1E) as a physiological target of CDKL5 in mice and humans. Recombinant channel electrophysiology and interdisciplinary characterization of Cav2.3 phosphomutant mice revealed that loss of Cav2.3 phosphorylation leads to channel gain-of-function via slower inactivation and enhanced cholinergic stimulation, resulting in increased neuronal excitability. Our results thus show that CDD is partly a channelopathy. The properties of unphosphorylated Cav2.3 closely resemble those described for CACNA1E gain-of-function mutations causing DEE69, a disorder sharing clinical features with CDD. We show that these two single-gene diseases are mechanistically related and could be ameliorated with Cav2.3 inhibitors.
Collapse
Affiliation(s)
| | - Lucas L Baltussen
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Laboratory for the Research of Neurodegenerative Diseases (VIB-KU Leuven), Department of Neurosciences, ON5 Herestraat 49, 3000, Leuven, Belgium
| | - André T Lopes
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Yichen Qiu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK
| | - Liina Sirvio
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Suzanne Claxton
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jill C Richardson
- Neuroscience, MSD Research Laboratories, 120 Moorgate, London, EC2M 6UR, UK
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK
| | - Sila K Ultanir
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
9
|
You Y, Men X, Wu W, Liu S, He X, Sun S, Wang X, Li B. Clinical and functional study of two de novo variations of CDKL5 gene. Neurogenetics 2023; 24:263-271. [PMID: 37584787 DOI: 10.1007/s10048-023-00731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
The cyclin-dependent kinase like 5 (CDKL5) gene variation is X-linked dominant and is associated with type 2 developmental and epileptic encephalopathy (DEE). Although numerous cases of CDKL5 have been reported, there is limited discussion regarding functional verification. We described two children with DEE caused by de novo variations of CDKL5 gene, analyzed their clinical manifestations, and performed genetic testing on their gene variation sites. The two cases presented with tonic seizures followed by epileptic spasms, indicative of refractory epilepsy. Physical examination revealed abnormal facial features, including wide eye distance, low nose base, and high nose bridge. Both cases exhibited developmental disabilities. Cranial magnetic resonance imaging (MRI) showed widening of the bilateral frontotemporal extracerebral space. Genetic testing identified variations at the gene sites c.463 + 4A > G (splicing) and c.1854_1861delCAAAGTGA (p.D618Efs*18). Minigene experiments further confirmed that the intronic variation c.463 + 4A > G (splicing) disrupted splicing, leading to protein truncation. CDKL5 gene variation can lead to DEE, and intron variation site c.463 + 4A > G (splicing) can cause protein truncation, which is a pathogenic variation.
Collapse
Affiliation(s)
- Yang You
- Department of Imaging, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xinyi Men
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Wenjuan Wu
- Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital Affiliated to Hebei Medical University, 133 Jianhua Nan Street, Shijiazhuang, 050031, Hebei, China
| | - Shan Liu
- Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital Affiliated to Hebei Medical University, 133 Jianhua Nan Street, Shijiazhuang, 050031, Hebei, China
| | - Xuexin He
- Department of Rehabilitation, Shijiazhuang Hospital of Traditional Chinese Medicine, 233 Zhongshan Road, Shijiazhuang, Hebei, 050000, China
| | - Suzhen Sun
- Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital Affiliated to Hebei Medical University, 133 Jianhua Nan Street, Shijiazhuang, 050031, Hebei, China
| | - Xiuxia Wang
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| | - Baoguang Li
- Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital Affiliated to Hebei Medical University, 133 Jianhua Nan Street, Shijiazhuang, 050031, Hebei, China.
| |
Collapse
|
10
|
Olson HE, Demarest S, Pestana-Knight E, Moosa AN, Zhang X, Pérez-Pérez JR, Weisenberg J, O'Connor Prange E, Marsh ED, Rajaraman RR, Suter B, Katyayan A, Haviland I, Daniels C, Zhang B, Greene C, DeLeo M, Swanson L, Love-Nichols J, Benke T, Harini C, Poduri A. Epileptic spasms in CDKL5 deficiency disorder: Delayed treatment and poor response to first-line therapies. Epilepsia 2023; 64:1821-1832. [PMID: 37114835 PMCID: PMC10524264 DOI: 10.1111/epi.17630] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVE We aimed to assess the treatment response of infantile-onset epileptic spasms (ES) in CDKL5 deficiency disorder (CDD) vs other etiologies. METHODS We evaluated patients with ES from the CDKL5 Centers of Excellence and the National Infantile Spasms Consortium (NISC), with onset from 2 months to 2 years, treated with adrenocorticotropic hormone (ACTH), oral corticosteroids, vigabatrin, and/or the ketogenic diet. We excluded children with tuberous sclerosis complex, trisomy 21, or unknown etiology with normal development because of known differential treatment responses. We compared the two cohorts for time to treatment and ES remission at 14 days and 3 months. RESULTS We evaluated 59 individuals with CDD (79% female, median ES onset 6 months) and 232 individuals from the NISC database (46% female, median onset 7 months). In the CDD cohort, seizures prior to ES were common (88%), and hypsarrhythmia and its variants were present at ES onset in 34%. Initial treatment with ACTH, oral corticosteroids, or vigabatrin started within 1 month of ES onset in 27 of 59 (46%) of the CDD cohort and 182 of 232 (78%) of the NISC cohort (p < .0001). Fourteen-day clinical remission of ES was lower for the CDD group (26%, 7/27) than for the NISC cohort (58%, 106/182, p = .0002). Sustained ES remission at 3 months occurred in 1 of 27 (4%) of CDD patients vs 96 of 182 (53%) of the NISC cohort (p < .0001). Comparable results were observed with longer lead time (≥1 month) or prior treatment. Ketogenic diet, used within 3 months of ES onset, resulted in ES remission at 1 month, sustained at 3 months, in at least 2 of 13 (15%) individuals with CDD. SIGNIFICANCE Compared to the broad group of infants with ES, children with ES in the setting of CDD often experience longer lead time to treatment and respond poorly to standard treatments. Development of alternative treatments for ES in CDD is needed.
Collapse
Affiliation(s)
- Heather E Olson
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Scott Demarest
- Department of Pediatrics, School of Medicine, Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| | - Elia Pestana-Knight
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ahsan N Moosa
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xiaoming Zhang
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - José R Pérez-Pérez
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Judy Weisenberg
- Department of Pediatric Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Erin O'Connor Prange
- Division of Child Neurology, Children's Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eric D Marsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rajsekar R Rajaraman
- Division of Pediatric Neurology, David Geffen School of Medicine and UCLA Mattel Children's Hospital, Los Angeles, California, USA
| | - Bernhard Suter
- Department of Pediatrics and Neurology, Baylor College of Medicine, Texas Children's Hospital, Houston, Houston, Texas, USA
| | - Akshat Katyayan
- Department of Pediatrics and Neurology, Baylor College of Medicine, Texas Children's Hospital, Houston, Houston, Texas, USA
| | - Isabel Haviland
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolyn Daniels
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caitlin Greene
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Michelle DeLeo
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lindsay Swanson
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jamie Love-Nichols
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Timothy Benke
- Department of Pediatrics, School of Medicine, Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| | - Chellamani Harini
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Annapurna Poduri
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Aznar-Laín G, Fernández-Mayoralas DM, Caicoya AG, Rocamora R, Pérez-Jurado LA. CDKL5 Deficiency Disorder Without Epilepsy. Pediatr Neurol 2023; 144:84-89. [PMID: 37201242 DOI: 10.1016/j.pediatrneurol.2023.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/14/2023] [Accepted: 04/19/2023] [Indexed: 05/20/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) has epilepsy as a cardinal feature. Here we report two new female patients and review six previously published patients, one male and five females, with features of CDD but who never developed epilepsy. In contrast with the classical and severe CDD phenotype, they presented with milder gross motor delays, autism spectrum disorder, and no visual cortical impairment. Prolonged video electroencephalography was normal in adult cases but showed interictal frontal-temporal bilateral spikes and sharp waves in sleep in the three-year-old girl. Causative CDKL5 variants included two likely gene damaging (nonsense and frameshift) and six missense variants, being de novo or maternally inherited from asymptomatic females with skewed X-chromosome inactivation (two missense variants). Our data indicate that a milder form of CDD without epilepsy can occur in some cases without clear correlation with specific variants in the CDKL5 gene.
Collapse
Affiliation(s)
- Gemma Aznar-Laín
- Paediatric Neurology, Hospital del Mar, Barcelona, Spain; Program in Neurosciences, Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | | | - Anne G Caicoya
- Epilepsy Monitoring Unit, Quironsalud Hospital, Madrid, Spain
| | - Rodrigo Rocamora
- Program in Neurosciences, Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Epilepsy Monitoring Unit, Department of Neurology, Hospital del Mar, Barcelona, Spain
| | - Luis A Pérez-Jurado
- Program in Neurosciences, Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Genetics Service, Hospital del Mar, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| |
Collapse
|
12
|
Truty R, Rojahn S, Ouyang K, Kautzer C, Kennemer M, Pineda-Alvarez D, Johnson B, Stafford A, Basel-Salmon L, Saitta S, Slavotinek A, Chandrasekharappa SC, Suarez CJ, Burnett L, Nussbaum RL, Aradhya S. Patterns of mosaicism for sequence and copy-number variants discovered through clinical deep sequencing of disease-related genes in one million individuals. Am J Hum Genet 2023; 110:551-564. [PMID: 36933558 PMCID: PMC10119133 DOI: 10.1016/j.ajhg.2023.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
DNA variants that arise after conception can show mosaicism, varying in presence and extent among tissues. Mosaic variants have been reported in Mendelian diseases, but further investigation is necessary to broadly understand their incidence, transmission, and clinical impact. A mosaic pathogenic variant in a disease-related gene may cause an atypical phenotype in terms of severity, clinical features, or timing of disease onset. Using high-depth sequencing, we studied results from one million unrelated individuals referred for genetic testing for almost 1,900 disease-related genes. We observed 5,939 mosaic sequence or intragenic copy number variants distributed across 509 genes in nearly 5,700 individuals, constituting approximately 2% of molecular diagnoses in the cohort. Cancer-related genes had the most mosaic variants and showed age-specific enrichment, in part reflecting clonal hematopoiesis in older individuals. We also observed many mosaic variants in genes related to early-onset conditions. Additional mosaic variants were observed in genes analyzed for reproductive carrier screening or associated with dominant disorders with low penetrance, posing challenges for interpreting their clinical significance. When we controlled for the potential involvement of clonal hematopoiesis, most mosaic variants were enriched in younger individuals and were present at higher levels than in older individuals. Furthermore, individuals with mosaicism showed later disease onset or milder phenotypes than individuals with non-mosaic variants in the same genes. Collectively, the large compendium of variants, disease correlations, and age-specific results identified in this study expand our understanding of the implications of mosaic DNA variation for diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Rebecca Truty
- Invitae, 1400 16th Street, San Francisco, CA 94103, USA
| | - Susan Rojahn
- Invitae, 1400 16th Street, San Francisco, CA 94103, USA
| | - Karen Ouyang
- Invitae, 1400 16th Street, San Francisco, CA 94103, USA
| | | | | | | | - Britt Johnson
- Invitae, 1400 16th Street, San Francisco, CA 94103, USA
| | | | - Lina Basel-Salmon
- Rabin Medical Center-Beilinson Hospital and Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Sulagna Saitta
- Division of Clinical Genetics, Departments of Pediatrics and Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Anne Slavotinek
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Settara C Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carlos Jose Suarez
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94301, USA
| | | | - Robert L Nussbaum
- Invitae, 1400 16th Street, San Francisco, CA 94103, USA; School of Medicine, University of California - San Francisco, San Francisco, CA, USA
| | - Swaroop Aradhya
- Invitae, 1400 16th Street, San Francisco, CA 94103, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94301, USA.
| |
Collapse
|
13
|
Keehan L, Haviland I, Gofin Y, Swanson LC, El Achkar CM, Schreiber J, VanNoy GE, O’Heir E, O’Donnell-Luria A, Lewis RA, Magoulas P, Tran A, Azamian MS, Chao HT, Pham L, Samaco RC, Elsea S, Thorpe E, Kesari A, Perry D, Undiagnosed Diseases Network, Lee B, Lalani SR, Rosenfeld JA, Olson HE, Burrage LC. Wide range of phenotypic severity in individuals with late truncations unique to the predominant CDKL5 transcript in the brain. Am J Med Genet A 2022; 188:3516-3524. [PMID: 35934918 PMCID: PMC9669137 DOI: 10.1002/ajmg.a.62940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/10/2022] [Accepted: 06/19/2022] [Indexed: 01/31/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is caused by heterozygous or hemizygous variants in CDKL5 and is characterized by refractory epilepsy, cognitive and motor impairments, and cerebral visual impairment. CDKL5 has multiple transcripts, of which the longest transcripts, NM_003159 and NM_001037343, have been used historically in clinical laboratory testing. However, the transcript NM_001323289 is the most highly expressed in brain and contains 170 nucleotides at the 3' end of its last exon that are noncoding in other transcripts. Two truncating variants in this region have been reported in association with a CDD phenotype. To clarify the significance and range of phenotypes associated with late truncating variants in this region of the predominant transcript in the brain, we report detailed information on two individuals, updated clinical information on a third individual, and a summary of published and unpublished individuals reported in ClinVar. The two new individuals (one male and one female) each had a relatively mild clinical presentation including periods of pharmaco-responsive epilepsy, independent walking and limited purposeful communication skills. A previously reported male continued to have a severe phenotype. Overall, variants in this region demonstrate a range of clinical severity consistent with reports in CDD but with the potential for milder presentation.
Collapse
Affiliation(s)
- Laura Keehan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Isabel Haviland
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Yoel Gofin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Lindsay C. Swanson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Christelle Moufawad El Achkar
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - John Schreiber
- Division of Epilepsy, Neurophysiology, and Critical Care Neurology, 8404 Children's National Hospital, Washington, DC, USA
| | - Grace E. VanNoy
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emily O’Heir
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne O’Donnell-Luria
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard A. Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Pilar Magoulas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Alyssa Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mahshid S. Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Departments of Neuroscience and Pediatrics, Division of Neurology and Developmental Neuroscience, BCM, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- McNair Medical Institute at the Robert and Janice McNair Foundation, Houston, TX, USA
| | - Lisa Pham
- The Meyer Center for Developmental Pediatrics, Texas Children’s Hospital, Houston, TX, USA
| | - Rodney C. Samaco
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Sarah Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Heather E. Olson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Equal contributions
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Equal contributions
| |
Collapse
|
14
|
Mahdiannasser M, Rashidi-Nezhad A, Badv RS, Akrami SM. Exploring the genetic etiology of drug-resistant epilepsy: incorporation of exome sequencing into practice. Acta Neurol Belg 2022; 122:1457-1468. [PMID: 36127562 DOI: 10.1007/s13760-022-02095-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND By affecting about 50 million people worldwide, epilepsy is considered a global concern in neurology. Intolerable enough, up to ¼ of all patients do not respond to antiepileptic drugs and have recurring seizures. Therefore, revealing the underlying etiology is quite demanding in a clinical context to improve diagnosis and disease management. METHODS Initially, 85 patients suspected of epilepsy underwent thorough clinical and paraclinical evaluation and 24 individuals with drug-resistant epilepsy entered the study. Using whole-exome sequencing, the genetic etiology of drug-resistant epilepsy was investigated and discerned whether this method could facilitate the management of drug-resistant epilepsy through personalized medicine. Eventually, functional annotation was performed and drug-gene interaction networks were constructed to find potential therapeutic targets. RESULTS We found eleven novel variants in various genes including IRF2BPL, ST3GAL3, and GPAA1, for which a few epilepsy-related variants are available in public databases. The overall diagnostic yield for likely pathogenic and pathogenic variants and the detection rate of novel variants were 25% and 84.6%, respectively. Based on the results, two patients were considered potential candidates for personalized medicine. The highest number of interaction with drugs was demonstrated for SCN1A, SCN2A, and GRIN2A genes. CONCLUSIONS This study highlighted the importance of consanguineous marriage in drug-resistant epilepsy and suggested the possibility of reduced penetrance and variable expressivity in some of the autosomal dominant cases. We also suggest that whole-exome sequencing could facilitate personalized management of drug-resistant epilepsy. Regarding drug-gene interactions, some genes such as SCN1A and SCN2A might serve as therapeutic targets in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Mojdeh Mahdiannasser
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Poursina St., P.O. Box:14176-13151, Tehran, Iran
| | - Ali Rashidi-Nezhad
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Genetics Ward, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Poursina St., P.O. Box:14176-13151, Tehran, Iran.
| |
Collapse
|
15
|
Rodak M, Jonderko M, Rozwadowska P, Machnikowska-Sokołowska M, Paprocka J. CDKL5 Deficiency Disorder (CDD)-Rare Presentation in Male. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1806. [PMID: 36553250 PMCID: PMC9776588 DOI: 10.3390/children9121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
CDKL5 deficiency disorder (CDD) is a developmental encephalopathy caused by pathogenic variants in the X-linked cyclin-dependent kinase 5 (CDKL5) gene. This rare disorder occurs more frequently in females than in males. The incidence is estimated to be approximately 1: 40,000-60,000 live births. So far, 50 cases have been described in boys. The clinical course in males tends to be more severe and is often associated with death in the first or second decade of life. The authors present an unreported 2.5-year-old male patient with drug-resistant epilepsy who was diagnosed with a de novo mutation in the CDKL5 gene. First seizures developed in the fifth week of life and have progressed steadily since then. The child's psychomotor development was strongly delayed, and generalized hypotonia was noticed since birth. Brain MRI showed areas of incomplete myelination, posterior narrowing of the corpus callosum, a pineal cyst of up to 3 mm, and open islet lids. Intensive antiseizure medications (ASMs), a ketogenic diet, and steroid therapy were not successful. Short-term improvement was achieved with the implantation of a vagal nerve stimulator (VNS). Due to the progressive course of the disease, the boy requires frequent modification of ASMs.
Collapse
Affiliation(s)
- Małgorzata Rodak
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Mariola Jonderko
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Patrycja Rozwadowska
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Magdalena Machnikowska-Sokołowska
- Department of Diagnostic Imaging, Radiology and Nuclear Medicine, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
16
|
Zhang J, Ma J, Chang X, Wu P, Li S, Wu Y. Efficacy of ketogenic diet in CDKL5-related epilepsy: a single arm meta-analysis. Orphanet J Rare Dis 2022; 17:385. [DOI: 10.1186/s13023-022-02492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Drug-resistant epilepsy is one of the most important features of cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder. The ketogenic diet (KD) may be effective for patients with CDKL5-related epilepsy, but there is little high-quality evidence to confirm the efficacy. This meta-analysis investigated the efficacy and safety of KD in CDKL5-related epilepsy.
Methods
The PubMed, Embase, Web of Science, Cochrane Library, WanFang, CNKI and VIP databases were searched for relevant studies published up to January 1, 2022. Two reviewers independently screened the literature according to inclusion and exclusion criteria and evaluated the bias risk of the included studies. Meta-analysis was performed using Review Manager 5.3 software.
Results
A total of 12 retrospective studies involving 193 patients met the inclusion criteria. Meta-analysis revealed that the definite responder rate to KD in the treatment of CDKL5-related epilepsy was 18.0% [95% CI (0.07, 0.67)], with no statistical heterogeneity among studies (I2 = 0%, P = 0.45). The clinical responder rate was 50.5% [95% CI (0.75, 1.39)], and there was no statistical heterogeneity among all studies (I2 = 46%, P = 0.05). Subgroup analysis showed that there was no significant difference in the clinical responder rate between the two groups with seizure onset age before and after 1 month (P = 0.14). Only one study mentioned adverse reactions, and the incidence of adverse reactions was 78.3% (18/23). Constipation and vomiting were the main manifestations, implying a high incidence of gastrointestinal adverse reactions.
Conclusions
The definite responder rate to KD in CDKL5-related epilepsy was 18%, and the gastrointestinal adverse reactions were probably common in these patients. All the studies included in the meta-analysis were retrospective, and most of them had small sample sizes. Additional high-quality studies are needed to confirm the efficacy and tolerance of KD in CDKL5-related epilepsy.
Collapse
|
17
|
Goldman AM. Can a Mouse Help Us Unravel the Mysteries of CDKL5-Related Epilepsy? Epilepsy Curr 2022; 22:375-377. [DOI: 10.1177/15357597221125236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
[Box: see text]
Collapse
Affiliation(s)
- Alica M. Goldman
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
18
|
Van Bergen NJ, Massey S, Quigley A, Rollo B, Harris AR, Kapsa RM, Christodoulou J. CDKL5 deficiency disorder: molecular insights and mechanisms of pathogenicity to fast-track therapeutic development. Biochem Soc Trans 2022; 50:1207-1224. [PMID: 35997111 PMCID: PMC9444073 DOI: 10.1042/bst20220791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022]
Abstract
CDKL5 deficiency disorder (CDD) is an X-linked brain disorder of young children and is caused by pathogenic variants in the cyclin-dependent kinase-like 5 (CDKL5) gene. Individuals with CDD suffer infantile onset, drug-resistant seizures, severe neurodevelopmental impairment and profound lifelong disability. The CDKL5 protein is a kinase that regulates key phosphorylation events vital to the development of the complex neuronal network of the brain. Pathogenic variants identified in patients may either result in loss of CDKL5 catalytic activity or are hypomorphic leading to partial loss of function. Whilst the progressive nature of CDD provides an excellent opportunity for disease intervention, we cannot develop effective therapeutics without in-depth knowledge of CDKL5 function in human neurons. In this mini review, we summarize new findings on the function of CDKL5. These include CDKL5 phosphorylation targets and the consequence of disruptions on signaling pathways in the human brain. This new knowledge of CDKL5 biology may be leveraged to advance targeted drug discovery and rapid development of treatments for CDD. Continued development of effective humanized models will further propel our understanding of CDD biology and may permit the development and testing of therapies that will significantly alter CDD disease trajectory in young children.
Collapse
Affiliation(s)
- Nicole J. Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Aikenhead Centre for Medical Discovery, Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R. Harris
- Aikenhead Centre for Medical Discovery, Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Robert M.I. Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| |
Collapse
|
19
|
Leonard H, Downs J, Benke TA, Swanson L, Olson H, Demarest S. CDKL5 deficiency disorder: clinical features, diagnosis, and management. Lancet Neurol 2022; 21:563-576. [PMID: 35483386 PMCID: PMC9788833 DOI: 10.1016/s1474-4422(22)00035-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 12/19/2021] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
CDKL5 deficiency disorder (CDD) was first identified as a cause of human disease in 2004. Although initially considered a variant of Rett syndrome, CDD is now recognised as an independent disorder and classified as a developmental epileptic encephalopathy. It is characterised by early-onset (generally within the first 2 months of life) seizures that are usually refractory to polypharmacy. Development is severely impaired in patients with CDD, with only a quarter of girls and a smaller proportion of boys achieving independent walking; however, there is clinical variability, which is probably genetically determined. Gastrointestinal, sleep, and musculoskeletal problems are common in CDD, as in other developmental epileptic encephalopathies, but the prevalence of cerebral visual impairment appears higher in CDD. Clinicians diagnosing infants with CDD need to be familiar with the complexities of this disorder to provide appropriate counselling to the patients' families. Despite some benefit from ketogenic diets and vagal nerve stimulation, there has been little evidence that conventional antiseizure medications or their combinations are helpful in CDD, but further treatment trials are finally underway.
Collapse
Affiliation(s)
- Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia; Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Tim A Benke
- Department of Neurology, Children's Hospital Colorado, Aurora, CO, USA; Department of Pediatrics, University of Colorado at Denver, Aurora, CO, USA; Department of Pharmacology, University of Colorado at Denver, Aurora, CO, USA; Department of Neurology, University of Colorado at Denver, Aurora, CO, USA; Department of Otolaryngology, University of Colorado at Denver, Aurora, CO, USA
| | - Lindsay Swanson
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Heather Olson
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Scott Demarest
- Department of Neurology, Children's Hospital Colorado, Aurora, CO, USA; Department of Pediatrics, University of Colorado at Denver, Aurora, CO, USA; Department of Neurology, University of Colorado at Denver, Aurora, CO, USA
| |
Collapse
|
20
|
Hong W, Haviland I, Pestana-Knight E, Weisenberg JL, Demarest S, Marsh ED, Olson HE. CDKL5 Deficiency Disorder-Related Epilepsy: A Review of Current and Emerging Treatment. CNS Drugs 2022; 36:591-604. [PMID: 35633486 PMCID: PMC9876658 DOI: 10.1007/s40263-022-00921-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 01/27/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a developmental and epileptic encephalopathy with infantile-onset epilepsy. Most individuals with CDD develop refractory epilepsy with multiple seizure types. Management of seizures in CDD remains challenging for clinicians given the highly refractory nature of seizures and the limited number of disease-specific studies that offer a high level of evidence. Epileptic spasms are the most common seizure type in CDD and are more often refractory to standard first-line treatment than are spasms of other etiologies. In other seizure types, the effectiveness of antiseizure medications is limited and wanes over time. Ketogenic diet and palliative surgical treatments have both had mixed results in observational studies. When treating refractory seizures in CDD, we recommend carefully balancing seizure control and treatment-related side effects to optimize each individual's overall quality of life. Clinical trials of medications targeting epilepsy in CDD have been conducted, and additional investigational small molecules, gene therapy, and other disease-modifying therapies are in development for CDD.
Collapse
Affiliation(s)
- William Hong
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Isabel Haviland
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Elia Pestana-Knight
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Judith L Weisenberg
- Department of Pediatric Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Scott Demarest
- School of Medicine, Children's Hospital Colorado, University of Colorado, Aurora, CO, USA
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Eric D Marsh
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Heather E Olson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
21
|
Knight EMP, Amin S, Bahi-Buisson N, Benke TA, Cross JH, Demarest ST, Olson HE, Specchio N, Fleming TR, Aimetti AA, Gasior M, Devinsky O. Safety and efficacy of ganaxolone in patients with CDKL5 deficiency disorder: results from the double-blind phase of a randomised, placebo-controlled, phase 3 trial. Lancet Neurol 2022; 21:417-427. [PMID: 35429480 DOI: 10.1016/s1474-4422(22)00077-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND CDKL5 deficiency disorder (CDD) is a rare, X-linked, developmental and epileptic encephalopathy characterised by severe global developmental impairment and seizures that can begin in the first few months after birth and are often treatment refractory. Ganaxolone, an investigational neuroactive steroid, reduced seizure frequency in an open-label, phase 2 trial that included patients with CDD. We aimed to further assess the efficacy and safety of ganaxolone in patients with CDD-associated refractory epilepsy. METHODS In the double-blind phase of this randomised, placebo-controlled, phase 3 trial, done at 39 outpatient clinics in eight countries (Australia, France, Israel, Italy, Poland, Russia, the UK, and the USA), patients were eligible if they were aged 2-21 years with a pathogenic or probably pathogenic CDKL5 variant and at least 16 major motor seizures (defined as bilateral tonic, generalised tonic-clonic, bilateral clonic, atonic, or focal to bilateral tonic-clonic) per 28 days in each 4-week period of an 8-week historical period. After a 6-week prospective baseline period, patients were randomly assigned (1:1) via an interactive web response system to receive either enteral adjunctive ganaxolone or matching enteral adjunctive placebo (maximum dose 63 mg/kg per day for patients weighing ≤28 kg or 1800 mg/day for patients weighing >28 kg) for 17 weeks. Patients, caregivers, investigators (including those analysing data), trial staff, and the sponsor (other than the investigational product manager) were masked to treatment allocation. The primary efficacy endpoint was percentage change in median 28-day major motor seizure frequency from the baseline period to the 17-week double-blind phase and was analysed (using a Wilcoxon-rank sum test) in all patients who received at least one dose of trial treatment and for whom baseline data were available. Safety (compared descriptively across groups) was analysed in all patients who received at least one dose of trial treatment. This study is registered with ClinicalTrials.gov, NCT03572933, and the open-label extension phase is ongoing. FINDINGS Between June 25, 2018, and July 2, 2020, 114 patients were screened for eligibility, of whom 101 (median age 6 years [IQR 3 to 10]) were randomly assigned to receive either ganaxolone (n=50) or placebo (n=51). All patients received at least one dose of a study drug, but seizure frequency for one patient in the ganaxolone group was not recorded at baseline and so the primary endpoint was analysed in a population of 100 patients. There was a median percentage change in 28-day major motor seizure frequency of -30·7% (IQR -49·5 to -1·9) in the ganaxolone group and of -6·9% (-24·1 to 39·7) in the placebo group (p=0·0036). The Hodges-Lehmann estimate of median difference in responses to ganaxolone versus placebo was -27·1% (95% CI -47·9 to - 9·6). Treatment-emergent adverse events occurred in 43 (86%) of 50 patients in the ganaxolone group and in 45 (88%) of 51 patients in the placebo group. Somnolence, pyrexia, and upper respiratory tract infections occurred in at least 10% of patients in the ganaxolone group and more frequently than in the placebo group. Serious adverse events occurred in six (12%) patients in the ganaxolone group and in five (10%) patients in the placebo group. Two (4%) patients in the ganaxolone group and four (8%) patients in the placebo group discontinued the trial. There were no deaths in the double-blind phase. INTERPRETATION Ganaxolone significantly reduced the frequency of CDD-associated seizures compared with placebo and was generally well tolerated. Results from what is, to our knowledge, the first controlled trial in CDD suggest a potential treatment benefit for ganaxolone. Long-term treatment is being assessed in the ongoing open-label extension phase of this trial. FUNDING Marinus Pharmaceuticals.
Collapse
Affiliation(s)
- Elia M Pestana Knight
- Epilepsy Center, Cleveland Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Sam Amin
- Pediatric Neurology, University Hospitals Bristol and Weston, Bristol, UK
| | - Nadia Bahi-Buisson
- Pediatric Neurology, Necker Enfants Malades University Hospital, Paris, France
| | - Tim A Benke
- Department of Pediatrics and Neurology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, USA
| | - J Helen Cross
- UCL NIHR BRC Great Ormond Street Institute of Child Health, London, UK
| | - Scott T Demarest
- Department of Pediatrics and Neurology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, USA
| | - Heather E Olson
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Thomas R Fleming
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | | | - Orrin Devinsky
- New York University Langone Comprehensive Epilepsy Center, New York, NY, USA
| |
Collapse
|
22
|
The Genetic Diagnosis of Ultrarare DEEs: An Ongoing Challenge. Genes (Basel) 2022; 13:genes13030500. [PMID: 35328054 PMCID: PMC8953579 DOI: 10.3390/genes13030500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Epileptic encephalopathies (EEs) and developmental and epileptic encephalopathies (DEEs) are a group of severe early-onset neurodevelopmental disorders (NDDs). In recent years, next-generation equencing (NGS) technologies enabled the discovery of numerous genes involved in these conditions. However, more than 50% of patients remained undiagnosed. A major obstacle lies in the high degree of genetic heterogeneity and the wide phenotypic variability that has characterized these disorders. Interpreting a large amount of NGS data is also a crucial challenge. This study describes a dynamic diagnostic procedure used to investigate 17 patients with DEE or EE with previous negative or inconclusive genetic testing by whole-exome sequencing (WES), leading to a definite diagnosis in about 59% of participants. Biallelic mutations caused most of the diagnosed cases (50%), and a pathogenic somatic mutation resulted in 10% of the subjects. The high diagnostic yield reached highlights the relevance of the scientific approach, the importance of the reverse phenotyping strategy, and the involvement of a dedicated multidisciplinary team. The study emphasizes the role of recessive and somatic variants, new genetic mechanisms, and the complexity of genotype–phenotype associations. In older patients, WES results could end invasive diagnostic procedures and allow a more accurate transition. Finally, an early pursued diagnosis is essential for comprehensive care of patients, precision approach, knowledge of prognosis, patient and family planning, and quality of life.
Collapse
|