1
|
Cordeiro M, Oliveira AC, Abreu PE, Arnaut LG, Moreno MJ, Loura LMS. Passive Transport across Cell Membranes beyond the Overton Rule: Insights from Solute Exchange in Vesicles and Molecular Dynamics of Atropisomers. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23575-23587. [PMID: 40210201 PMCID: PMC12022943 DOI: 10.1021/acsami.4c22459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/12/2025]
Abstract
Bioavailability of a drug is critically dependent on its cell membrane permeability. Empirical rules guiding drug design consolidated the dogma that large molecules cannot cross cell membranes by passive diffusion. However, the more amphiphilic atropisomers of redaporfin, an 1135 Da bacteriochlorin photosensitizer used in photodynamic therapy, exhibited fast cell uptake and high photodynamic activity in vitro. This motivated detailed studies of redaporfin atropisomers and their interactions with cell membrane models. Experimental studies on membrane affinity, permeation rates, and exchange dynamics were complemented by molecular dynamics simulations, to reveal the nature of the interactions between the atropisomers and lipid bilayers, the orientation and location of the membrane-bound atropisomers, free energy profiles, and mechanisms governing membrane permeation. Our results indicate that the asymmetric distribution of the meso-phenyl sulfonamide groups (atropisomer α4) generates a large amphiphilic moment. This enhances its membrane affinity and positions the bacteriochlorin ring deeper in the membrane. However, these strong membrane interactions result in a slow exchange of α4 between lipid membranes, restricting its distribution in complex, membrane-rich environments. In contrast, the more symmetrical atropisomer αβαβ exhibits approximately 10-fold lower membrane affinity and localizes closer to the membrane-water interface. This weaker interaction facilitates rapid exchange between membranes, occurring within minutes at 37 °C. Molecular dynamics simulations reveal relatively low energy barriers for membrane translocation, consistent with experimentally estimated fast translocation. Distinct permeation mechanisms were observed for the two atropisomers, providing insights into their differential behavior in passive membrane transport. In particular, the fast cell uptake of the α4 atropisomer is properly described by the bind-flip mechanism, where the sulfonamide groups first approach the bilayer in a "binding" mode, and then the molecule "flips" to place the macrocycle in a more internal position. Our results show how amphiphilicity and conformation flexibility are critical determinants in the cellular internalization of large molecules.
Collapse
Affiliation(s)
- Margarida
M. Cordeiro
- Coimbra
Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Department
of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Alexandre C. Oliveira
- Coimbra
Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Department
of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Paulo E. Abreu
- Coimbra
Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Department
of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Luis G. Arnaut
- Coimbra
Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Department
of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria João Moreno
- Coimbra
Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Department
of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Center
for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-535 Coimbra, Portugal
| | - Luís M. S. Loura
- Coimbra
Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Center
for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty
of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
2
|
Chen Y, Liu F, Jin Q. Polymer-Mediated Delivery of Amphotericin B for Fungal Infections. Macromol Rapid Commun 2025:e2500013. [PMID: 40107872 DOI: 10.1002/marc.202500013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Invasive fungal infections have been an increasingly global issue with high mortality. Amphotericin B (AmB), as the "gold standard" antifungal drug, has broad-spectrum antifungal activity and low clinical resistance. Therefore, AmB is the most commonly used polyene antibiotic for the treatment of invasive fungal infections. However, the serious side effects as well as the low bioavailability of AmB strongly restrict its clinical applications. Polymer, with its diversified molecular design, is widely used in drug delivery in the form of polymeric prodrugs, nanoparticles, hydrogels, etc. Therefore, polymers hold great promise for the delivery of AmB in treating fungal infections. This review summarizes recent advances in polymer-based delivery systems of AmB for the treatment of fungal infections, including polymer-AmB conjugates, nanotechnology-based polymeric delivery systems, hydrogels, and polymeric microneedles. Taking advantage of polymer-based delivery strategies, special attention is paid to reducing the side effects and improving the bioavailability of AmB for safe and effective antifungal therapy. Finally, the limitations and possible future directions of polymer-based AmB delivery systems are discussed.
Collapse
Affiliation(s)
- Yongnan Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Fang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
3
|
Graham W, Torbett-Dougherty M, Islam A, Soleimani S, Bruce-Tagoe TA, Johnson JA. Magnetic Nanoparticles and Drug Delivery Systems for Anti-Cancer Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:285. [PMID: 39997849 PMCID: PMC11858650 DOI: 10.3390/nano15040285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Cancer continues to be a prominent fatal health issue worldwide, driving the urgent need for more effective treatment strategies. The pressing demand has sparked significant interest in the development of advanced drug delivery systems for chemotherapeutics. The advent of nanotechnology offers a groundbreaking approach, presenting a promising pathway to revolutionize cancer treatment and improve patient outcomes. Nanomedicine-based drug delivery systems have demonstrated the capability of improving the pharmacokinetic properties and accumulation of chemotherapeutic agents in cancer sites while minimizing the adverse side effects. Despite these advantages, most NDDSs exhibit only limited improvement in cancer treatment during clinical trials. The recent development of magnetic nanoparticles (MNPs) for biomedical applications has revealed a potential opportunity to further enhance the performance of NDDSs. The magnetic properties of MNPs can be utilized to increase the targeting capabilities of NDDSs, improve the controlled release of chemotherapeutic agents, and weaken the chemoresistance of tumors with magnetic hyperthermia. In this review, we will explore recent advancements in research for NDDSs for oncology applications, how MNPs and their properties can augment the capabilities of NDDSs when complexed with them and emphasize the challenges and safety concerns of incorporating these systems into cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacqueline Ann Johnson
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; (W.G.); (M.T.-D.); (A.I.); (S.S.); (T.A.B.-T.)
| |
Collapse
|
4
|
Shahsavari S, Rad MB, Hajiaghajani A, Rostami M, Hakimian F, Jafarzadeh S, Hasany M, Collingwood JF, Aliakbari F, Fouladiha H, Bardania H, Otzen DE, Morshedi D. Magnetoresponsive liposomes applications in nanomedicine: A comprehensive review. Biomed Pharmacother 2024; 181:117665. [PMID: 39541790 DOI: 10.1016/j.biopha.2024.117665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Safe and effective cancer therapy requires a suitable nanocarrier that can target particular sites, such as cancer cells, in a selective manner. With the tremendous growth in nanotechnology, liposomes, among various competing nanocarriers, have shown promising advances in cancer therapy. Magnetic nanoparticles and metal ions are wide-reaching candidates for conferring magnetic properties and for incorporation into liposomes. Combining liposomes with magnetic structures enables construction of magnetoresponsive liposomes, allowing stimuli-responsiveness to an alternating magnetic field, magnetic targeting, and tracking by magnetic resonance imaging, which could all occur in parallel. This review presents a comprehensive analysis of the practical advances and novel aspects of design, synthesis and engineering magnetoresponsive liposomes, emphasizing their diverse properties for various applications. Our work explores the innovative uses of these structures, extending beyond drug delivery to include smart contrast agents, cell labeling, biosensing, separation, and filtering. By comparing new findings with earlier studies, we showcase significant improvements in efficiency and uncover new potentials, setting a new benchmark for future research in the field of magnetoresponsive liposomes.
Collapse
Affiliation(s)
- Shayan Shahsavari
- Iran Nanotechnology Innovation Council, Nanoclub Elites Association, Tehran, Iran
| | - Mohammad Behnam Rad
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Amirhossein Hajiaghajani
- School of Electrical Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
| | | | - Fatemeh Hakimian
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, Lyngby 2800 Kgs, Denmark
| | - Masoud Hasany
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Lyngby 2800 Kgs, Denmark
| | | | - Farhang Aliakbari
- National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, km 15 Tehran - Karaj Highway, P.O.Box:14965/161, Tehran, Iran; Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Hamideh Fouladiha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, Aarhus C DK-8000, Denmark.
| | - Dina Morshedi
- National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, km 15 Tehran - Karaj Highway, P.O.Box:14965/161, Tehran, Iran.
| |
Collapse
|
5
|
Sawamura R, Masuya-Suzuki A, Iki N. Study on cellular uptake of a hydrophobic near-infrared-absorbing diradical-platinum(II) complex solubilized by albumin using hyperspectral imaging, spectrophotometry, and spectrofluorimetry. ANAL SCI 2024; 40:1857-1865. [PMID: 38896386 PMCID: PMC11422251 DOI: 10.1007/s44211-024-00621-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Owing to its biopenetrability and minimal invasiveness, near-infrared (NIR) light in the region between 700-1100 nm has attracted attention in cancer diagnosis and therapy. Our group previously reported that the hydrophobic diradical-platinum(II) complex PtL2 is a promising agent for cancer photothermal therapy (L = 3,5-dibromo-1,2-diiminobenzosemiquinonate radical). Because PtL2 does not fluoresce, its intercellular uptake of PtL2 cannot be observed with a fluorescence microscope. In this study, we clarified the uptake and intracellular behavior of PtL2 solubilized by bovine serum albumin (BSA) using hyperspectral imaging enabling spectrophotometric analysis of the image. The spectral changes in the obtained images indicated that the internalization of PtL2 was followed by crystallization of the complex during the long incubation period (> 4 h). Additionally, the binding constant Kb = 5.91 × 104 M-1 could be estimated upon fluorescence quenching analysis of BSA upon binding of PtL2; Kb is two orders of magnitude smaller than that of albumin-common drugs. Considering the small Kb and low solubility of PtL2 in water, we ultimately proposed the internalization path and fate of PtL2 in the cell: release of PtL2 from BSA near cellular membranes and subsequent cellular uptake via membrane permeation followed by saturation, resulting in crystallization.
Collapse
Affiliation(s)
- Ryota Sawamura
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8579, Japan.
| | - Atsuko Masuya-Suzuki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Nobuhiko Iki
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8579, Japan.
| |
Collapse
|
6
|
Haribabu J, Madhavan G, Swaminathan S, Panneerselvam M, Moraga D, Dasararaju G, Echeverria C, Arulraj A, Mangalaraja RV, Kokkarachedu V, Santibanez JF, Ramirez-Tagle R. Multifaceted exploration of acylthiourea compounds: In vitro cytotoxicity, DFT calculations, molecular docking and dynamics simulation studies. Int J Biol Macromol 2024; 278:134870. [PMID: 39173802 DOI: 10.1016/j.ijbiomac.2024.134870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
This study reports the synthesis and analysis of biologically active acylthiourea compounds (1 and 2) with a cyclohexyl moiety. The compounds were characterized using UV-Visible, FT-IR, 1H/13C NMR, and elemental analysis. The crystal structure of 2 was solved, revealing intra- and inter-molecular hydrogen bonds. Density functional theory (DFT) calculations provided insights into chemical reactivity and non-covalent interactions. Cytotoxicity assays showed the cyclohexyl group enhanced the activity of compound 2 compared to compound 1. Epoxide hydrolase 1 was predicted as the enzyme target for both compounds. We modeled the structure of epoxide hydrolase 1 and performed molecular dynamics simulation and docking studies. Additionally, in silico docking with SARS-CoV-2 main protease, human ACE2, and avian influenza H5N1 hemagglutinin indicated strong binding potential of the compounds. This integrated approach improves our understanding of the biological potential of acylthiourea derivatives.
Collapse
Affiliation(s)
- Jebiti Haribabu
- ATACAMA-OMICS, Faculty of Medicine, University of Atacama, Los Carreras 1579, 1532502 Copiapo, Chile; Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India.
| | - Geetha Madhavan
- Chennai Institute of Technology (CIT), Chennai 600069, Tamil Nadu, India
| | - Srividya Swaminathan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Murugesan Panneerselvam
- MolMod-CS - Instituto de Química, Universidade Federal Fluminense, Campos de Valonginho s/n, Centro, Niterói 24020-14, Rio de Janeiro, Brazil
| | - Daniel Moraga
- Laboratorio de Fisiología, Departamento de Ciencias Biomédicas, Facultad de Medicina Universidad de Tarapacá, Arica 1000000, Chile
| | | | - Cesar Echeverria
- ATACAMA-OMICS, Faculty of Medicine, University of Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Arunachalam Arulraj
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Av. José Pedro Alessandri 1242, Ñuñoa-7800002, Santiago, Chile
| | - Ramalinga Viswanathan Mangalaraja
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, Santiago, Chile; Department of Mechanical Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Varaprasad Kokkarachedu
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción, Chile
| | - Juan F Santibanez
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia; Integrative Center for Biology and Applied Chemistry (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Rodrigo Ramirez-Tagle
- Facultad de Ingeniería y Arquitectura, Universidad Central de Chile, Santiago, Chile
| |
Collapse
|
7
|
Almurshedi AS, Almarshad SN, Bukhari SI, Aldosari BN, Alhabardi SA, Alkathiri FA, Saleem I, Aldosar NS, Zaki RM. A Novel Inhalable Dry Powder to Trigger Delivery of Voriconazole for Effective Management of Pulmonary Aspergillosis. Pharmaceutics 2024; 16:897. [PMID: 39065594 PMCID: PMC11280232 DOI: 10.3390/pharmaceutics16070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is a fatal fungal infection with a high mortality rate. Voriconazole (VCZ) is considered a first-line therapy for IPA and shows efficacy in patients for whom other antifungal treatments have been unsuccessful. The objective of this study was to develop a high-potency VCZ-loaded liposomal system in the form of a dry-powder inhaler (DPI) using the spray-drying technique to convert liposomes into a nanocomposite microparticle (NCMP) DPI, formulated using a thin-film hydration technique. The physicochemical properties, including size, morphology, entrapment efficiency, and loading efficiency, of the formulated liposomes were evaluated. The NCMPs were then examined to determine their drug content, production yield, and aerodynamic size. The L3NCMP was formulated using a 1:1 lipid/L-leucine ratio and was selected for in vitro studies of cell viability, antifungal activity, and stability. These formulated inhalable particles offer a promising approach to the effective management of IPA.
Collapse
Affiliation(s)
- Alanood S. Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Sarah N. Almarshad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Basmah N. Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Samiah A. Alhabardi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Fai A. Alkathiri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Imran Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Noura S. Aldosar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, P.O. Box 62514, Beni-Suef 62514, Egypt
| |
Collapse
|
8
|
Mandal S, Mallik S, Bhoumick A, Bhattacharya A, Sen P. Synthesis of Amino Acid-Based Cationic Lipids and Study of the Role of the Cationic Head Group for Enhanced Drug and Nucleic Acid Delivery. Chembiochem 2024; 25:e202300834. [PMID: 38284327 DOI: 10.1002/cbic.202300834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
Leveraging liposomes for drug and nucleic acid delivery, though promising due to reduced toxicity and ease of preparation, faces challenges in stability and efficiency. To address this, we synthesized cationic amphiphiles from amino acids (arginine, lysine, and histidine). Histidine emerged as the superior candidate, leading to the development of three histidine-rich cationic amphiphiles for liposomes. Using the hydration method, we have prepared the liposomes and determined the optimal N/P ratios for lipoplex formation via gel electrophoresis. In vitro transfection assays compared the efficacy of our lipids to Fugene, while MTT assays gauged biocompatibility across cancer cell lines (MDA-MB 231 and MCF-7). The histidine-based lipid demonstrated marked potential in enhancing drug and nucleic acid delivery. This improvement stemmed from increased zeta potential, enhancing electrostatic interactions with nucleic acids and cellular uptake. Our findings underscore histidine's crucial role over lysine and arginine for effective delivery, revealing a significant correlation between histidine abundance and optimal performance. This study paves the way for histidine-enriched lipids as promising candidates for efficient drug and nucleic acid delivery, addressing key challenges in the field.
Collapse
Affiliation(s)
- Subhasis Mandal
- Indian Association for the Cultivation of Science, School of Biological Sciences, 2 A & 2B Raja S C Mullick Road, Kolkata, 700032
| | - Suman Mallik
- Indian Association for the Cultivation of Science, School of Biological Sciences, 2 A & 2B Raja S C Mullick Road, Kolkata, 700032
| | - Avinandan Bhoumick
- Indian Association for the Cultivation of Science, School of Biological Sciences, 2 A & 2B Raja S C Mullick Road, Kolkata, 700032
| | | | - Prosenjit Sen
- Indian Association for the Cultivation of Science, School of Biological Sciences, 2 A & 2B Raja S C Mullick Road, Kolkata, 700032
| |
Collapse
|
9
|
Doagooyan M, Alavizadeh SH, Sahebkar A, Houshangi K, Khoddamipour Z, Gheybi F. Anti-tumor activity of silymarin nanoliposomes in combination with iron: In vitro and in vivo study. Int J Pharm X 2023; 6:100214. [PMID: 38024450 PMCID: PMC10660084 DOI: 10.1016/j.ijpx.2023.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Combination therapy represents a promising strategy in cancer management by reducing chemotherapy resistance and associated side effects. Silymarin (SLM) has been extensively investigated due to its potent antioxidant properties and demonstrated efficacy against cancer cells. Under certain conditions however, polyphenolic compounds may also exhibit prooxidant activity by elevating intracellular reactive oxygen species (ROS), which can harm the target cells. In this study, we hypothesized that the simultaneous administration of iron (Fe) could alter the antioxidant characteristic of SLM nanoliposomes (SLM Lip) to a prooxidant state. Hence, we first developed a SLM Lip preparation using lipid film method, and then investigated the anti-oxidant properties as well as the cytotoxicity of the liposomal preparation. We also explored the efficacy of concomitant administration of iron sucrose and SML Lip on the tumor growth and survival of mice bearing tumors. We observed that exposing cells to iron, and consecutive treatment with SLM Lip (Fe + SLM Lip) could induce greater toxicity to 4 T1 breast cancer cells compared to SLM Lip. Further, Fe + SLM Lip combination demonstrated a time-dependent effect on reducing the catalase activity compared to SLM Lip, while iron treatment did not alter cell toxicity and catalase activity. In a mouse breast cancer model, the therapeutic efficacy of Fe + SLM Lip was superior compared to SLM Lip, and the treated animals survived longer. The histopathological findings did not reveal a significant damage to the major organs, whereas the most significant tumor necrosis was evident with Fe + SLM Lip treatment. The outcomes of the present investigation unequivocally underscored the prospective use of Fe + SLM combination in the context of cancer therapy, which warrants further scrutiny.
Collapse
Affiliation(s)
- Maham Doagooyan
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kebria Houshangi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoddamipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Siriwardane DA, Jiang W, Mudalige T. Profiling in-vitro release of verteporfin from VISUDYNE® liposomal formulation and investigating verteporfin binding to human serum albumin. Int J Pharm 2023; 646:123449. [PMID: 37776965 DOI: 10.1016/j.ijpharm.2023.123449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
VISUDYNE® is a liposomal formulation of verteporfin, used in the photodynamic therapy of age-related macular degeneration via intravenous administration. In this study, we developed a new in vitro method to quantify verteporfin release from VISUDYNE® under conditions that replicate in vivo conditions using human serum albumin (HSA). Verteporfin release from the liposomes was quantified using capillary electrophoresis (CE) with optical detection. Verteporfin binding to HSA was quantified by measuring HSA fluorescence that is quenched by drugs binding to specific HSA binding sites. The binding constant of verteporfin to HSA was calculated using the Stern Volmer plot and found to be 1.966 × 107 M-1 at 37 °C. Verteporfin binding to HSA involves one albumin binding site and the binding molar ratio between verteporfin and HSA is approximately 1:1. A rapid partitioning of verteporfin from VISUDYNE® onto HSA takes place within 10 min and involves the release of more than 90% of the verteporfin at physiological temperatures. This study verifies this approach of using CE to rapidly separate liposome and HSA-bound drug, thus minimizing drug release artifacts created with other methods.
Collapse
Affiliation(s)
- Dumindika A Siriwardane
- Arkansas Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Thilak Mudalige
- Arkansas Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
11
|
Gaber DA, Alsubaiyel AM, Alabdulrahim AK, Alharbi HZ, Aldubaikhy RM, Alharbi RS, Albishr WK, Mohamed HA. Nano-Emulsion Based Gel for Topical Delivery of an Anti-Inflammatory Drug: In vitro and in vivo Evaluation. Drug Des Devel Ther 2023; 17:1435-1451. [PMID: 37216175 PMCID: PMC10198277 DOI: 10.2147/dddt.s407475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Arthritic disorder is a common disease in elderly patients and the most common cause of joint dysfunction. This study aims to design Piroxicam-loaded nanoemulsion (PXM-NE) formulations to enhance the analgesic and anti-inflammatory activity of the drug for topical use. Methods The nanoemulsion preparations were designed based on a high-pressure homogenization technique and were characterized for particle size (PS), poly dispersity index (Pi), zeta potential (ZP), drug content, and the selected formula was investigated for its topical analgesic activity and pharmacokinetic parameters. Results The characterizations showed that the PS was 310.20±19.84 nm, Pi was 0.15±0.02, and ZP was -15.74±1.6 mV for the selected formula. A morphology study showed that the PXM-NE droplets were spherical with a uniform size distribution. The in vitro release study showed a biphasic release pattern with a rapid release within the first 2 hours followed by a sustained release pattern. The analgesic activity for optimal formula was 1.66 times higher than the commercial gel with a double duration of analgesic activity. The Cmax was 45.73±9.95 and 28.48±6.44 ng/mL for the gel form of the selected formula and the commercial gel respectively. The relevant bioavailability of the selected formula was 2.41 higher than the commercial gel. Conclusion The results showed good physicochemical properties, higher bioavailability, and a longer analgesic effect of PXM from nanoemulsion gel, as compared to the commercial product.
Collapse
Affiliation(s)
- Dalia A Gaber
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
| | - Amal M Alsubaiyel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
| | | | - Hanan Z Alharbi
- College of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
| | - Rama M Aldubaikhy
- College of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
| | - Rawan S Alharbi
- College of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
| | - Wades K Albishr
- College of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
| | - Heba A Mohamed
- Department of Organic Chemistry, National Research Center, Giza, Egypt
| |
Collapse
|
12
|
Kishawy ATY, Ibrahim D, Roushdy EM, Moustafa A, Eldemery F, Hussein EM, Hassan FAM, Elazab ST, Elabbasy MT, Kanwal R, Kamel WM, Atteya MR, Zaglool AW. Impact of resveratrol-loaded liposomal nanocarriers on heat-stressed broiler chickens: Effects on performance, sirtuin expression, oxidative stress regulators, and muscle building factors. Front Vet Sci 2023; 10:1137896. [PMID: 37056226 PMCID: PMC10086338 DOI: 10.3389/fvets.2023.1137896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Climate change is considered to be the primary cause of heat stress (HS) in broiler chickens. Owing to the unique properties of extracted polyphenols, resveratrol-loaded liposomal nanoparticles (Resv-Lipo NPs) were first explored to mitigate the harmful effects of HS. The dietary role of Resv-Lipo NPs in heat-stressed birds was investigated based on their growth performance, antioxidative potential, and the expression of heat shock proteins, sirtuins, antioxidant, immune, and muscle-building related genes. A total of 250 1-day-old Ross 308 broiler chickens were divided into five experimental groups (5 replicates/group, 10 birds/replicate) for 42 days as follows: the control group was fed a basal diet and reared in thermoneutral conditions, and the other four HS groups were fed a basal diet supplemented with Resv-Lipo NPsI, II, and III at the levels of 0, 50, 100, and 150 mg/kg diet, respectively. The results indicated that supplementation with Resv-Lipo NP improved the growth rate of the HS group. The Resv-Lipo NP group showed the most significant improvement in body weight gain (p < 0.05) and FCR. Additionally, post-HS exposure, the groups that received Resv-Lipo NPs showed restored functions of the kidney and the liver as well as improvements in the lipid profile. The restoration occurred especially at higher levels in the Resv-Lipo NP group compared to the HS group. The elevated corticosterone and T3 and T4 hormone levels in the HS group returned to the normal range in the Resv-Lipo NPsIII group. Additionally, the HS groups supplemented with Resv-Lipo NPs showed an improvement in serum and muscle antioxidant biomarkers. The upregulation of the muscle and intestinal antioxidant-related genes (SOD, CAT, GSH-PX, NR-f2, and HO-1) and the muscle-building genes (myostatin, MyoD, and mTOR) was observed with increasing the level of Resv-Lipo NPs. Heat stress upregulated heat shock proteins (HSP) 70 and 90 gene expression, which was restored to normal levels in HS+Resv-Lipo NPsIII. Moreover, the expression of sirtuin 1, 3, and 7 (SIRT1, SIRT3, and SIRT7) genes was increased (p < 0.05) in the liver of the HS groups that received Resv-Lipo NPs in a dose-dependent manner. Notably, the upregulation of proinflammatory cytokines in the HS group was restored in the HS groups that received Resv-Lipo NPs. Supplementation with Resv-Lipo NPs can mitigate the harmful impact of HS and consequently improve the performance of broiler chickens.
Collapse
Affiliation(s)
- Asmaa T. Y. Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Doaa Ibrahim
| | - Elshimaa M. Roushdy
- Department of Animal Wealth Development, Animal Breeding, and Production, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira Moustafa
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Elham M. Hussein
- Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Fardos A. M. Hassan
- Department of Animal Wealth Development, Veterinary Economics, and Farm Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Tharwat Elabbasy
- Department of Public Health, College of Public Health and Health Informatics, Ha'il University, Ha'il, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Raheela Kanwal
- Department of Physical Therapy, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Walid M. Kamel
- Department of Public Health, College of Public Health and Health Informatics, University of Hail, Ha'il, Saudi Arabia
| | - Mohamed R. Atteya
- Department of Physical Therapy, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Asmaa W. Zaglool
- Department of Animal Wealth Development, Genetic, and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Dawoud M, Mojally M, Abdou R, Attia HG. Comparative study on the performance of monoolein cubic nanoparticles and trimyristin solid lipid nanoparticles as carriers for docetaxel. Pharm Dev Technol 2023; 28:277-287. [PMID: 36919494 DOI: 10.1080/10837450.2023.2191274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Nowadays the application of lipid nanoparticles as carriers for the delivery of anticancer drugs gained great attention in cancer therapy. Solid lipid nanoparticles (SLNs) and cubic nanoparticles (cubosomes) are considered as promising carriers in cancer therapy. The comparison of these two lipid nanoparticles as efficient carriers for the anticancer drug docetaxel was our main goal in this study. Both nanoparticles were prepared by the hot melt homogenization technique followed by measurement of particle size, zeta potential, entrapment efficiency and in vitro release of docetaxel. An advanced technique has been applied to measure the release of docetaxel from these nanoparticles using small unilamellar vesicles (SUVs) as acceptor particles which resemble many compartments in our body. All prepared nanoparticles revealed a neutral zeta potential with particle sizes of about 200 nm. While SUVs showed a negative surface charge with a zeta potential of -55 mV, cubosomes showed higher entrapment efficiency and a slower docetaxel release compared to SLNs. Additionally, cubosomes improved in vitro cytotoxicity as well as the in vivo antitumor inhibition of docetaxel compared to SLNs and docetaxel solution. Overall, our results showed that incorporation of docetaxel into cubosomes could enhance its in vitro and in vivo performance compared to docetaxel incorporated into SLNs.
Collapse
Affiliation(s)
- Mohamed Dawoud
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al Qura, University, Holy Makkah, KSA
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan-University, Cairo, Egypt
| | - Mariam Mojally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al Qura, University, Holy Makkah, KSA
| | - Randa Abdou
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al Qura, University, Holy Makkah, KSA
| | - Hany G Attia
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| |
Collapse
|
14
|
Oral transmucosal delivery of eletriptan for neurological diseases. Int J Pharm 2022; 627:122222. [PMID: 36155795 DOI: 10.1016/j.ijpharm.2022.122222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022]
Abstract
Migraine is a highly prevalent neurological disease affecting circa 1 billion patients worldwide with severe incapacitating symptoms, which significantly diminishes the quality of life. As self-medication practice, oral administration of triptans is the most common option, despite its relatively slow therapeutic onset and low drug bioavailability. To overcome these issues, here we present, to the best of our knowledge, the first study on the possibility of oral transmucosal delivery of one of the safest triptans, namely eletriptan hydrobromide (EB). Based on a comprehensive set of in vitro and ex vivo experiments, we highlight the conditions required for oral transmucosal delivery, potentially giving rise to similar, or even higher, drug plasma concentrations expected from conventional oral administration. With histology and tissue integrity studies, we conclude that EB neither induces morphological changes nor impairs the integrity of the mucosal barrier following 4 h of exposure. On a cellular level, EB is internalized in human oral keratinocytes within the first 5 min without inducing toxicity at the relevant concentrations for transmucosal delivery. Considering that the pKa of EB falls within the physiologically range, we systematically investigated the effect of pH on both solubility and transmucosal permeation. When the pH is increased from 6.8 to 10.4, the drug solubility decreases drastically from 14.7 to 0.07 mg/mL. At pH 6.8, EB gave rise to the highest drug flux and total permeated amount across mucosa, while at pH 10.4 EB shows greater permeability coefficient and thus higher ratio of permeated drug versus applied drug. Permeation experiments with model membranes confirmed the pH dependent permeation profile of EB. The distribution of EB in different cellular compartments of keratinocytes is pH dependent. In brief, high drug ionization leads to higher association with the cell membrane, suggesting ionic interactions between EB and the phospholipid head groups. Moreover, we show that the chemical permeation enhancer DMSO can be used to enhance the drug permeation significantly (i.e., 12 to 36-fold increase). Taken together, this study presents important findings on transmucosal delivery of eletriptan via the oral cavity and paves the way for clinical investigations for a fast and safe migraine treatment.
Collapse
|
15
|
Cavalcanti RRM, Lira RB, Riske KA. Membrane Fusion Biophysical Analysis of Fusogenic Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10430-10441. [PMID: 35977420 DOI: 10.1021/acs.langmuir.2c01169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liposomes represent important drug carrier vehicles in biological systems. A fusogenic liposomal system composed of equimolar mixtures of the cationic lipid DOTAP and the phospholipid DOPE showed high fusion and delivery efficiencies with cells and lipid vesicles. However, aspects of the thermodynamics involving the interaction of these fusogenic liposomes and biomimetic systems remain unclear. Here, we investigate the fusion of this system with large unilamellar vesicles (LUVs) composed of the zwitterionic lipid POPC and increasing fractions of the anionic lipid POPG and up to 30 mol % cholesterol. The focus here is to concomitantly follow changes in size, zeta-potential, and enthalpy binding upon membrane interaction and fusion. Isothermal titration calorimetry (ITC) data showed that membrane fusion in our system is an exothermic process in the absence of cholesterol, suggesting that electrostatic attraction is the driving force for fusion. An endothermic component appeared and eventually dominated the titration at 30 mol % cholesterol, which we propose is caused by membrane fluidification when cholesterol is diluted upon fusion. The inflection points of the ITC data occurred around 0.5-0.7 POPG/DOTAP for all systems, the same stoichiometry for which zeta-potential and dynamic light scattering measurements showed an increase in size coupled with charge neutralization of the system, which is consistent with the fact that fusion in our system is charge-mediated. Microscopy observations of the final mixtures revealed the presence of giant vesicles, which is a clear indication of fusion, coexisting with intermediate-sized objects that could be the result of both fusion and/or aggregation. The results show that the fusion efficiency of the DOTAP:DOPE fusogenic system is modulated by the charge and membrane packing of the acceptor membrane and explain why the system fuses very efficiently with cells.
Collapse
Affiliation(s)
- Rafaela R M Cavalcanti
- Departamento de Biofísica, Universidade Federal de São Paulo, CEP 04039-032, São Paulo, Brazil
| | - Rafael B Lira
- Departamento de Biofísica, Universidade Federal de São Paulo, CEP 04039-032, São Paulo, Brazil
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, CEP 04039-032, São Paulo, Brazil
| |
Collapse
|
16
|
Lizoňová D, Frei S, Balouch M, Zadražil A, Štěpánek F. Multilobed Magnetic Liposomes Enable Remotely Controlled Collection, Transport, and Delivery of Membrane-Soluble Cargos to Vesicles and Cells. ACS APPLIED BIO MATERIALS 2021; 4:4833-4840. [PMID: 35007032 DOI: 10.1021/acsabm.1c00106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipid bilayers are the basic structural components of all living systems, forming the membranes of cells, sub-cellular organelles, and extracellular vesicles. A class of man-made lipidic vesicles called multilobed magnetic liposomes (MMLs) is reported in this work; these MMLs possess a previously unattained combination of features owing to their unique multilobe structure and composition. MMLs consist of a central cluster of lipid-coated magnetic iron oxide nanoparticles that lend them a magnetophoretic velocity comparable to the most efficient living microswimmers. Multiple liposome-like lobes protrude from the central region; these can incorporate both water-soluble and lipid-soluble molecular payloads at high carrying capacity and exchange the incorporated substances with the membranes of both artificial and live cells by the contact diffusion mechanism. The size of MMLs is controllable in the range of 200-800 nm. Their functionality is demonstrated by completing a model mission where MMLs are remotely controlled to collect, transport, and deliver a cargo to live cells.
Collapse
Affiliation(s)
- Denisa Lizoňová
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 6 - Dejvice, Prague 166 28, Czech Republic
| | - Samuel Frei
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 6 - Dejvice, Prague 166 28, Czech Republic
| | - Martin Balouch
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 6 - Dejvice, Prague 166 28, Czech Republic
| | - Aleš Zadražil
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 6 - Dejvice, Prague 166 28, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 6 - Dejvice, Prague 166 28, Czech Republic
| |
Collapse
|
17
|
Kumar Dubey S, Pradhan R, Hejmady S, Singhvi G, Choudhury H, Gorain B, Kesharwani P. Emerging innovations in nano-enabled therapy against age-related macular degeneration: A paradigm shift. Int J Pharm 2021; 600:120499. [PMID: 33753164 DOI: 10.1016/j.ijpharm.2021.120499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/03/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration (AMD), a degenerative eye disease, is the major cause of irreversible loss of vision among individuals aged 50 and older. Both genetic and environmental factors are responsible for the progressive damage to central vision. It is a multifactorial retinal disease with features such as drusen, hypopigmentation and/or hyperpigmentation of the retinal pigment epithelium, and even choroidal neovascularization in certain patients. AMD is of two major forms: exudative (wet) and atrophic (dry) with changes affecting the macula leading to impaired vision. Although the retina remains an accessible portion for delivering drugs, there are no current options to cure or treat AMD. The existing expensive therapeutics are unable to treat the underlying pathology but display several side effects. However, recent innovations in nanotherapeutics provide an optimal alternative of drug delivery to treat the neovascular condition. These new-age technologies in the nanometer scale would enhance bioactivity and improve the bioavailability of drugs at the site of action to treat AMD. The nanomedicine also provides sustained release of the drug with prolonged retention after penetrating across the ocular tissues. In this review, the insights into the cellular and molecular mechanisms associated with the pathophysiology of AMD are provided. It also serves to review the current progress in nanoparticle-based drug delivery systems that offer feasible treatments in AMD.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India; Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Siddhanth Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia; Center for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi 110062, India.
| |
Collapse
|
18
|
Begum M, Bibi I, Bibi S, Khan MF, Shah M, Bibi N, Hussain Shah SW. Investigation of the complexation behavior of polyethylene oxide with surfactant ternary mixture: Conductometry. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mehnaz Begum
- Department of Chemistry Hazara University Mansehra Mansehra Pakistan
| | - Irum Bibi
- Department of Chemistry Hazara University Mansehra Mansehra Pakistan
| | - Saira Bibi
- Department of Chemistry Hazara University Mansehra Mansehra Pakistan
- Department of Zoology Women University Swabi Swabi Pakistan
| | | | - Muzafar Shah
- Department of Zoology Hazara Univertisy Mansehra Mansehra Pakistan
| | - Nadia Bibi
- Department of Chemistry Govt Post Graduate College for Women Haripur Pakistan
| | | |
Collapse
|
19
|
Khazaeli P, Alaei M, Khaksarihadad M, Ranjbar M. Preparation of PLA/chitosan nanoscaffolds containing cod liver oil and experimental diabetic wound healing in male rats study. J Nanobiotechnology 2020; 18:176. [PMID: 33256764 PMCID: PMC7706058 DOI: 10.1186/s12951-020-00737-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/20/2020] [Indexed: 11/23/2022] Open
Abstract
Diabetes mellitus is one of the most common metabolic disorders. One of the important metabolic complications in diabetes is diabetic foot ulcer syndrome, which causes delayed and abnormal healing of the wound. The formulation of nanoscaffolds containing cod liver oil by altering the hemodynamic balance toward the vasodilators state, increasing wound blood supply, and altering plasma membrane properties, namely altering the membrane phospholipids composition, can be effective in wound healing. In this study, electrospinning method was used to produce poly lactic acid/chitosan nanoscaffolds as a suitable bio-substitute. After preparing the nanoscaffolds, the products were characterized with dynamic light scattering (DLS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Also optical properties of polymer and comparison between adsorption between single polymer and polymer-drug calculated with UV−Vis spectra. The structure and functional groups of the final products were characterized by Fourier-transform infrared spectroscopy (FT-IR) and energy dispersive spectroscopy (EDAX) as elemental analysis. The results showed that the optimum formulation of cod liver oil was 30%, which formed a very thin fiber that rapidly absorbed to the wound and produced significant healing effects. According to the results, poly lactic acid/chitosan nanoscaffolds containing cod liver oil can be a suitable bio-product to be used in treating the diabetic foot ulcer syndrome.![]()
Collapse
Affiliation(s)
- Payam Khazaeli
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, P.O. Box: 76175-493, Kerman, 76169-11319, Iran.,Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Alaei
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksarihadad
- Neuroscience Research, and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, P.O. Box: 76175-493, Kerman, 76169-11319, Iran.
| |
Collapse
|
20
|
Hallan SS, Marchetti P, Bortolotti D, Sguizzato M, Esposito E, Mariani P, Trapella C, Rizzo R, Cortesi R. Design of Nanosystems for the Delivery of Quorum Sensing Inhibitors: A Preliminary Study. Molecules 2020; 25:molecules25235655. [PMID: 33266241 PMCID: PMC7730761 DOI: 10.3390/molecules25235655] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Biofilm production is regulated by the Quorum Sensing system. Nowadays, Quorum Sensing represents an appealing target to design new compounds to increase antibiotics effects and avoid development of antibiotics multiresistance. In this research the use of liposomes to target two novel synthetic biofilm inhibitors is presented, focusing on a preformulation study to select a liposome composition for in vitro test. Five different liposome (LP) formulations, composed of phosphatidyl choline, cholesterol and charged surfactant (2:1:1, molar ratio) have been prepared by direct hydration and extrusion. As charged surfactants dicetyl phosphate didecyldimethylammonium chloride, di isobutyl phenoxy ethyl dimethyl benzyl ammonium chloride and stearylamine (SA) and have been used. Liposome charge, size and morphology were investigated by zeta potential, photon correlation spectroscopy, small angle x-ray spectroscopy and electron microscopy. LP-SA was selected for the loading of biofilm inhibitors and subjected to high performance liquid chromatography for entrapment capacity evaluation. LP-SA loaded inhibitors showed a higher diameter (223.6 nm) as compared to unloaded ones (205.7 nm) and a dose-dependent anti-biofilm effect mainly after 48 h of treatment, while free biofilm inhibitors loose activity. In conclusion, our data supported the use of liposomes as a strategy to enhance biofilm inhibitors effect.
Collapse
Affiliation(s)
- Supandeep Singh Hallan
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (P.M.); (D.B.); (M.S.); (C.T.); (R.R.)
- Biofilms—Research Center for Biointerfaces, Faculty of Health and Society, Malmö University, SE-20506 Malmö, Sweden
| | - Paolo Marchetti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (P.M.); (D.B.); (M.S.); (C.T.); (R.R.)
| | - Daria Bortolotti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (P.M.); (D.B.); (M.S.); (C.T.); (R.R.)
| | - Maddalena Sguizzato
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (P.M.); (D.B.); (M.S.); (C.T.); (R.R.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| | - Elisabetta Esposito
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (P.M.); (D.B.); (M.S.); (C.T.); (R.R.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence: (E.E.); (R.C.)
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy;
| | - Claudio Trapella
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (P.M.); (D.B.); (M.S.); (C.T.); (R.R.)
| | - Roberta Rizzo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (P.M.); (D.B.); (M.S.); (C.T.); (R.R.)
| | - Rita Cortesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (P.M.); (D.B.); (M.S.); (C.T.); (R.R.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence: (E.E.); (R.C.)
| |
Collapse
|
21
|
Bailey CM, Liu Y, Peng G, Zhang H, He M, Sun D, Zheng P, Liu Y, Wang Y. Liposomal formulation of HIF-1α inhibitor echinomycin eliminates established metastases of triple-negative breast cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2020; 29:102278. [PMID: 32738299 PMCID: PMC7508926 DOI: 10.1016/j.nano.2020.102278] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/05/2023]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is recognized as a prime molecular target for metastatic cancer. However, no specific HIF-1α inhibitor has been approved for clinical use. Here, we demonstrated that in vivo efficacy of echinomycin in solid tumors with HIF-1α overexpression is formulation-dependent. Compared to previously-used Cremophor-formulated echinomycin, which was toxic and ineffective in clinical trials, liposomal-echinomycin provides significantly more inhibition of primary tumor growth and only liposome-formulated echinomycin can eliminate established triple-negative breast cancer (TNBC) metastases, which are the leading cause of death from breast cancer, as available therapies remain minimally effective at this stage. Pharmacodynamic analyses reveal liposomal-echinomycin more potently inhibits HIF-1α transcriptional activity in primary and metastasized TNBC cells in vivo, the latter of which are HIF-1α enriched. The data suggest that nanoliposomal-echinomycin can provide safe and effective therapeutic HIF-1α inhibition and could represent the most potent HIF-1α inhibitor in prospective trials for metastatic cancer.
Collapse
Affiliation(s)
- Christopher M Bailey
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD; Graduate Program in Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Yan Liu
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - Gong Peng
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Huixia Zhang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI
| | - Miao He
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI
| | - Duxin Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI
| | - Pan Zheng
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD; Oncoimmune, Inc., Rockville, MD
| | - Yang Liu
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD; Oncoimmune, Inc., Rockville, MD.
| | - Yin Wang
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
22
|
Novoskoltseva OA, Ryabaya OO, Pozdniakova NV, Yaroslavov AA. Low-toxic multi-liposomal containers for encapsulation of bioactive compounds. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
He W, Xing X, Wang X, Wu D, Wu W, Guo J, Mitragotri S. Nanocarrier‐Mediated Cytosolic Delivery of Biopharmaceuticals. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [DOI: 10.1002/adfm.201910566] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/16/2020] [Indexed: 01/04/2025]
Abstract
AbstractBiopharmaceuticals have emerged to play a vital role in disease treatment and have shown promise in the rapidly expanding pharmaceutical market due to their high specificity and potency. However, the delivery of these biologics is hindered by various physiological barriers, owing primarily to the poor cell membrane permeability, low stability, and increased size of biologic agents. Since many biological drugs are intended to function by interacting with intracellular targets, their delivery to intracellular targets is of high relevance. In this review, the authors summarize and discuss the use of nanocarriers for intracellular delivery of biopharmaceuticals via endosomal escape and, especially, the routes of direct cytosolic delivery by means including the caveolae‐mediated pathway, contact release, intermembrane transfer, membrane fusion, direct translocation, and membrane disruption. Strategies with high potential for translation are highlighted. Finally, the authors conclude with the clinical translation of promising carriers and future perspectives.
Collapse
Affiliation(s)
- Wei He
- Department of Pharmaceutics School of Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xuyang Xing
- Department of Pharmaceutics School of Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xiaoling Wang
- School of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Debra Wu
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of Ministry of Education of China School of Pharmacy Fudan University Shanghai 201203 China
| | - Junling Guo
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| |
Collapse
|
24
|
Chauhan T, Rani V, Sahu B, Sharma A, Chand Kheruka S, Gambhir S, Dube V, Aggarwal LM, Chawla R. Negatively charged liposomes of sertraline hydrochloride: Formulation, characterization and pharmacokinetic studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Tansi FL, Rüger R, Kollmeier AM, Rabenhold M, Steiniger F, Kontermann RE, Teichgräber UK, Fahr A, Hilger I. Targeting the Tumor Microenvironment with Fluorescence-Activatable Bispecific Endoglin/Fibroblast Activation Protein Targeting Liposomes. Pharmaceutics 2020; 12:pharmaceutics12040370. [PMID: 32316521 PMCID: PMC7238156 DOI: 10.3390/pharmaceutics12040370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 11/25/2022] Open
Abstract
Liposomes are biocompatible nanocarriers with promising features for targeted delivery of contrast agents and drugs into the tumor microenvironment, for imaging and therapy purposes. Liposome-based simultaneous targeting of tumor associated fibroblast and the vasculature is promising, but the heterogeneity of tumors entails a thorough validation of suitable markers for targeted delivery. Thus, we elucidated the potential of bispecific liposomes targeting the fibroblast activation protein (FAP) on tumor stromal fibroblasts, together with endoglin which is overexpressed on tumor neovascular cells and some neoplastic cells. Fluorescence-quenched liposomes were prepared by hydrating a lipid film with a high concentration of the self-quenching near-infrared fluorescent dye, DY-676-COOH, to enable fluorescence detection exclusively upon liposomal degradation and subsequent activation. A non-quenched green fluorescent phospholipid was embedded in the liposomal surface to fluorescence-track intact liposomes. FAP- and murine endoglin-specific single chain antibody fragments were coupled to the liposomal surface, and the liposomal potentials validated in tumor cells and mice models. The bispecific liposomes revealed strong fluorescence quenching, activatability, and selectivity for target cells and delivered the encapsulated dye selectively into tumor vessels and tumor associated fibroblasts in xenografted mice models and enabled their fluorescence imaging. Furthermore, detection of swollen lymph nodes during intra-operative simulations was possible. Thus, the bispecific liposomes have potentials for targeted delivery into the tumor microenvironment and for image-guided surgery.
Collapse
Affiliation(s)
- Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (A.M.K.); (U.K.T.)
- Correspondence: (F.L.T.); (R.R.); (I.H.); Tel.: +49-3641-9324993 (F.L.T.); +49-3641-949905 (R.R.); +49-3641-9325921 (I.H.)
| | - Ronny Rüger
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany (A.F.)
- Correspondence: (F.L.T.); (R.R.); (I.H.); Tel.: +49-3641-9324993 (F.L.T.); +49-3641-949905 (R.R.); +49-3641-9325921 (I.H.)
| | - Ansgar M. Kollmeier
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (A.M.K.); (U.K.T.)
| | - Markus Rabenhold
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany (A.F.)
| | - Frank Steiniger
- Center for Electron Microscopy, Jena University Hospital-Friedrich Schiller University Jena, Ziegelmuehlenweg 1, 07743 Jena, Germany;
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany;
| | - Ulf K. Teichgräber
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (A.M.K.); (U.K.T.)
| | - Alfred Fahr
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany (A.F.)
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (A.M.K.); (U.K.T.)
- Correspondence: (F.L.T.); (R.R.); (I.H.); Tel.: +49-3641-9324993 (F.L.T.); +49-3641-949905 (R.R.); +49-3641-9325921 (I.H.)
| |
Collapse
|
26
|
Immunological and Toxicological Considerations for the Design of Liposomes. NANOMATERIALS 2020; 10:nano10020190. [PMID: 31978968 PMCID: PMC7074910 DOI: 10.3390/nano10020190] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/25/2022]
Abstract
Liposomes hold great potential as gene and drug delivery vehicles due to their biocompatibility and modular properties, coupled with the major advantage of attenuating the risk of systemic toxicity from the encapsulated therapeutic agent. Decades of research have been dedicated to studying and optimizing liposomal formulations for a variety of medical applications, ranging from cancer therapeutics to analgesics. Some effort has also been made to elucidate the toxicities and immune responses that these drug formulations may elicit. Notably, intravenously injected liposomes can interact with plasma proteins, leading to opsonization, thereby altering the healthy cells they come into contact with during circulation and removal. Additionally, due to the pharmacokinetics of liposomes in circulation, drugs can end up sequestered in organs of the mononuclear phagocyte system, affecting liver and spleen function. Importantly, liposomal agents can also stimulate or suppress the immune system depending on their physiochemical properties, such as size, lipid composition, pegylation, and surface charge. Despite the surge in the clinical use of liposomal agents since 1995, there are still several drawbacks that limit their range of applications. This review presents a focused analysis of these limitations, with an emphasis on toxicity to healthy tissues and unfavorable immune responses, to shed light on key considerations that should be factored into the design and clinical use of liposomal formulations.
Collapse
|
27
|
Controlling the size and shape of liposomal ciprofloxacin nanocrystals by varying the lipid bilayer composition and drug to lipid ratio. J Colloid Interface Sci 2019; 555:361-372. [PMID: 31398564 DOI: 10.1016/j.jcis.2019.07.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 11/21/2022]
Abstract
Drug nanocrystals precipitated inside liposomes are of increasing interest in liposomal drug delivery. For liposomal nanocrystal formulations, the size and shape of the drug nanocrystals can influence the apparent drug release properties, providing opportunities for developing tailored liposomal drug release systems. Small angle X-ray scattering (SAXS) and quantitative transmission electron microscopy (TEM) can be used to analyse the size distributions of the nanoparticles. In this study, by changing the fluidity of the membrane through the use of different membrane phospholipids with varying cholesterol content, the impact of lipid phase, fluidity and permeability on the size distribution of ciprofloxacin nanocrystals were investigated using standard TEM and SAXS as orthogonal techniques. The results show that the phospholipid phase behaviour has a direct effect on the nanocrystal size distribution, where shorter and thinner nanocrystals were formed in liposomes made from hydrogenated soy phosphatidylcholine (HSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) phospholipids with higher phase transition temperatures than 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with lower transition temperatures. This is mainly due to the phase behaviour of the liposome during nanocrystal formation. The addition of cholesterol that reduces fluidity and permeability of the DOPC liposomes was also shown to restrict the growth of the ciprofloxacin nanocrystals. Moreover, increasing the drug loading of the liposomes made from HSPC and DPPC produced longer and wider nanocrystals. The findings open new opportunities to tailor nanocrystal size distributions, as well as the aspect ratio of the enclosing liposomes with potential to alter drug release and in vivo behaviour.
Collapse
|
28
|
Ghosh S, Carter KA, Lovell JF. Liposomal formulations of photosensitizers. Biomaterials 2019; 218:119341. [PMID: 31336279 PMCID: PMC6663636 DOI: 10.1016/j.biomaterials.2019.119341] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022]
Abstract
Photodynamic therapy (PDT) is a clinical ablation modality to treat cancers and other diseases. PDT involves administration of a photosensitizer, followed by irradiation of target tissue with light. As many photosensitizers are small and hydrophobic, solubilization approaches and nanoscale delivery vehicles have been extensively explored. Liposomes and lipid-based formulations have been used for the past 30 years, and in some cases have been developed into well-defined commercial PDT products. This review provides an overview of common liposomal formulation strategies for photosensitizers for PDT and also photothermal therapy. Furthermore, research efforts have examined the impact of co-loading therapeutic cargo along with photosensitizers within liposomes. Additional recent approaches including imaging, overcoming hypoxia, upconversion and activatable liposomal formulations are discussed.
Collapse
Affiliation(s)
- Sanjana Ghosh
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Kevin A Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
29
|
Moles E, Kavallaris M, Fernàndez-Busquets X. Modeling the Distribution of Diprotic Basic Drugs in Liposomal Systems: Perspectives on Malaria Nanotherapy. Front Pharmacol 2019; 10:1064. [PMID: 31611785 PMCID: PMC6773836 DOI: 10.3389/fphar.2019.01064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/20/2019] [Indexed: 01/16/2023] Open
Abstract
Understanding how polyprotic compounds distribute within liposome (LP) suspensions is of major importance to design effective drug delivery strategies. Advances in this research field led to the definition of LP-based active drug encapsulation methods driven by transmembrane pH gradients with evidenced efficacy in the management of cancer and infectious diseases. An accurate modeling of membrane-solution drug partitioning is also fundamental when designing drug delivery systems for poorly endocytic cells, such as red blood cells (RBCs), in which the delivered payloads rely mostly on the passive diffusion of drug molecules across the cell membrane. Several experimental models have been proposed so far to predict the partitioning of polyprotic basic/acid drugs in artificial membranes. Nevertheless, the definition of a model in which the membrane-solution partitioning of each individual drug microspecies is studied relative to each other is still a topic of ongoing research. We present here a novel experimental approach based on mathematical modeling of drug encapsulation efficiency (EE) data in liposomal systems by which microspecies-specific partition coefficients are reported as a function of pH and phospholipid compositions replicating the RBC membrane in a simple and highly translatable manner. This approach has been applied to the study of several diprotic basic antimalarials of major clinical importance (quinine, primaquine, tafenoquine, quinacrine, and chloroquine) describing their respective microspecies distribution in phosphatidylcholine-LP suspensions. Estimated EE data according to the model described here closely fitted experimental values with no significant differences obtained in 75% of all pH/lipid composition-dependent conditions assayed. Additional applications studied include modeling drug EE in LPs in response to transmembrane pH gradients and lipid bilayer asymmetric charge, conditions of potential interest reflected in our previously reported RBC-targeted antimalarial nanotherapeutics.
Collapse
Affiliation(s)
- Ernest Moles
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain.,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Kapoor B, Gupta R, Gulati M, Singh SK, Khursheed R, Gupta M. The Why, Where, Who, How, and What of the vesicular delivery systems. Adv Colloid Interface Sci 2019; 271:101985. [PMID: 31351415 DOI: 10.1016/j.cis.2019.07.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/06/2019] [Accepted: 07/06/2019] [Indexed: 12/14/2022]
Abstract
Though vesicular delivery systems have been widely explored and reviewed, no comprehensive review exists that covers their development from the inception of the concept to its culmination in the form of regulated marketed formulations. With the advancement of scientific research in the field of nanomedicine, certain category of vesicular delivery systems have successfully reached the global market. Despite extensive research and highly encouraging results in a plethora of pathological conditions in the preclinical studies, translation of these nanomedicines from laboratory to market has been very limited. Aim of this review is to describe comprehensively the various colloidal delivery systems, focusing mainly on their conventional and advanced methods of preparation, different characterization techniques and main success stories of their journey from bench to bedside of the patient. The review also touches the finer nuances of the use of modern formulation approach of DoE (Design of Experiments) in their formulation and the status of regulatory guidelines for the approval of these nanomedicines.
Collapse
|
31
|
Yu P, Deng J, Cai J, Zhang Z, Zhang J, Hamid Khan M, Liang H, Yang F. Anticancer and biological properties of a Zn-2,6-diacetylpyridine bis(thiosemicarbazone) complex. Metallomics 2019; 11:1372-1386. [PMID: 31267119 DOI: 10.1039/c9mt00124g] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, to develop a multi-target anticancer metal agent and achieve a "1 + 1 > 2" pharmaceutical effect, we rationally designed and synthesized five complexes (C1-C5) by synergistically exploiting the properties of Zn(ii) and a series of modified 2,6-diacetylpyridine bis(thiosemicarbazone) ligands. By investigating the structure-activity relationships, we found that the binuclear Zn(ii) complex (C5) acts against human bladder cancer cells (T-24) with significant cytotoxicity. We subsequently determined the multiple anticancer mechanisms of C5 to T-24 cells, including inhibiting the activity of topoisomerase I (Topo I), blocking the cell cycle in the S phase, and inducing apoptosis and autophagy in T-24 cells. Furthermore, C5 inhibited the migration of T-24 cells and showed a significant cytostatic effect in the T-24 3D spheroid model.
Collapse
Affiliation(s)
- Ping Yu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Jungang Deng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Jinhua Cai
- College of Chemistry & Chemical Engineering, Jinggangshan University, Jian, Jiangxi, China
| | - Zhenlei Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Juzheng Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Muhammad Hamid Khan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Feng Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| |
Collapse
|
32
|
Enrico C. Nanotechnology-Based Drug Delivery of Natural Compounds and Phytochemicals for the Treatment of Cancer and Other Diseases. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64185-4.00003-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Hoffmann S, Gorzelanny C, Moerschbacher B, Goycoolea FM. Physicochemical Characterization of FRET-Labelled Chitosan Nanocapsules and Model Degradation Studies. NANOMATERIALS 2018; 8:nano8100846. [PMID: 30336593 PMCID: PMC6215305 DOI: 10.3390/nano8100846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
Sub-micron o/w emulsions coated with chitosan have been used for drug delivery, quorum sensing inhibition, and vaccine development. To study interactions with biological systems, nanocapsules have been fluorescently labelled in previous works, but it is often difficult to distinguish the released label from intact nanocapsules. In this study, we present advanced-labelling strategies based on Förster Resonance Energy Transfer (FRET) measurements for chitosan-coated nanocapsules and investigate their dissolution and degradation. We used FRET measurements of nanocapsules loaded with equimolar concentrations of two fluorescent dyes in their oily core and correlated them with dynamic light scattering (DLS) count rate measurement and absorbance measurements during their disintegration by dissolution. Using count rate measurements, we also investigated the enzymatic degradation of nanocapsules using pancreatin and how protein corona formation influences their degradation. Of note, nanocapsules dissolved in ethanol, while FRET decreased simultaneously with count rate, and absorbance was caused by nanocapsule turbidity, indicating increased distance between dye molecules after their release. Nanocapsules were degradable by pancreatin in a dose-dependent manner, and showed a delayed enzymatic degradation after protein corona formation. We present here novel labelling strategies for nanocapsules that allow us to judge their status and an in vitro method to study nanocapsule degradation and the influence of surface characteristics.
Collapse
Affiliation(s)
- Stefan Hoffmann
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Christian Gorzelanny
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Bruno Moerschbacher
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Francisco M Goycoolea
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
34
|
Felhofer M, Prats-Mateu B, Bock P, Gierlinger N. Antifungal stilbene impregnation: transport and distribution on the micron-level. TREE PHYSIOLOGY 2018; 38:1526-1537. [PMID: 29992254 PMCID: PMC6198867 DOI: 10.1093/treephys/tpy073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/17/2018] [Accepted: 06/03/2018] [Indexed: 05/04/2023]
Abstract
The transition from the living water-transporting sapwood to heartwood involves in many tree species impregnation with extractives. These differ in amount and composition, and enhance resistance against bacteria, insects or fungi. To understand the synthesis, transport and impregnation processes new insights into the biochemical processes are needed by in-situ methods. Here we show the extractive distribution in pine (Pinus sylvestris) microsections with a high lateral resolution sampled in a non-destructive manner using Confocal Raman Microscopy. Integrating marker bands of stilbenes and lipids enables to clearly track the rapid change from sapwood to heartwood within one tree ring. The higher impregnation of the cell corner, compound middle lamella, the S3 layer and pits reveals the optimization of decay resistance on the micron-level. Furthermore, deposits with changing chemical composition are elucidated in the rays and lumen of the tracheids. The spectral signature of these deposits shows the co-location of lipids and pinosylvins with changing ratios from the living to the dead tissue. The results demonstrate that the extractive impregnation on the micro- and nano-level is optimized by a symbiotic relationship of lipids and pinosylvins to enhance the tree's resistance and lifetime.
Collapse
Affiliation(s)
- Martin Felhofer
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse, Vienna, Austria
| | - Batirtze Prats-Mateu
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse, Vienna, Austria
| | - Peter Bock
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse, Vienna, Austria
| | - Notburga Gierlinger
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse, Vienna, Austria
| |
Collapse
|
35
|
Li T, Cipolla D, Rades T, Boyd BJ. Drug nanocrystallisation within liposomes. J Control Release 2018; 288:96-110. [DOI: 10.1016/j.jconrel.2018.09.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/01/2018] [Accepted: 09/01/2018] [Indexed: 12/29/2022]
|
36
|
Melling GE, Colombo JS, Avery SJ, Ayre WN, Evans SL, Waddington RJ, Sloan AJ. Liposomal Delivery of Demineralized Dentin Matrix for Dental Tissue Regeneration. Tissue Eng Part A 2018; 24:1057-1065. [PMID: 29316874 PMCID: PMC6033301 DOI: 10.1089/ten.tea.2017.0419] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
Current dental restorations have short longevity, and consequently, there is a need for novel tissue engineering strategies that aim to regenerate the dentin-pulp complex. Dentin matrix contains a myriad of bioactive growth factors and extracellular matrix proteins associated with the recruitment, proliferation, and differentiation of dental pulp progenitor cells. In this study, we show that demineralized dentin matrix (DDM), from noncarious dentine, can be encapsulated into liposomes for delivery to dental tissue to promote regeneration. Liposomes were formulated to encapsulate 0-100 μg/mL DDM, lysed with Triton X, and used in vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1) enzyme-linked immunosorbent assays to quantify release. The encapsulation efficiencies were calculated to be 25.9% and 28.8% (VEGF/TGF-β1) for 50 μg/mL DDM liposomes and 39% and 146.7% (VEGF/TGF-β1) for 100 μg/mL DDM liposomes. All liposome formulations had no cytotoxic effects on a dental pulp stem cell (DPSC) clone, as shown by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide), Caspase 3/7 assays, and cell counts. The ability of the liposomes to stimulate DPSC chemotactic recruitment was tested by Boyden chamber chemotaxis assays. Unloaded liposomes alone stimulated significant progenitor cell recruitment, while DDM-loaded liposomes further promoted chemotactic recruitment in a dose-dependent manner. DDM liposomes promoted the upregulation of "osteodentin" markers osteocalcin and RUNX2 (Runt-related transcription factor 2) in DPSCs after 9 days of treatment, determined by real-time quantitative PCR. Furthermore, Alizarin Red S staining showed that unloaded liposomes alone induced biomineralization of DPSCs, and DDM liposomes further increased the amount of mineralization observed. DDM liposomes were more effective than free DDM (10 μg/mL) at activating recruitment and osteogenic differentiation of DPSC, which are key events in the endogenous repair of the dentin-pulp complex. The study has highlighted the therapeutic potential of bioactive DDM liposomes in activating dental tissue repair in vitro, suggesting that liposomal delivery from biomaterials could be a valuable tool for reparative dentistry and hard-tissue engineering applications.
Collapse
Affiliation(s)
- Genevieve E. Melling
- Department of Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, United Kingdom
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff, United Kingdom
| | - John S. Colombo
- School of Dentistry, University of Utah, Salt Lake City, Utah
| | - Steven J. Avery
- Department of Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, United Kingdom
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff, United Kingdom
| | - Wayne Nishio Ayre
- Department of Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, United Kingdom
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff, United Kingdom
| | - Samuel L. Evans
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff, United Kingdom
- School of Engineering, Cardiff University, Cardiff, United Kingdom
| | - Rachel J. Waddington
- Department of Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, United Kingdom
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff, United Kingdom
| | - Alastair J. Sloan
- Department of Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, United Kingdom
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff, United Kingdom
| |
Collapse
|
37
|
Almurshedi AS, Radwan M, Omar S, Alaiya AA, Badran MM, Elsaghire H, Saleem IY, Hutcheon GA. A novel pH-sensitive liposome to trigger delivery of afatinib to cancer cells: Impact on lung cancer therapy. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Membrane Loaded Copper Oleate PEGylated Liposome Combined with Disulfiram for Improving Synergistic Antitumor Effect In Vivo. Pharm Res 2018; 35:147. [DOI: 10.1007/s11095-018-2414-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022]
|
39
|
Burnouf PA, Leu YL, Su YC, Wu K, Lin WC, Roffler SR. Reversible glycosidic switch for secure delivery of molecular nanocargos. Nat Commun 2018; 9:1843. [PMID: 29748577 PMCID: PMC5945669 DOI: 10.1038/s41467-018-04225-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/12/2018] [Indexed: 01/08/2023] Open
Abstract
Therapeutic drugs can leak from nanocarriers before reaching their cellular targets. Here we describe the concept of a chemical switch which responds to environmental conditions to alternate between a lipid-soluble state for efficient cargo loading and a water-soluble state for stable retention of cargos inside liposomes. A cue-responsive trigger allows release of the molecular cargo at specific cellular sites. We demonstrate the utility of a specific glycosidic switch for encapsulation of potent anticancer drugs and fluorescent compounds. Stable retention of drugs in liposomes allowed generation of high tumor/blood ratios of parental drug in tumors after enzymatic hydrolysis of the glycosidic switch in the lysosomes of cancer cells. Glycosidic switch liposomes could cure mice bearing human breast cancer tumors without significant weight loss. The chemical switch represents a general method to load and retain cargos inside liposomes, thereby offering new perspectives in engineering safe and effective liposomes for therapy and imaging. Retention of drugs loaded into liposomes is a major challenge to effective targeted drug delivery. Here, the authors report on the modification of drugs with a glycosidic pH sensitive switch to improve encapsulation and retention of drugs and demonstrate application in an in vivo cancer model.
Collapse
Affiliation(s)
- Pierre-Alain Burnouf
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Yu-Lin Leu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - Yu-Cheng Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Kenneth Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Chi Lin
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
40
|
Lamichhane N, Udayakumar TS, D'Souza WD, Simone CB, Raghavan SR, Polf J, Mahmood J. Liposomes: Clinical Applications and Potential for Image-Guided Drug Delivery. Molecules 2018; 23:molecules23020288. [PMID: 29385755 PMCID: PMC6017282 DOI: 10.3390/molecules23020288] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 01/16/2023] Open
Abstract
Liposomes have been extensively studied and are used in the treatment of several diseases. Liposomes improve the therapeutic efficacy by enhancing drug absorption while avoiding or minimizing rapid degradation and side effects, prolonging the biological half-life and reducing toxicity. The unique feature of liposomes is that they are biocompatible and biodegradable lipids, and are inert and non-immunogenic. Liposomes can compartmentalize and solubilize both hydrophilic and hydrophobic materials. All these properties of liposomes and their flexibility for surface modification to add targeting moieties make liposomes more attractive candidates for use as drug delivery vehicles. There are many novel liposomal formulations that are in various stages of development, to enhance therapeutic effectiveness of new and established drugs that are in preclinical and clinical trials. Recent developments in multimodality imaging to better diagnose disease and monitor treatments embarked on using liposomes as diagnostic tool. Conjugating liposomes with different labeling probes enables precise localization of these liposomal formulations using various modalities such as PET, SPECT, and MRI. In this review, we will briefly review the clinical applications of liposomal formulation and their potential imaging properties.
Collapse
Affiliation(s)
- Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | - Warren D D'Souza
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Jerimy Polf
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Javed Mahmood
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
41
|
Deng C, Xu X, Tashi D, Wu Y, Su B, Zhang Q. Co-administration of biocompatible self-assembled polylactic acid–hyaluronic acid block copolymer nanoparticles with tumor-penetrating peptide-iRGD for metastatic breast cancer therapy. J Mater Chem B 2018; 6:3163-3180. [DOI: 10.1039/c8tb00319j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The safe and efficient targeted delivery of chemotherapeutic drugs has remained a challenge in metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Caifeng Deng
- School of Pharmacy
- Chengdu Medical College
- Chengdu 610500
- China
- Key Laboratory of Drug Targeting and Drug Delivery Systems
| | - Xiaohong Xu
- School of Pharmacy
- Chengdu Medical College
- Chengdu 610500
- China
| | - Drunp Tashi
- School of Tibetan Medicine
- Qinghai University
- Xining 810016
- China
| | - Yongmei Wu
- Development and Regeneration Key Lab of Sichuan Province
- Department of Pathology
- Department of Anatomy and Histology and Embryology
- Chengdu Medical College
- Chengdu 610500
| | - Bingyin Su
- Development and Regeneration Key Lab of Sichuan Province
- Department of Pathology
- Department of Anatomy and Histology and Embryology
- Chengdu Medical College
- Chengdu 610500
| | - Quan Zhang
- School of Pharmacy
- Chengdu Medical College
- Chengdu 610500
- China
| |
Collapse
|
42
|
Zhang Q, Zhang L, Li Z, Xie X, Gao X, Xu X. Inducing Controlled Release and Increased Tumor-Targeted Delivery of Chlorambucil via Albumin/Liposome Hybrid Nanoparticles. AAPS PharmSciTech 2017; 18:2977-2986. [PMID: 28477146 DOI: 10.1208/s12249-017-0782-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022] Open
Abstract
Liposomes possess good biocompatibility and excellent tumor-targeting capacity. However, the rapid premature release of lipophilic drugs from the lipid bilayer of liposomes has negative effect on the tumor-targeted drug delivery of liposomes. In this study, a lipophilic antitumor drug-chlorambucil (CHL)-was encapsulated into the aqueous interior of liposomes with the aid of albumin to obtain the CHL-loaded liposomes/albumin hybrid nanoparticles (CHL-Hybrids). The in vitro accumulative release rate of CHL from CHL-Hybrids was less than 50% within 48 h, while the accumulative CHL release was more than 80% for CHL-loaded liposomes (CHL-Lip). After intravenous injection into rats, the half-life (t 1/2β = 5.68 h) and maximum blood concentration (C max = 4.58 μg/mL) of CHL-Hybrids were respectively 1.1 times and 3.5 times higher than that of CHL-Lip. In addition, CHL-Hybrids had better tumor-targeting capacity for it significantly increased the drug accumulation in B16F10 tumors, which contributed to the significantly control of tumor growth compared with CHL-Lip. Furthermore, CHL-Hybrid-treated B16F10 melanoma-bearing mice displayed the longest median survival time of 30.0 days among all the treated groups. Our results illustrated that the proposed hybrids drug delivery system would be a promising strategy to maintain the controlled release of lipophilic antitumor drugs from liposomes and simultaneously facilitate the tumor-targeted drug delivery.
Collapse
|
43
|
Biodistribution and In Vivo Antileishmanial Activity of 1,2-Distigmasterylhemisuccinoyl- sn-Glycero-3-Phosphocholine Liposome-Intercalated Amphotericin B. Antimicrob Agents Chemother 2017. [PMID: 28630182 DOI: 10.1128/aac.02525-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1,2-Distigmasterylhemisuccinoyl-sn-glycero-3-phosphocholine (DSHemsPC) is a new lipid in which two molecules of stigmasterol (an inexpensive plant sterol) are covalently linked via a succinic acid to glycerophosphocholine. Our previous study revealed that liposome (Lip)-intercalated amphotericin B (AMB) prepared from DSHemsPC (DSHemsPC-AMB-Lip) possesses excellent colloidal properties and in vitro antifungal and antileishmanial activities similar to those of the liposomal AMB preparation AmBisome. The aim of this study was to determine the biodistribution and evaluate the antileishmanial effects of DSHemsPC-AMB-Lip in Leishmania major-infected BALB/c mice. The serum profile and tissue concentrations of AMB were similar in DSHemsPC-AMB-Lip- and AmBisome-treated mice after intravenous (i.v.) injection. Multiple i.v. doses of the micellar formulation of AMB (Fungizone; 1 mg/kg of body weight), DSHemsPC-AMB-Lip (5 mg/kg), and AmBisome (5 mg/kg) were used in L. major-infected BALB/c mouse models of early and established lesions. In a model of the early lesions of cutaneous leishmaniasis (CL), the results indicated that the level of footpad inflammation was significantly (P < 0.001) lower in mice treated with DSHemsPC-AMB-Lip and AmBisome than mice treated with empty liposomes or 5% dextrose. The splenic and footpad parasite load was also significantly (P < 0.001) lower in these groups of mice than in control mice that received 5% DW or free liposome. The in vivo activity of DSHemsPC-AMB-Lip was comparable to that of AmBisome, and both provided improved results compared to those achieved with Fungizone at the designated doses. The results suggest that systemic DSHemsPC-AMB-Lip administration may be useful for the treatment of leishmaniasis, and because it costs less to produce DSHemsPC-AMB-Lip than AmBisome, DSHemsPC-AMB-Lip merits further investigation.
Collapse
|
44
|
Shaw SK, Liu W, Brennan SP, de Lourdes Betancourt-Mendiola M, Smith BD. Non-Covalent Assembly Method that Simultaneously Endows a Liposome Surface with Targeting Ligands, Protective PEG Chains, and Deep-Red Fluorescence Reporter Groups. Chemistry 2017; 23:12646-12654. [PMID: 28736857 DOI: 10.1002/chem.201702649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 12/28/2022]
Abstract
A new self-assembly method is used to rapidly functionalize the surface of liposomes without perturbing the membrane integrity or causing leakage of the aqueous contents. The key molecule is a cholesterol-squaraine-PEG conjugate with three important structural elements: a cholesterol membrane anchor, a fluorescent squaraine docking station that allows rapid and high-affinity macrocycle threading, and a long PEG-2000 chain to provide steric shielding of the decorated liposome. The two-step method involves spontaneous insertion of the conjugate into the outer leaflet of pre-formed liposomes followed by squaraine threading with a tetralactam macrocycle that has appended targeting ligands. A macrocycle with six carboxylates permitted immobilization of intact fluorescent liposomes on the surface of cationic polymer beads, whereas a macrocycle with six zinc(II)-dipicolylamine units enabled selective targeting of anionic membranes, including agglutination of bacteria in the presence of human cells.
Collapse
Affiliation(s)
- Scott K Shaw
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN., 46545, USA
| | - Wenqi Liu
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN., 46545, USA
| | - Seamus P Brennan
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN., 46545, USA
| | | | - Bradley D Smith
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN., 46545, USA
| |
Collapse
|
45
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
46
|
Fan HY, Das D, Heerklotz H. "Staying Out" Rather than "Cracking In": Asymmetric Membrane Insertion of 12:0 Lysophosphocholine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11655-11663. [PMID: 27715063 DOI: 10.1021/acs.langmuir.6b03292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Interactions between detergents and model membranes are well described by the three-stage model: saturation and solubilization boundaries divide bilayer-only, bilayer-micelle coexistence, and micelle-only ranges. An underlying assumption of the model is the equilibration of detergent between the two membrane leaflets. However, many detergents partition asymmetrically at room temperature due to slow flip-flop, such as sodium dodecyl sulfate (SDS) and lysolipids. In this work, we use isothermal titration calorimetry (ITC) and dynamic light scattering (DLS) to investigate the solubilization of unilamellar POPC vesicles by 12:0 lysophosphocholine (12:0 LPC). Flip-flop of 12:0 LPC occurs beyond the time scale of our experiments, which establish a characteristic nonequilibrated state with asymmetric distribution: 12:0 LPC partitions primarily into the outer leaflet. Increasing asymmetry stress in the membrane does not lead to membrane failure, i.e., "cracking in" as seen for alkyl maltosides and other surfactants; instead, it reduces further membrane insertion which leads to the "staying out" of 12:0 LPC in solution. At above the critical micellar concentration of 12:0 LPC in the presence of the membrane, micelles persist and accommodate further LPC but take up lipid from vesicles only very slowly. Ultimately, solubilization proceeds via the micellar mechanism (Kragh-Hansen et al., 1995). With a combination of demicellization and solubilization experiments, we quantify the molar ratio partition coefficient (0.6 ± 0.1 mM-1) and enthalpy of partitioning (6.1 ± 0.3 kJ·mol-1) and estimate the maximum detergent/lipid ratio reached in the outer leaflet (<0.13). Despite the inapplicability of the three-stage model to 12:0 LPC at room temperature, we are able to extract quantitative information from ITC solubilization experiments and DLS that are important for the understanding of asymmetry-dependent processes such as endocytosis and the gating of mechanosensitive channels in vitro.
Collapse
Affiliation(s)
- Helen Y Fan
- Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario, Canada
| | - Dew Das
- Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario, Canada
| | - Heiko Heerklotz
- Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario, Canada
- Institute for Pharmaceutical Sciences, University of Freiburg , Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies , Freiburg, Germany
| |
Collapse
|
47
|
Fatima T, Haque RA, Razali MR, Ahmad A, Iqbal MA, Asif M, Ahamed MBK, Abdul Majid AMS. Synthesis, crystal structure, in vitro anticancer and in vivo acute oral toxicity studies of tetramethylene linked bis-benzimidazolium salts and their respective dinuclear Ag(I)–NHC complexes. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1230670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tabinda Fatima
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Rosenani A. Haque
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Mohd. R. Razali
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Ashfaq Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Muhammad Asif
- EMAN Research and Testing Laboratory, School of Pharmacy, Universiti Sains Malaysia, Penang, Malaysia
| | - Mohamed B Khadeer Ahamed
- EMAN Research and Testing Laboratory, School of Pharmacy, Universiti Sains Malaysia, Penang, Malaysia
| | - A. M. S. Abdul Majid
- EMAN Research and Testing Laboratory, School of Pharmacy, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
48
|
Moles E, Moll K, Ch'ng JH, Parini P, Wahlgren M, Fernàndez-Busquets X. Development of drug-loaded immunoliposomes for the selective targeting and elimination of rosetting Plasmodium falciparum-infected red blood cells. J Control Release 2016; 241:57-67. [PMID: 27620073 DOI: 10.1016/j.jconrel.2016.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 11/20/2022]
Abstract
Parasite proteins exported to the surface of Plasmodium falciparum-parasitized red blood cells (pRBCs) have a major role in severe malaria clinical manifestation, where pRBC cytoadhesion and rosetting processes have been strongly linked with microvascular sequestration while avoiding both spleen filtration and immune surveillance. The parasite-derived and pRBC surface-exposed PfEMP1 protein has been identified as one of the responsible elements for rosetting and, therefore, considered as a promising vaccine candidate for the generation of rosette-disrupting antibodies against severe malaria. However, the potential role of anti-rosetting antibodies as targeting molecules for the functionalization of antimalarial drug-loaded nanovectors has never been studied. Our manuscript presents a proof-of-concept study where the activity of an immunoliposomal vehicle with a dual performance capable of specifically recognizing and disrupting rosettes while simultaneously eliminating those pRBCs forming them has been assayed in vitro. A polyclonal antibody against the NTS-DBL1α N-terminal domain of a rosetting PfEMP1 variant has been selected as targeting molecule and lumefantrine as the antimalarial payload. After 30min incubation with 2μM encapsulated drug, a 70% growth inhibition for all parasitic forms in culture (IC50: 414nM) and a reduction in ca. 60% of those pRBCs with a rosetting phenotype (IC50: 747nM) were achieved. This immunoliposomal approach represents an innovative combination therapy for the improvement of severe malaria therapeutics having a broader spectrum of activity than either anti-rosetting antibodies or free drugs on their own.
Collapse
Affiliation(s)
- Ernest Moles
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, ES-08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Jun-Hong Ch'ng
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden; Department of Microbiology, National University of Singapore, Singapore
| | - Paolo Parini
- Department of Laboratory Medicine (LABMED), H5, Division of Clinical Chemistry, Karolinska Institutet, Huddinge, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, ES-08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| |
Collapse
|
49
|
Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv 2016; 23:3319-3329. [PMID: 27145899 DOI: 10.1080/10717544.2016.1177136] [Citation(s) in RCA: 391] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Liposomes were the first nanoscale drug to be approved for clinical use in 1995. Since then, the technology has grown considerably, and pioneering recent work in liposome-based delivery systems has brought about remarkable developments with significant clinical implications. This includes long-circulating liposomes, stimuli-responsive liposomes, nebulized liposomes, elastic liposomes for topical, oral and transdermal delivery and covalent lipid-drug complexes for improved drug plasma membrane crossing and targeting to specific organelles. While the regulatory bodies' opinion on liposomes is well-documented, current guidance that address new delivery systems are not. This review describes, in depth, the current state-of-the-art of these new liposomal delivery systems and provides a critical overview of the current regulatory landscape surrounding commercialization efforts of higher-level complexity systems, the expected requirements and the hurdles faced by companies seeking to bring novel liposome-based systems for clinical use to market.
Collapse
|
50
|
Loading antimalarial drugs into noninfected red blood cells: an undesirable roommate for Plasmodium. Future Med Chem 2016; 7:837-40. [PMID: 26061102 DOI: 10.4155/fmc.15.35] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|