1
|
Matsumoto A, Murakami K, Watanabe C, Murakami M. Improved systemic delivery of insulin by condensed drug loading in a dimpled suppository. Drug Discov Ther 2019; 11:293-299. [PMID: 29332886 DOI: 10.5582/ddt.2017.01072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The development of peptide therapeutics owing to the advances in biotechnology has overcome some unmet medical needs; however, the route of administration is still limited to injections. Systemic delivery of insulin via an enteral route remains a great challenge due to its instability and low mucosal permeability. In this study, we investigated the effect of drug condensation in a suppository on the efficacy of insulin after rectal administration. Suppositories with dimples are prepared by a mold method using a hard fat (Suppocire® AM). Insulin or fluorescein isothiocyanate-dextran (molecular weight: 3,000-5,000) (FD4) as a model of a hydrophilic macromolecule was loaded in the dimples, and sealed with other lipids with different melting points. The in vitro release test showed that the time to 50% drug release depends on the melting point of the lipid for sealing but not on the number of dimples. The suppositories with one-, or three-dimple containing insulin and caprylocaproyl macrogol-8 glyceride (Labrasol®) were administered to rats at 0.5 U/head. The reduction in plasma glucose level was more significant for the one-dimple-type suppository than for the three-dimple-type although the one-dimple-type suppository contained less amount of Labrasol by one-third compared to the three-dimple-type. These results suggest that condensation of an insulin dose in a limited surface area of a suppository improves systemic availability via the rectal route with a reduced amount of an absorption enhancer.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University.,Hanshin Pharmacy, Co. Ltd
| | - Kayoko Murakami
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University
| | - Chie Watanabe
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University
| | - Masahiro Murakami
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University
| |
Collapse
|
2
|
Nahar K, Absar S, Gupta N, Kotamraju VR, McMurtry IF, Oka M, Komatsu M, Nozik-Grayck E, Ahsan F. Peptide-coated liposomal fasudil enhances site specific vasodilation in pulmonary arterial hypertension. Mol Pharm 2014; 11:4374-84. [PMID: 25333706 PMCID: PMC4255731 DOI: 10.1021/mp500456k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
This study sought to develop a liposomal
delivery system of fasudil—an
investigational drug for the treatment of pulmonary arterial hypertension
(PAH)—that will preferentially accumulate in the PAH lungs.
Liposomal fasudil was prepared by film-hydration method, and the drug
was encapsulated by active loading. The liposome surface was coated
with a targeting moiety, CARSKNKDC, a cyclic peptide;
the liposomes were characterized for size, polydispersity index, zeta
potential, and storage and nebulization stability. The in vitro drug
release profiles and uptake by TGF-β activated pulmonary arterial
smooth muscle cells (PASMC) and alveolar macrophages were evaluated.
The pharmacokinetics were monitored in male Sprague–Dawley
rats, and the pulmonary hemodynamics were studied in acute and chronic
PAH rats. The size, polydispersity index (PDI), and zeta potential
of the liposomes were 206–216 nm, 0.058–0.084, and −20–42.7
mV, respectively. The formulations showed minimal changes in structural
integrity when nebulized with a commercial microsprayer. The optimized
formulation was stable for >4 weeks when stored at 4 °C. Fasudil
was released in a continuous fashion over 120 h with a cumulative
release of 76%. Peptide-linked liposomes were taken up at a higher
degree by TGF-β activated PASMCs; but alveolar macrophages could
not engulf peptide-coated liposomes. The formulations did not injure
the lungs; the half-life of liposomal fasudil was 34-fold higher than
that of plain fasudil after intravenous administration. Peptide-linked
liposomal fasudil, as opposed to plain liposomes, reduced the mean
pulmonary arterial pressure by 35–40%, without influencing
the mean systemic arterial pressure. This study establishes that CAR-conjugated
inhalable liposomal fasudil offers favorable pharmacokinetics and
produces pulmonary vasculature specific dilatation.
Collapse
Affiliation(s)
- Kamrun Nahar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , 1300 Coulter Street, Amarillo, Texas 79106, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Gupta V, Ahsan F. Influence of PEI as a core modifying agent on PLGA microspheres of PGE₁, a pulmonary selective vasodilator. Int J Pharm 2011; 413:51-62. [PMID: 21530623 DOI: 10.1016/j.ijpharm.2011.04.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/07/2011] [Accepted: 04/10/2011] [Indexed: 11/24/2022]
Abstract
This study tests the hypothesis that large porous poly (lactic-co-glycolic acid) (PLGA) microparticles modified with polyethyleneimine (PEI) are viable carriers for pulmonary delivery of prostaglandin E(1) (PGE(1)) used in the treatment of pulmonary arterial hypertension (PAH), a pulmonary vascular disorder. The particles were prepared by a double-emulsion solvent evaporation method with PEI-25 kDa in the internal aqueous phase to produce an osmotic pressure gradient. Polyvinyl alcohol (PVA) was used for external coating of the particles. The particles were examined for morphology, size, aerodynamic diameter, surface area, pore volume and in-vitro release profiles. Particles with optimal properties for inhalation were tested for in-vivo pulmonary absorption, metabolic stability in rat lung homogenates, and acute toxicity in rat bronchoalveolar lavage fluid and respiratory epithelial cells, Calu-3. The micromeritic data indicated that the PEI-modified particles of PGE(1) are optimal for inhalation. Incorporation of PEI in the formulations resulted in an increased entrapment efficiency - 83.26 ± 3.04% for particles with 1% PVA and 95.48 ± 0.46% for particles with 2% PVA. The amount of cumulative drug released into the simulated interstitial lung fluid was between 50.8 ± 0.76% and 55.36 ± 0.06%. A remarkable extension of the circulation half-life up to 6.0-6.5h was observed when the formulations were administered via the lungs. The metabolic stability and toxicity studies showed that the optimized formulations were stable at physiological conditions and relatively safe to the lungs and respiratory epithelium. Overall, this study demonstrates that large porous inhalable polymeric microparticles can be a feasible option for non-invasive and controlled release of PGE(1) for treatment of PAH.
Collapse
Affiliation(s)
- Vivek Gupta
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, United States
| | | |
Collapse
|
4
|
PLGA Microparticles Encapsulating Prostaglandin E1-Hydroxypropyl-β-cyclodextrin (PGE1-HPβCD) Complex for the Treatment of Pulmonary Arterial Hypertension (PAH). Pharm Res 2011; 28:1733-49. [DOI: 10.1007/s11095-011-0409-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
|
5
|
Gupta V, Rawat A, Ahsan F. Feasibility study of aerosolized prostaglandin E1 microspheres as a noninvasive therapy for pulmonary arterial hypertension. J Pharm Sci 2010; 99:1774-89. [DOI: 10.1002/jps.21946] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Thomas C, Rawat A, Bai S, Ahsan F. Feasibility study of inhaled hepatitis B vaccine formulated with tetradecylmaltoside. J Pharm Sci 2008; 97:1213-23. [PMID: 17828746 DOI: 10.1002/jps.21069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study was designed to test the hypothesis that formulation of hepatitis B vaccine with tetradecyl-beta-maltoside (TDM) enhances the immune response after pulmonary administration in a rodent model. Commercially available recombinant hepatitis B vaccine (rHBV) was formulated with varying concentrations of TDM and administered intratracheally to anesthetized male Sprague-Dawley rats. rHBV administered intramuscularly at doses of 2 and 4 microg served as positive controls. All formulations were administered on days 0 and 14 and the immune response was evaluated for 28 days. Specific antibodies generated to HBsAg were analyzed by ELISA. Safety studies were carried out by measuring the levels of alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and tumor necrosis factor alpha (TNF-alpha) in bronchoalveolar lavage (BAL) fluid. There was a significant increase in the immune response when the vaccine was administered intramuscularly at a dose of 4 microg. Only a modest increase in the immune response was observed when plain rHBV was administered intratracheally at the same dose. However, a pulmonary formulation of 4 microg rHBV plus 0.5% TDM produced a fourfold increase in the immune response compared to plain rHBV administered via the pulmonary route. No increase in immune response was observed for formulations containing rHBV plus 0.125% or 0.25% TDM. The levels of ALP and LDH in the BAL fluid suggest that the hepatitis B vaccine plus TDM formulations cause some injury to the lungs after the first intratracheal instillation of the formulation; however, the enzyme levels tended to be lower after the second instillation. The level of TNF-alpha in the BAL fluid of TDM-treated rats was substantially lower than that in rats treated with the positive control substance, sodium dodecyl sulfate. Overall, rHBV formulated with TDM increases the immune response after pulmonary administration, and pulmonary formulation of rHBV plus TDM could be used as an alternative to needle-based delivery of hepatitis B vaccine.
Collapse
Affiliation(s)
- Chandan Thomas
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter, Amarillo, TX 79106, USA
| | | | | | | |
Collapse
|
7
|
Rawat A, Yang T, Hussain A, Ahsan F. Complexation of a Poly-l-Arginine with Low Molecular Weight Heparin Enhances Pulmonary Absorption of the Drug. Pharm Res 2007; 25:936-48. [DOI: 10.1007/s11095-007-9442-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 08/21/2007] [Indexed: 11/29/2022]
|
8
|
Bai S, Thomas C, Ahsan F. Dendrimers as a Carrier for Pulmonary Delivery of Enoxaparin, a Low-Molecular Weight Heparin. J Pharm Sci 2007; 96:2090-106. [PMID: 17286291 DOI: 10.1002/jps.20849] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study was designed to test the hypothesis that positively charged dendrimers form a complex with enoxaparin, a low-molecular weight heparin (LMWH), and that the resulting drug-dendrimer complex is effective in preventing deep vein thrombosis after pulmonary administration. Fourier Transform Infrared (FTIR) spectroscopy and the azure A assay were used to evaluate interactions between dendrimers and enoxaparin. The efficacy of polyamidoamine (PAMAM) dendrimers in enhancing pulmonary absorption of enoxaparin was studied by administering enoxaparin-dendrimer formulations into the lungs of anesthetized rats and monitoring drug absorption by measuring plasma anti-factor Xa activity. The optimized formulations were evaluated for their efficacy in preventing deep vein thrombosis in a rodent model. The safety of the formulations was tested by studying their effects on mucociliary transport rate (MTR) in a frog palate model and by measuring injury markers in rat bronchoalveolar fluid. The FTIR data and azure A assay revealed ionic interactions between the amino groups of cationic dendrimers and the carboxylic and sulfate groups of enoxaparin. Positively charged dendrimers increased the relative bioavailability of enoxaparin by 40%, while a negatively charged dendrimer had no effect. Formulations containing 1% G2 or 0.5% G3 PAMAM dendrimer plus enoxaparin were as efficacious in preventing deep vein thrombosis in a rat model as subcutaneously administered enoxaparin. The formulations did not adversely affect the MTR or produce extensive damage to the lungs. Positively charged dendrimers are a suitable carrier for pulmonary delivery of enoxaparin. They enhance pulmonary absorption of LMWH probably by reducing negative surface charge density of the drug molecule.
Collapse
Affiliation(s)
- Shuhua Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, Texas 79106, USA
| | | | | |
Collapse
|
9
|
Pang Y, Sakagami M, Byron PR. Insulin Self-association: Effects on Lung Disposition Kinetics in the Airways of the Isolated Perfused Rat Lung (IPRL). Pharm Res 2007; 24:1636-44. [PMID: 17476466 DOI: 10.1007/s11095-007-9292-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 03/08/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE To characterize the kinetic dependence of pulmonary absorption and metabolism of insulin and lispro on the magnitude of their hexameric association. METHODS Hexamer content by weight percent (%Hex) in various insulin-zinc and lispro-zinc solutions were determined by quantitative centrifugal ultrafiltration and zinc titration with terpyridine (QCUF-ZTT). Each of the solutions (0.1 ml) was then administered into the airways of the IPRL of normal and experimental diabetic animals. Rate constants were determined for lung absorption (k (a)) and non-absorptive loss (k (nal); comprising mucociliary clearance and metabolism). RESULTS %Hex in administered solutions ranged from 3.3 to 94.4%. Data analysis showed excellent correlations between the values for k (a) or k (nal) and %Hex, irrespective of insulin type, concentration, solution pH or ionic strength. The values for k (a) decreased (0.22 --> 0.05 h(-1)) with increasing %Hex, as did values for k (nal). At %Hex in administered solutions >/=50%, values for k (nal) approached estimates for the rate constant for mucociliary clearance, implying that lung metabolism occurred primarily with monomeric insulin. There were no differences in insulin disposition kinetics between lungs taken from experimental diabetic and sham-control animals. CONCLUSIONS The kinetics of pulmonary insulin disposition depended on the magnitude of molecular self-association. Dissociated forms of insulin (dimers or monomers) in the dosing solution showed higher rates than hexamers for both lung absorption and metabolism.
Collapse
Affiliation(s)
- Yinuo Pang
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N. 12th Street, P.O. Box 980533, Richmond, Virginia 23298-0533, USA
| | | | | |
Collapse
|
10
|
Hussain A, Majumder QH, Ahsan F. Inhaled Insulin is Better Absorbed When Administered as a Dry Powder Compared to Solution in the Presence or Absence of Alkylglycosides. Pharm Res 2006; 23:138-47. [PMID: 16320001 DOI: 10.1007/s11095-005-8926-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 10/03/2005] [Indexed: 11/26/2022]
Abstract
PURPOSE This study was performed to investigate the safety of alkylglycosides administered via the respiratory route and to compare the pulmonary absorption profiles of insulin administered as dry powder inhaler and inhaler solution. METHODS The safety of a series of alkylglycosides with varying alkyl chain lengths was studied by measuring the enzymatic activities in the bronchoalveolar lavage (BAL) fluid of rat lungs. Pulmonary formulations of insulin plus octylmaltoside were administered either as solution or lyophilized dry powder to anesthetized rats, and absorption of insulin was assessed by measuring plasma insulin and glucose levels. The physical characterization of the dry powder formulation was performed using scanning electron microscope (SEM) and Fourier transform infrared spectrophotometer (FTIR). RESULTS The BAL analysis showed that there was a gradual increase in the amount of lung injury markers released with the increase in the hydrophobic chain length of alkylglycosides. The pulmonary administration of lyophilized dry powder of insulin plus octylmaltoside or its solution counterpart showed that the bioavailability of powder formulation was about 2-fold higher than that of the formulation administered as solution. The SEM studies showed a subtle difference in the surface morphologies of formulation particles after lyophilization. FTIR data showed minor interactions between the peptide and excipients upon lyophilization. CONCLUSIONS Of the alkylglycosides tested, octylmaltoside was least toxic in releasing lung injury markers. Octylmaltoside-based dry powder insulin formulations were more efficacious in enhancing pulmonary insulin absorption and reducing plasma glucose levels compared with the formulations administered as a solution.
Collapse
Affiliation(s)
- Alamdar Hussain
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter, Amarillo, Texas 79106, USA
| | | | | |
Collapse
|
11
|
Hussain A, Ahsan F. Indication of transcytotic movement of insulin across human bronchial epithelial cells. J Drug Target 2006; 14:181-90. [PMID: 16777678 DOI: 10.1080/10611860600649633] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study was performed to evaluate insulin permeability across human bronchial epithelial cell lines and investigate if insulin is transported via the paracellular or transcellular pathway. The movement of insulin across two bronchial epithelial cells, 16HBE14o- and Calu-3, was studied in the presence or absence of octylmaltoside. Mannitol and propanolol have been used as paracellular and transcellular marker, respectively, and transepithelial electrical resistance (TEER) was determined to investigate the tight junctional integrity of the monolayers. The possible endocytotic mechanism of insulin across these two cell lines was studied by confocal laser scanning microscopy after incubating the cells with fluorescent-labeled insulin. The TEER values for both cell monolayers were >400 Omega cm2 at confluency. There was a decrease in the TEER values when octylmaltoside was added to the apical side of transwells. Similarly, the apparent permeability coefficient (P(app)) values of insulin, mannitol and propanolol, showed an increase with the rise in the concentration of octylmaltoside. In the absence of octylmaltoside, the P(app) values for insulin and the markers were in the following order: propanolol > mannitol > insulin. Confocal microscopic studies revealed that the uptake of insulin by the bronchial epithelial cells perhaps occurs via translocation across the cell. The data presented in this study demonstrate that insulin perhaps moves across the bronchial cells via both paracellular and transcellular pathways.
Collapse
Affiliation(s)
- Alamdar Hussain
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, Texas Tech University, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | | |
Collapse
|