1
|
Zou Y, Yuan H, Guo Z, Guo T, Fu Z, Wang R, Xu D, Wang Q, Wang T, Chen L. Predicting the Brain-To-Plasma Unbound Partition Coefficient of Compounds via Formula-Guided Network. J Chem Inf Model 2025; 65:5099-5112. [PMID: 40340403 DOI: 10.1021/acs.jcim.5c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Blood-brain barrier (BBB) permeability plays a crucial role in determining drug efficacy in the brain, with the brain-to-plasma unbound partition coefficient (Kp,uu) recognized as a key parameter of BBB permeability in drug development. However, Kp,uu data are scarce and mostly in-house. In predicting Kp,uu the generality and applicability of existing empirical scoring models remain underexplored. To address this, we established a public rat Kp,uu data set through data mining and developed a formula-guided deep learning model, CMD-FGKpuu, which performed well on multiple benchmark tests, marking good demonstration of the potential of deep learning for Kp,uu prediction. Additionally, the model can be fine-tuning with project-specific experimental data, thus improving its practical utility. The findings offer an effective tool for predicting BBB permeability in drug development and introduce a new perspective for applying few-shot learning in the pharmaceutical field.
Collapse
Affiliation(s)
- Yurong Zou
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haolun Yuan
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhongning Guo
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Guo
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyuan Fu
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruihan Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Taijin Wang
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610045, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610045, China
| |
Collapse
|
2
|
Tóth A, Keserű D, Pethő M, Détári L, Bencsik N, Dobolyi Á, Hajnik T. Sleep and local field potential effect of the D2 receptor agonist bromocriptine during the estrus cycle and postpartum period in female rats. Pharmacol Biochem Behav 2024; 239:173754. [PMID: 38537873 DOI: 10.1016/j.pbb.2024.173754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Pituitary lactotrophs are under tonic dopaminergic inhibitory control and bromocriptine treatment blocks prolactin secretion. METHODS Sleep and local field potential were addressed for 72 h after bromocriptine treatments applied during the different stages of the estrus cycle and for 24 h in the early- and middle postpartum period characterized by spontaneously different dynamics of prolactin release in female rats. RESULTS Sleep changes showed strong dependency on the estrus cycle phase of the drug application. Strongest increase of wakefulness and reduction of slow wave sleep- and rapid eye movements sleep appeared during diestrus-proestrus and middle postpartum treatments. Stronger sleep-wake effects appeared in the dark phase in case of the estrus cycle treatments, but in the light phase in postpartum treatments. Slow wave sleep and REM sleep loss in case of estrus cycle treatments was not compensated at all and sleep loss seen in the first day post-injection was gained further later. In opposition, slow wave sleep loss in the light phase after bromocriptine injections showed compensation in the postpartum period treatments. Bromocriptine treatments resulted in a depression of local field potential delta power during slow wave sleep while an enhancement in beta and gamma power during wakefulness regardless of the treatment timing. CONCLUSIONS These results can be explained by the interplay of dopamine D2 receptor agonism, lack of prolactin release and the spontaneous homeostatic sleep drive being altered in the different stages of the estrus cycle and the postpartum period.
Collapse
Affiliation(s)
- Attila Tóth
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary.
| | - Dóra Keserű
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Máté Pethő
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - László Détári
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Norbert Bencsik
- Cellular Neurobiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Árpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Tünde Hajnik
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| |
Collapse
|
3
|
Lee D, Minko T. Nanotherapeutics for Nose-to-Brain Drug Delivery: An Approach to Bypass the Blood Brain Barrier. Pharmaceutics 2021; 13:2049. [PMID: 34959331 PMCID: PMC8704573 DOI: 10.3390/pharmaceutics13122049] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/01/2023] Open
Abstract
Treatment of neurodegenerative diseases or other central nervous system (CNS) disorders has always been a significant challenge. The nature of the blood-brain barrier (BBB) limits the penetration of therapeutic molecules to the brain after oral or parenteral administration, which, in combination with hepatic metabolism and drug elimination and inactivation during its journey in the systemic circulation, decreases the efficacy of the treatment, requires high drug doses and often induces adverse side effects. Nose-to-brain drug delivery allows the direct transport of therapeutic molecules by bypassing the BBB and increases drug concentration in the brain. The present review describes mechanisms of nose-to-brain drug delivery and discusses recent advances in this area with especial emphasis on nanotechnology-based approaches.
Collapse
Affiliation(s)
- David Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
- Environmental and Occupational Health Science Institute, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Dawod A, Osman N, Heikal HS, Ali KA, Kandil OM, Shehata AA, Hafez HM, Mahboub H. Impact of Nano-Bromocriptine on Egg Production Performance and Prolactin Expression in Layers. Animals (Basel) 2021; 11:ani11102842. [PMID: 34679863 PMCID: PMC8532771 DOI: 10.3390/ani11102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Egg production is one of the most vital axes in the poultry industry. During the late laying period, the egg production continuously decreases, and pauses among the sequence of egg laying increases; however, the feed costs remain constant. Several attempts were carried out to improve the reproductive performance of laying hens by decreasing the prolactin level in the blood; an increase in this hormone initiates the onset of incubation behavior in chickens. In this study, we investigated the potential use of nano-bromocriptine to the improve egg production performance in laying hens. The use of alginate-bromocriptine leads to a significant reduction in the prolactin expression in the pituitary gland, which in turn allows the elongation in sequences and reduction in pauses, as well as the feed per dozen egg in laying hens. Further studies are needed to assess the impacts of nano-bromocriptine on other performance parameters. Thus, the improvement of egg production persistency must also go hand in hand with sustainable egg quality and the maintenance of the birds’ health. Abstract The current study aimed to investigate the potential use of nano-bromocriptine in improving the laying performance of late laying hens by modulating the prolactin gene expression. A total of 150 NOVOgen brown laying hens aged 70 weeks were randomly allocated into three groups of 50 birds each. The first group was kept as a control, while the second and the third groups were treated with bromocriptine and nano-bromocriptine, respectively, at a dose of 100 µg/kg body weight per week. The pause days, egg production, feed per dozen egg, and Haugh unit were determined on a monthly basis. Also, the relative prolactin gene expression in the pituitary gland was quantified using qPCR and the number of the ovarian follicles was determined after slaughtering at the 84th week of age. It was found that nano-bromocriptine and bromocriptine improved egg laying performance with minimal pause days, reduced feed per dozen egg, and depressed the relative prolactin gene expression; however, nano-bromocriptine treatment was significantly effective compared to bromocriptine. In conclusion, nano-bromocriptine might be beneficial for elongating sequences and reducing pauses.
Collapse
Affiliation(s)
- Ahmed Dawod
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, Menofia 32897, Egypt; (A.D.); (N.O.); (H.S.H.); (H.M.)
| | - Noha Osman
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, Menofia 32897, Egypt; (A.D.); (N.O.); (H.S.H.); (H.M.)
| | - Hanim S. Heikal
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, Menofia 32897, Egypt; (A.D.); (N.O.); (H.S.H.); (H.M.)
| | - Korany A. Ali
- Center of Excellence for Advanced Science, Advanced Materials and Nanotechnology Group, Applied Organic Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Omaima M. Kandil
- Center of Excellence for Embryo and Genetic Resources Conservation Bank, Department of Animal Reproduction and Artificial Insemination, Veterinary Research Division, National Research Center, Dokki, Giza 12622, Egypt;
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Menofia 32897, Egypt;
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany
| | - Hafez M. Hafez
- Institute of Poultry Diseases, Free University Berlin, 14195 Berlin, Germany
- Correspondence:
| | - Hamada Mahboub
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, Menofia 32897, Egypt; (A.D.); (N.O.); (H.S.H.); (H.M.)
| |
Collapse
|
5
|
Cetin G, Tras B, Uney K. The Effects of P‐glycoprotein Modulators on the Transition of Levofloxacin to Rat Brain, Testicle, and Plasma: In Vivo and In Silico Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202102122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Gul Cetin
- Department of Pharmacology Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24100 Turkey
| | - Bunyamin Tras
- Department of Pharmacology and Toxicology Faculty of Veterinary Medicine Selcuk University Konya 42031 Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology Faculty of Veterinary Medicine Selcuk University Konya 42031 Turkey
| |
Collapse
|
6
|
Schäfer AM, Meyer Zu Schwabedissen HE, Bien-Möller S, Hubeny A, Vogelgesang S, Oswald S, Grube M. OATP1A2 and OATP2B1 Are Interacting with Dopamine-Receptor Agonists and Antagonists. Mol Pharm 2020; 17:1987-1995. [PMID: 32343897 DOI: 10.1021/acs.molpharmaceut.0c00159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interaction with the dopaminergic system in the central nervous system is either therapeutically intended or it is a side effect. In both cases, dopamine-receptor agonists (DRA) like the ergoline derivative bromocriptine and dopamine-receptor antagonists (DRAn) like metoclopramide have to cross the blood-brain barrier (BBB). The organic anion transporting polypeptides (OATP) 1A2 and 2B1 are cellular uptake carriers for a variety of endogenous and xenobiotic compounds. As both transporters are expressed in endothelial cells of the BBB, the aim of the present study was to determine whether the DRA bromocriptine, cabergoline, and pergolide and the DRAn metoclopramide and domperidone are interacting with OATP1A2 and 2B1 and could therefore be candidate genes modifying wanted and unwanted effects of these drugs. Localization of both transporters in the brain was confirmed using LC-MS/MS and immunofluorescence stainings. For the functional studies, MDCKII cells stably expressing OATP1A2 or 2B1 were used. Initial interaction studies with the well-characterized transporter substrate estrone 3-sulfate revealed that all tested compounds except pergolide inhibit the transport function of both proteins with the most potent effect for bromocriptine (IC50 = 2.2 μM (OATP1A2) and IC50 = 2.5 μM (OATP2B1)). Further studies using the indirect competitive counterflow method identified bromocriptine, cabergoline, and domperidone as substrates of both transporters, whereas metoclopramide was only transported by OATP1A2. These findings were verified for domperidone by direct measurements using its tritium-labeled form as a tracer. Moreover, the transporter-mediated uptake of this compound was sensitive to the OATP1A2 and OATP2B1 inhibitor naringin. In conclusion, this study suggests that OATP1A2 and 2B1 may play a role in the uptake of DR agonists and antagonists into the brain.
Collapse
Affiliation(s)
- Anima M Schäfer
- Biopharmacy, Department Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | | | - Sandra Bien-Möller
- Center of Drug Absorption and Transport (C_DAT), Department of Pharmacology and Clinical Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany
| | - Andrea Hubeny
- Center of Drug Absorption and Transport (C_DAT), Department of Pharmacology and Clinical Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany
| | - Silke Vogelgesang
- Department of Pathology, University Medicine Greifswald, 17487 Greifswald, Germany
| | - Stefan Oswald
- Center of Drug Absorption and Transport (C_DAT), Department of Pharmacology and Clinical Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany.,Institute of Pharmacology and Toxicology, Rostock, University Medical Center, 18057 Rostock, Germany
| | - Markus Grube
- Center of Drug Absorption and Transport (C_DAT), Department of Pharmacology and Clinical Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany
| |
Collapse
|
7
|
Santbergen MJC, van der Zande M, Gerssen A, Bouwmeester H, Nielen MWF. Dynamic in vitro intestinal barrier model coupled to chip-based liquid chromatography mass spectrometry for oral bioavailability studies. Anal Bioanal Chem 2020; 412:1111-1122. [PMID: 31865418 PMCID: PMC7007416 DOI: 10.1007/s00216-019-02336-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/19/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022]
Abstract
In oral bioavailability studies, evaluation of the absorption and transport of drugs and food components across the intestinal barrier is crucial. Advances in the field of organ-on-a-chip technology have resulted in a dynamic gut-on-a-chip model that better mimics the in vivo microenvironment of the intestine. Despite a few recent integration attempts, ensuring a biologically relevant microenvironment while coupling with a fully online detection system still represents a major challenge. Herein, we designed an online technique to measure drug permeability and analyse unknown product formation across an intestinal epithelial layer of Caco-2 and HT29-MTX cells cultured on a flow-through Transwell system, while ensuring the quality and relevance of the biological model. Chip-based ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was coupled to the dynamic Transwell system via a series of switching valves, thus allowing alternating measurements of the apical and basolateral sides of the in vitro model. Two trap columns were integrated for online sample pre-treatment and compatibility enhancement. Temporal analysis of the intestinal permeability was successfully demonstrated using verapamil as a model drug and ergotamine epimers as a model for natural toxins present in foods. Evidence was obtained that our newly developed dynamic system provided reliable results versus classical static in vitro models, and moreover, for the first time, epimer-specific transport is shown for ergotamine. Finally, initial experiments with the drug granisetron suggest that metabolic activity can be studied as well, thus highlighting the versatility of the bio-integrated online analysis system developed. Graphical abstract.
Collapse
Affiliation(s)
- Milou J C Santbergen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- TI-COAST, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Meike van der Zande
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Arjen Gerssen
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Michel W F Nielen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Kadioglu O, Efferth T. A Machine Learning-Based Prediction Platform for P-Glycoprotein Modulators and Its Validation by Molecular Docking. Cells 2019; 8:E1286. [PMID: 31640190 PMCID: PMC6829872 DOI: 10.3390/cells8101286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 12/20/2022] Open
Abstract
P-glycoprotein (P-gp) is an important determinant of multidrug resistance (MDR) because its overexpression is associated with increased efflux of various established chemotherapy drugs in many clinically resistant and refractory tumors. This leads to insufficient therapeutic targeting of tumor populations, representing a major drawback of cancer chemotherapy. Therefore, P-gp is a target for pharmacological inhibitors to overcome MDR. In the present study, we utilized machine learning strategies to establish a model for P-gp modulators to predict whether a given compound would behave as substrate or inhibitor of P-gp. Random forest feature selection algorithm-based leave-one-out random sampling was used. Testing the model with an external validation set revealed high performance scores. A P-gp modulator list of compounds from the ChEMBL database was used to test the performance, and predictions from both substrate and inhibitor classes were selected for the last step of validation with molecular docking. Predicted substrates revealed similar docking poses than that of doxorubicin, and predicted inhibitors revealed similar docking poses than that of the known P-gp inhibitor elacridar, implying the validity of the predictions. We conclude that the machine-learning approach introduced in this investigation may serve as a tool for the rapid detection of P-gp substrates and inhibitors in large chemical libraries.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128 Mainz, Germany.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128 Mainz, Germany.
| |
Collapse
|
9
|
Dolgikh E, Watson IA, Desai PV, Sawada GA, Morton S, Jones TM, Raub TJ. QSAR Model of Unbound Brain-to-Plasma Partition Coefficient, K p,uu,brain: Incorporating P-glycoprotein Efflux as a Variable. J Chem Inf Model 2016; 56:2225-2233. [PMID: 27684523 DOI: 10.1021/acs.jcim.6b00229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report development and prospective validation of a QSAR model of the unbound brain-to-plasma partition coefficient, Kp,uu,brain, based on the in-house data set of ∼1000 compounds. We discuss effects of experimental variability, explore the applicability of both regression and classification approaches, and evaluate a novel, model-within-a-model approach of including P-glycoprotein efflux prediction as an additional variable. When tested on an independent test set of 91 internal compounds, incorporation of P-glycoprotein efflux information significantly improves the model performance resulting in an R2 of 0.53, RMSE of 0.57, Spearman's Rho correlation coefficient of 0.73, and qualitative prediction accuracy of 0.8 (kappa = 0.6). In addition to improving the performance, one of the key advantages of this approach is the larger chemical space coverage provided indirectly through incorporation of the in vitro, higher throughput data set that is 4 times larger than the in vivo data set.
Collapse
Affiliation(s)
- Elena Dolgikh
- Global Scientific Informatics, ‡Advanced Analytics, §Computational ADME, ∥IT Informatics and ⊥Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana 46285, United States
| | - Ian A Watson
- Global Scientific Informatics, ‡Advanced Analytics, §Computational ADME, ∥IT Informatics and ⊥Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana 46285, United States
| | - Prashant V Desai
- Global Scientific Informatics, ‡Advanced Analytics, §Computational ADME, ∥IT Informatics and ⊥Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana 46285, United States
| | - Geri A Sawada
- Global Scientific Informatics, ‡Advanced Analytics, §Computational ADME, ∥IT Informatics and ⊥Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana 46285, United States
| | - Stuart Morton
- Global Scientific Informatics, ‡Advanced Analytics, §Computational ADME, ∥IT Informatics and ⊥Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana 46285, United States
| | - Timothy M Jones
- Global Scientific Informatics, ‡Advanced Analytics, §Computational ADME, ∥IT Informatics and ⊥Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana 46285, United States
| | - Thomas J Raub
- Global Scientific Informatics, ‡Advanced Analytics, §Computational ADME, ∥IT Informatics and ⊥Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana 46285, United States
| |
Collapse
|
10
|
Functional Expression of Drug Transporters in Glial Cells. PHARMACOLOGY OF THE BLOOD BRAIN BARRIER: TARGETING CNS DISORDERS 2014; 71:45-111. [DOI: 10.1016/bs.apha.2014.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Mittal D, Ali A, Md S, Baboota S, Sahni JK, Ali J. Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv 2013; 21:75-86. [PMID: 24102636 DOI: 10.3109/10717544.2013.838713] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Now a day's intranasal (i.n) drug delivery is emerging as a reliable method to bypass the blood-brain barrier (BBB) and deliver a wide range of therapeutic agents including both small and large molecules, growth factors, viral vectors and even stem cells to the brain and has shown therapeutic effects in both animals and humans. This route involves the olfactory or trigeminal nerve systems which initiate in the brain and terminate in the nasal cavity at the olfactory neuroepithelium or respiratory epithelium. They are the only externally exposed portions of the central nervous system (CNS) and therefore represent the most direct method of noninvasive entry into the brain. This approach has been primarily used to explore therapeutic avenues for neurological diseases. The potential for treatment possibilities with olfactory transfer of drugs will increase as more effective formulations and delivery devices are developed. Recently, the apomorphine hydrochloride dry powders have been developed for i.n. delivery (Apomorphine nasal, Lyonase technology, Britannia Pharmaceuticals, Surrey, UK). The results of clinical trial Phase III suggested that the prepared formulation had clinical effect equivalent to subcutaneously administered apomorphine. In coming years, intranasal delivery of drugs will demand more complex and automated delivery devices to ensure accurate and repeatable dosing. Thus, new efforts are needed to make this noninvasive route of delivery more efficient and popular, and it is also predicted that in future a range of intranasal products will be used in diagnosis as well as treatment of CNS diseases. This review will embark the existing evidence of nose-to-brain transport. It also provides insights into the most relevant pre-clinical studies of direct nose-brain delivery and delivery devices which will provide relative success of intranasal delivery system. We have, herein, outlined the relevant aspects of CNS drugs given intranasally to direct the brain in treating CNS disorders like Alzheimer's disease, depression, migraine, schizophrenia, etc.
Collapse
Affiliation(s)
- Deepti Mittal
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard , Hamdard Nagar, New Delhi , India
| | | | | | | | | | | |
Collapse
|
12
|
Ashraf T, Kis O, Banerjee N, Bendayan R. Drug Transporters At Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013. [DOI: 10.1007/978-1-4614-4711-5_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Md S, Khan RA, Mustafa G, Chuttani K, Baboota S, Sahni JK, Ali J. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci 2012; 48:393-405. [PMID: 23266466 DOI: 10.1016/j.ejps.2012.12.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/20/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
Abstract
The primary aim of this study was to investigate the potential use of chitosan nanoparticles as a delivery system to enhance the brain targeting efficiency of bromocriptine (BRC) following intranasal (i.n.) administration. The BRC loaded chitosan nanoparticles (CS NPs) were prepared by ionic gelation of CS with tripolyphosphate anions. These NPs had a mean size (161.3 ± 4. 7 nm), zeta potential (+40.3 ± 2.7 mV), loading capacity (37.8% ± 1.8%) and entrapment efficiency (84.2% ± 3.5%). The oral administration of haloperidol (2mg/kg) to mice produced typical Parkinson (PD) symptoms. Catalepsy and akinesia outcomes in animals receiving BRC either in solution or within CS NPs showed a reversal in catalepsy and akinesia behavior when compared to haloperidol treated mice, this reversal being specially pronounced in mice receiving BRC loaded CS NPs. Biodistribution of BRC formulations in the brain and blood of mice following i.n. and intravenous (i.v.) administration was performed using optimized technetium labeled (99mTc-labeled) BRC formulations. The brain/blood ratio of 0.47 ± 0.04, 0.69 ± 0.031, and 0.05 ± 0.01 for BRC solution (i.n.), BRC loaded CS NPs (i.n.) and (i.v.) respectively, at 0.5h are suggestive of direct nose to brain transport bypassing the blood-brain barrier. Gamma scintigraphy imaging of mice brain following i.v. and i.n. administrations were performed to determine the localization of drug in brain. The drug targeting index and direct transport percentage for BRC loaded CS NPs following i.n. route were 6.3 ± 0.8 and 84.2% ± 1.9%. These encouraging results confirmed the development of a novel non-invasive nose to brain delivery system of BRC for the treatment of PD.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110 062, India
| | - Rashid A Khan
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110 062, India
| | - Gulam Mustafa
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110 062, India
| | - Krishna Chuttani
- Department of Radiopharmaceuticals, Institute of Nuclear Medicine and Allied Sciences (INMAS), New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110 062, India
| | - Jasjeet K Sahni
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110 062, India
| | - Javed Ali
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110 062, India.
| |
Collapse
|
14
|
Abstract
P-glycoprotein (P-gp), a transmembrane permeability glycoprotein, is a member of ATP binding cassette (ABC) super family that functions specifically as a carrier mediated primary active efflux transporter. It is widely distributed throughout the body and has a diverse range of substrates. Several vital therapeutic agents are substrates to P-gp and their bioavailability is lowered or a resistance is induced because of the protein efflux. Hence P-gp inhibitors were explored for overcoming multidrug resistance and poor bioavailability problems of the therapeutic P-gp substrates. The sensitivity of drug moieties to P-gp and vice versa can be established by various experimental models in silico, in vitro and in vivo. Ever since the discovery of P-gp, the research plethora identified several chemical structures as P-gp inhibitors. The aim of this review was to emphasize on the discovery and development of newer, inert, non-toxic, and more efficient, specifically targeting P-gp inhibitors, like those among the natural herb extracts, pharmaceutical excipients and formulations, and other rational drug moieties. The applications of cellular and molecular biology knowledge, in silico designed structural databases, molecular modeling studies and quantitative structure-activity relationship (QSAR) analyses in the development of novel rational P-gp inhibitors have also been mentioned.
Collapse
|
15
|
Improving the prediction of the brain disposition for orally administered drugs using BDDCS. Adv Drug Deliv Rev 2012; 64:95-109. [PMID: 22261306 DOI: 10.1016/j.addr.2011.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/08/2011] [Accepted: 12/12/2011] [Indexed: 01/16/2023]
Abstract
In modeling blood-brain barrier (BBB) passage, in silico models have yielded ~80% prediction accuracy, and are currently used in early drug discovery. Being derived from molecular structural information only, these models do not take into account the biological factors responsible for the in vivo outcome. Passive permeability and P-glycoprotein (Pgp, ABCB1) efflux have been successfully recognized to impact xenobiotic extrusion from the brain, as Pgp is known to play a role in limiting the BBB penetration of oral drugs in humans. However, these two properties alone fail to explain the BBB penetration for a significant number of marketed central nervous system (CNS) agents. The Biopharmaceutics Drug Disposition Classification System (BDDCS) has proved useful in predicting drug disposition in the human body, particularly in the liver and intestine. Here we discuss the value of using BDDCS to improve BBB predictions of oral drugs. BDDCS class membership was integrated with in vitro Pgp efflux and in silico permeability data to create a simple 3-step classification tree that accurately predicted CNS disposition for more than 90% of 153 drugs in our data set. About 98% of BDDCS class 1 drugs were found to markedly distribute throughout the brain; this includes a number of BDDCS class 1 drugs shown to be Pgp substrates. This new perspective provides a further interpretation of how Pgp influences the sedative effects of H1-histamine receptor antagonists.
Collapse
|
16
|
Han N, Yan Z, Guo CA, Shen F, Liu J, Shi Y, Zhang Z. Effects of p-glycoprotein on steroid-induced osteonecrosis of the femoral head. Calcif Tissue Int 2010; 87:246-253. [PMID: 20593167 DOI: 10.1007/s00223-010-9385-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 05/23/2010] [Indexed: 02/07/2023]
Abstract
P-glycoprotein (P-gp) activity may play an important role in steroid-induced osteonecrosis of the femoral head (ONF); however, the precise mechanism of its pathogenesis remains unknown. Therefore, we investigated the effects of increased P-gp activity on steroid-induced ONF using a rat model. Rats (n = 60) were treated with either a pharmacological stimulant of P-gp, rifampicin (group A); a suppressant, verapamil (group B); or normal saline (group C) administered in conjunction with methylprednisolone, an inducer of ONF. P-gp activity in bone marrow cells and expression in the femoral head significantly increased in group A (P < 0.05) but decreased in group B (P < 0.05). Likewise, the serum osteocalcin level, trabecular thickness and number, osteoclast and osteoblast numbers, and mean percentage of the epiphyseal ossification center were significantly increased in group A (P < 0.01) but decreased in group B (P < 0.01). In contrast, however, adipocytic variables, trabecular separation, and apoptotic cells decreased in group A (P < 0.01) but increased in group B (P < 0.01). The ONF incidence in group A (50%) and group B (100%) was significantly different from that in the control group C (80%, P < 0.05). Taken together, our findings suggested that enhanced P-gp activity was able to decrease the risk of steroid-induced ONF, possibly by inhibiting adipogenesis and apoptosis in the femoral head.
Collapse
Affiliation(s)
- Ning Han
- Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Kaliszczak M, Antonow D, Patel KI, Howard P, Jodrell DI, Thurston DE, Guichard SM. Optimization of the antitumor activity of sequence-specific pyrrolobenzodiazepine derivatives based on their affinity for ABC transporters. AAPS JOURNAL 2010; 12:617-27. [PMID: 20703960 DOI: 10.1208/s12248-010-9225-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 07/15/2010] [Indexed: 11/30/2022]
Abstract
Pyrrolobenzodiazepine (PBD) derivatives are highly potent sequence-specific DNA cross-linking agents. The present study aimed to identify key physicochemical properties influencing the interaction of a series of PBDs (four dimers and 12 monomers) with the three major human ATP-binding cassette (ABC) transporters (P-gp, ABCG2, and MRP1). Isogenic cell lines expressing P-gp and ABCG2, cell lines with acquired resistance to cytotoxic agents due to the high expression of ABC transporters, and specific inhibitors against P-gp, ABCG2, and MRP1 were used. P-gp and ABCG2 decreased the permeability of the PBD dimers across cell membranes and their interaction with DNA, reducing DNA damage and the overall cytotoxic effect. PBD monomer SG-2823 formed a conjugate with glutathione and interacted with MRP1, reducing its cytotoxic effect in A549 cells. Structure-activity relationship revealed that the interaction of PBDs with the transporters could be predicted considering the molecular weight, the lipophilicity, the number of (N + O) atoms and aromatic rings, the polar surface area, the hydrogen bonding energy, and electrophilic centers. A rational design of novel PBDs with increased potency and reduced interaction with the ABC transporters is proposed.
Collapse
|
18
|
Stamatovic SM, Keep RF, Andjelkovic AV. Brain endothelial cell-cell junctions: how to "open" the blood brain barrier. Curr Neuropharmacol 2010; 6:179-92. [PMID: 19506719 PMCID: PMC2687937 DOI: 10.2174/157015908785777210] [Citation(s) in RCA: 375] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 03/10/2008] [Accepted: 04/02/2008] [Indexed: 01/19/2023] Open
Abstract
The blood-brain barrier (BBB) is a highly specialized structural and biochemical barrier that regulates the entry of blood-borne molecules into brain, and preserves ionic homeostasis within the brain microenvironment. BBB properties are primarily determined by junctional complexes between the cerebral endothelial cells. These complexes are comprised of tight and adherens junctions. Such restrictive angioarchitecture at the BBB reduces paracellular diffusion, while minimal vesicle transport activity in brain endothelial cells limits transcellular transport. Under normal conditions, this largely prevents the extravasation of large and small solutes (unless specific transporters are present) and prevents migration of any type of blood-borne cell. However, this is changed in many pathological conditions. There, BBB disruption (“opening”) can lead to increased paracellular permeability, allowing entry of leukocytes into brain tissue, but also contributing to edema formation. In parallel, there are changes in the endothelial pinocytotic vesicular system resulting in the uptake and transfer of fluid and macromolecules into brain parenchyma. This review highlights the route and possible factors involved in BBB disruption in a variety of neuropathological disorders (e.g. CNS inflammation, Alzheimer’s disease, Parkinson’s disease, epilepsy). It also summarizes proposed signal transduction pathways that may be involved in BBB “opening”.
Collapse
|
19
|
Han N, Yan Z, Guo C, Shen F, Liu J, Shi Y, Zhang Z. Effect of rifampicin on the risk of steroid-induced osteonecrosis of the femoral head. Orthop Surg 2010; 2:124-133. [PMID: 22009927 PMCID: PMC6583595 DOI: 10.1111/j.1757-7861.2010.00075.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 01/14/2010] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To investigate the effects and possible mechanism of rifampicin on steroid-induced osteonecrosis of the femoral head (ONFH). METHODS Bone marrow stromal cells (BMSC) separated from male rats were cultured in vitro without any treatment (Group mA), exposed to dexamethasone (Group mB), treated with rifampicin (Group mC), and exposed to dexamethasone and rifampicin simultaneously (Group mD) respectively (n = 5 in each group). After 7 days, P-glycoprotein (P-gp) activity and adipogenesis of the BMSC were evaluated. In an in vivo experiment, 80 rats were randomly divided into 4 groups (n= 20 in each group). Group A received intragastric saline for 5 weeks. Group B received intragastric saline for one week, followed by subcutaneous methylprednisolone and saline for 4 weeks. Group C received intragastric rifampicin for 5 weeks. Group D received intragastric rifampicin for one week, followed by subcutaneous methylprednisolone and rifampicin for 4 weeks. At the end of the experiment, all rats underwent analysis of P-gp activity of BMSC, P-gp expression in the femoral heads, MRI and histomorphometry of the femoral heads. RESULTS In vitro, the P-gp activity of BMSC increased and lipid accumulation decreased significantly in Group mD, compared to Group mB. In vivo, P-gp activity and P-gp expression in Group D increased compared to Group B. The mean area of MRI abnormal signal, adipocytic variables and apoptotic cells in Group D decreased, mean percentage of the whole epiphysis made up by the epiphyseal ossification center and trabecular structure variables improved compared to those in Group B. The incidence of ONFH was lower in Group D (50%) than in Group B (80%). CONCLUSION Rifampicin may decrease the risk of steroid-induced ONFH by enhancing P-gp activity, thus preventing steroid-induced BMSC adipogenesis.
Collapse
Affiliation(s)
- Ning Han
- Zhongshan Hospital of Fudan University
| | - Zuo‐qin Yan
- Zhongshan Hospital of Fudan University
- Shanghai Medical College of Fudan University and
| | | | - Feng Shen
- Zhongshan Hospital of Fudan University
| | - Jun Liu
- Zhongshan Hospital of Fudan University
| | - Yu‐xing Shi
- the Affiliated Public Health Clinical Center of Fudan University, Shanghai, China
| | - Zhi‐yong Zhang
- the Affiliated Public Health Clinical Center of Fudan University, Shanghai, China
| |
Collapse
|
20
|
Vautier S, Fernandez C. ABCB1: the role in Parkinson's disease and pharmacokinetics of antiparkinsonian drugs. Expert Opin Drug Metab Toxicol 2010; 5:1349-58. [PMID: 19663741 DOI: 10.1517/17425250903193079] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABCB1/P-glycoprotein (P-gp) is an ATP-dependant transmembrane efflux protein widely expressed in human organs and plays a protective role against endogenous and exogenous substances. It is involved in drug pharmacokinetics affecting drug absorption, disposition and elimination. At the BBB level, due to its luminal localisation, ABCB1 limits drug transport and is important in central detoxification. Inter-individual variability has been described in ABCB1 expression and functionality. Recent work suggests that variability may play a role in the pathogenesis of neurological diseases. Furthermore, ABCB1 expression and/or functionality may modify drug efficacy or increase central adverse events. This paper reviews ABCB1 implication in the pathophysiology of Parkinson's disease and its role in the cerebral distribution of drugs.
Collapse
Affiliation(s)
- Sarah Vautier
- University Paris-Sud XI, Department of Clinical Pharmacy, Chatenay-Malabry, France.
| | | |
Collapse
|
21
|
Vautier S, Milane A, Fernandez C, Buyse M, Chacun H, Farinotti R. Interactions between antiparkinsonian drugs and ABCB1/P-glycoprotein at the blood–brain barrier in a rat brain endothelial cell model. Neurosci Lett 2008; 442:19-23. [DOI: 10.1016/j.neulet.2008.06.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 06/09/2008] [Accepted: 06/14/2008] [Indexed: 11/28/2022]
|
22
|
The exploration of rotenone as a toxin for inducing Parkinson's disease in rats, for application in BBB transport and PK–PD experiments. J Pharmacol Toxicol Methods 2008; 57:114-30. [DOI: 10.1016/j.vascn.2007.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 10/30/2007] [Indexed: 12/21/2022]
|
23
|
Milane A, Fernandez C, Vautier S, Bensimon G, Meininger V, Farinotti R. Minocycline and riluzole brain disposition: interactions with p-glycoprotein at the blood-brain barrier. J Neurochem 2007; 103:164-73. [PMID: 17635670 DOI: 10.1111/j.1471-4159.2007.04772.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative fatal disease. The only drug recognized to increase the survival time is riluzole(RLZ). In animal models, minocycline (MNC) delayed the onset of the disease and increased the survival time (in combination with RLZ). The objective of our work was to study the interactions between RLZ, MNC and the efflux pump p-glycoprotein (p-gp) at the blood-brain barrier. We investigated these two drugs as: (i) p-gp substrates by comparing their brain uptake in CF1 mdr1a (-/-) and mdr1a (+/+) mice, (ii) p-gp modulators by studying their effect on the cerebral uptake of digoxin. mdr1a (-/-) mice showed higher brain uptake of MNC and RLZ than mdr1a (+/+) (in a 1.6- and 1.4-fold, respectively); and in mdr1a (+/+) mice pre-treated with repeated doses of MNC, brain uptake of digoxin was increased. When both drugs were administrated to mdr1a (+/+) mice, MNC increased the brain uptake of RLZ in a 2.1-fold. In conclusion, MNC and RLZ are both p-gp substrates. MNC is also a p-gp inhibitor and increases the brain diffusion of RLZ. In vitro experiments with the GPNT cell line confirmed these results. These interactions should be taken into account in the design of future clinical trials.
Collapse
Affiliation(s)
- Aline Milane
- Department of Clinical Pharmacy, Barrières et Passage des Médicaments, Faculty of Pharmacy, University of Paris Sud, Chatenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
24
|
Willmann S, Edginton AN, Dressman JB. Development and Validation of a Physiology-based Model for the Prediction of Oral Absorption in Monkeys. Pharm Res 2007; 24:1275-82. [PMID: 17373575 DOI: 10.1007/s11095-007-9247-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE The development and validation of a physiology-based absorption model for orally administered drugs in monkeys is described. MATERIALS AND METHODS Physiological parameters affecting intestinal transit and absorption of an orally administered drug in monkeys have been collected from the literature and implemented in a physiological model for passive absorption previously developed for rats and humans. Predicted fractions of dose absorbed have been compared to experimentally observed values for a set of N = 37 chemically diverse drugs. A sensitivity analysis was performed to assess the influence of various physiological model parameters on the predicted fraction dose absorbed. RESULTS A Pearson's correlation coefficient of 0.94 (95% confidence interval: [0.88, 0.97]; p < 0.0001) between the predicted and observed fraction dose absorbed in monkeys was obtained for compounds undergoing non-solubility limited passive absorption (N = 29). The sensitivity analysis revealed that the predictions of fractions dose absorbed in monkeys are very sensitive with respect to inter-individual variations of the small intestinal transit time. CONCLUSIONS The model is well suited to predict the fraction dose absorbed of passively absorbed compounds after oral administration and to assess the influence of inter-individual physiological variability on oral absorption in monkeys.
Collapse
Affiliation(s)
- Stefan Willmann
- Bayer Technology Services GmbH, Process Technology/Systems Biology, Building E41, Leverkusen, Germany.
| | | | | |
Collapse
|
25
|
Dirson G, Fernandez C, Hindlet P, Roux F, German-Fattal M, Gimenez F, Farinotti R. Efavirenz does not interact with the ABCB1 transporter at the blood-brain barrier. Pharm Res 2006; 23:1525-32. [PMID: 16779703 DOI: 10.1007/s11095-006-0279-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 02/24/2006] [Indexed: 01/11/2023]
Abstract
PURPOSE This work characterizes the interactions between efavirenz (EFV) and P-glycoprotein (P-gp/ABCB1) at the blood-brain barrier (BBB) and predicts the possible consequences on the brain uptake of coadministered P-gp substrates. METHODS The uptake of EFV was measured in whole brains of rat and mdr1a-/- and mdr1a+/+ mice, and in GPNT cells (rat brain endothelial cell line) with and without P-gp inhibitors (PSC833, S9788, Quinidine). The effect of a single dose or multiple doses of EFV on the P-gp functionality was evaluated in vivo and in vitro by measuring the brain and cell uptake of digoxin, completed by the analysis of the P-gp expression at the rat BBB after repeated administrations of EFV. RESULTS Inhibition of P-gp did not alter the uptake of EFV in rat brain and GPNT cells. The EFV brain/plasma ratio in mdr1a-/- mice, lacking the expression of P-gp, was not different from that in mdr1a+/+ mice. Moreover, a single dose of EFV did not modify the uptake of digoxin in rat brain and GPNT cells. Finally, the 3-day exposure of GPNT cells to EFV did not have any effect on the uptake of digoxin. Similarly, the 7-day treatment with EFV did not change the uptake of digoxin in rat brain nor the expression of P-gp at the BBB. CONCLUSION EFV is strongly distributed in the brain, but is neither a substrate nor an inhibitor of the P-gp at the blood-brain barrier. On the other hand, EFV did not induce P-gp, allowing to sustain the brain accumulation of associated P-gp substrates such as protease inhibitors. These findings make EFV suitable for combinations circumventing the brain HIV-1 residency.
Collapse
Affiliation(s)
- Grégoire Dirson
- Clinical Pharmacy Unit (EA 2706; Barrières et passage des medicaments), University of Paris-Sud XI, 5 rue Jean-Baptiste Clément, Châtenay-Malabry, 92296, France
| | | | | | | | | | | | | |
Collapse
|