1
|
Taheri Z, Mozafari N, Moradian G, Lovison D, Dehshahri A, De Marco R. Integrin-Specific Stimuli-Responsive Nanomaterials for Cancer Theranostics. Pharmaceutics 2024; 16:1441. [PMID: 39598564 PMCID: PMC11597626 DOI: 10.3390/pharmaceutics16111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Cancer is one of the leading causes of death worldwide. The tumor microenvironment makes the tumor difficult to treat, favoring drug resistance and the formation of metastases, resulting in death. Methods: Stimuli-responsive nanoparticles have shown great capacity to be used as a powerful strategy for cancer treatment, diagnostic, as well as theranostic. Nanocarriers are not only able to respond to internal stimuli such as oxidative stress, weakly acidic pH, high temperature, and the high expression of particular enzymes, but also to external stimuli such as light and paramagnetic characteristics to be exploited. Results: In this work, stimulus-responsive nanocarriers functionalized with arginine-glycine-aspartic acid (Arg-Gly-Asp) sequence as well as mimetic sequences with the capability to recognize integrin receptors are analyzed. Conclusions: This review highlights the progress that has been made in the development of new nanocarriers, capable of responding to endogenous and exogenous stimuli essential to combat cancer.
Collapse
Affiliation(s)
- Zahra Taheri
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran; (Z.T.); (N.M.)
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran;
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran; (Z.T.); (N.M.)
| | - Ghazal Moradian
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran;
| | - Denise Lovison
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy;
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran
| | - Rossella De Marco
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy;
| |
Collapse
|
2
|
Tincu (Iurciuc) CE, Andrițoiu CV, Popa M, Ochiuz L. Recent Advancements and Strategies for Overcoming the Blood-Brain Barrier Using Albumin-Based Drug Delivery Systems to Treat Brain Cancer, with a Focus on Glioblastoma. Polymers (Basel) 2023; 15:3969. [PMID: 37836018 PMCID: PMC10575401 DOI: 10.3390/polym15193969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant tumor, and the most prevalent primary malignant tumor affecting the brain and central nervous system. Recent research indicates that the genetic profile of GBM makes it resistant to drugs and radiation. However, the main obstacle in treating GBM is transporting drugs through the blood-brain barrier (BBB). Albumin is a versatile biomaterial for the synthesis of nanoparticles. The efficiency of albumin-based delivery systems is determined by their ability to improve tumor targeting and accumulation. In this review, we will discuss the prevalence of human glioblastoma and the currently adopted treatment, as well as the structure and some essential functions of the BBB, to transport drugs through this barrier. We will also mention some aspects related to the blood-tumor brain barrier (BTBB) that lead to poor treatment efficacy. The properties and structure of serum albumin were highlighted, such as its role in targeting brain tumors, as well as the progress made until now regarding the techniques for obtaining albumin nanoparticles and their functionalization, in order to overcome the BBB and treat cancer, especially human glioblastoma. The albumin drug delivery nanosystems mentioned in this paper have improved properties and can overcome the BBB to target brain tumors.
Collapse
Affiliation(s)
- Camelia-Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Apitherapy Medical Center, Balanesti, Nr. 336-337, 217036 Gorj, Romania;
- Specialization of Nutrition and Dietetics, Faculty of Pharmacy, Vasile Goldis Western University of Arad, Liviu Rebreanu Street, 86, 310045 Arad, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| |
Collapse
|
3
|
Kim HS, Kang JH, Jang J, Lee EJ, Kim JH, Byun J, Shin US. Dual stimuli-responsive mesoporous silica nanoparticles for efficient loading and smart delivery of doxorubicin to cancer with RGD-integrin targeting. Eur J Pharm Sci 2023; 188:106525. [PMID: 37437854 DOI: 10.1016/j.ejps.2023.106525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
The recent progress in nanoparticle applications, such as tumor-targeting, has enabled specific delivery of chemotherapeutics to malignant tissues with enhanced local efficacy while limiting side effects. However, existing delivery systems leave much room for improvement in terms of achieving enhanced colloidal stability in fluid medium, efficient targeting of intended sites, and effective release of therapeutic drugs into diseased cells. Here, an efficient stimuli-responsive nanocarrier for mammalian cells, termed RGD-NAMs, was developed, which enabled temperature- and pH-sensitive release of drug loads. The RGD-NAMs comprise two parts: a stimuli-responsive copolymer shell (NIBIm-AA-RGD) and drug-container core (MSNs). The RGD-NAMs have a stable drug-loading capacity with a marked difference in the release rate depending on the temperature and pH conditions. The RGD-NAMs also exhibit high colloidal stability in SBF (Stimulated body fluid) solutions and minimal toxicity in skeletal myoblasts (C2C12) and bovine arterial endothelial cells (BAEC). The doxorubicin-loaded RGD-NAMs induced a cytotoxic effect in a dose-dependent manner, which was furthered by an increase in temperature from 37 to 40 °C. Moreover, significant control of the release rate and the amount were achieved through pH change. This novel, smart drug-delivery system with high responsiveness to temperature and pH changes has wide application prospects in biomedical fields, including the theragnosis of tumors and vascular diseases.
Collapse
Affiliation(s)
- Han-Sem Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea
| | - Ji-Hye Kang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Republic of Korea
| | - JunHwee Jang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Republic of Korea
| | - Eun-Jung Lee
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Republic of Korea
| | - Jin Hee Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Republic of Korea; Department of Molecular Biology, Division of Biological Sciences, Institute of Nanosensor and Biotechnology, Dankook University, Cheonan-si, Chungnam, 31116, Republic of Korea
| | - Jonghoe Byun
- Department of Molecular Biology, Division of Biological Sciences, Institute of Nanosensor and Biotechnology, Dankook University, Cheonan-si, Chungnam, 31116, Republic of Korea.
| | - Ueon Sang Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Republic of Korea.
| |
Collapse
|
4
|
Robb R, Kuo JCT, Liu Y, Corrales-Guerrero S, Cui T, Hegazi A, Nagy G, Lee RJ, Williams TM. A novel protein-drug conjugate, SSH20, demonstrates significant efficacy in caveolin-1-expressing tumors. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:555-564. [PMID: 34553040 PMCID: PMC8433067 DOI: 10.1016/j.omto.2021.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022]
Abstract
In recent years, human serum albumin (HSA) has been characterized as an ideal drug carrier in the cancer arena. Caveolin-1 (Cav-1) has been established as the principal structural protein of caveolae and, thus, critical for caveolae-mediated endocytosis. Cav-1 has been shown to be overexpressed in cancers of the lung and pancreas, among others. We found that Cav-1 expression plays a critical role in both HSA uptake and response to albumin-based chemotherapies. As such, developing a novel albumin-based chemotherapy that is more selective for tumors with high Cav-1 expression or high levels of caveolar-endocytosis could have significant implications in biomarker-directed therapy. Herein, we present the development of a novel and effective HSA-SN-38 conjugate (SSH20). We find that SSH20 uptake decreases significantly by immunofluorescence assays and western blotting after silencing of Cav-1 expression through RNA interference. Decreased drug sensitivity occurs in Cav-1-depleted cells using cytotoxicity assays. Importantly, we find significantly reduced sensitivity to SSH20 in Cav-1-silenced tumors compared to Cav-1-expressing tumors in vivo. Notably, we show that SSH20 is significantly more potent than irinotecan in vitro and in vivo. Together, we have developed a novel HSA-conjugated chemotherapy that is potent, effective, safe, and demonstrates improved efficacy in high Cav-1-expressing tumors.
Collapse
Affiliation(s)
- Ryan Robb
- University of North Carolina, Chapel Hill, NC, USA
| | - Jimmy Chun-Tien Kuo
- Division of Pharmaceutics and Pharmacology, The Ohio State University, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Yang Liu
- Division of Pharmaceutics and Pharmacology, The Ohio State University, 500 W. 12 Ave., Columbus, OH 43210, USA
| | | | - Tiantian Cui
- Department of Radiation Oncology, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Ahmad Hegazi
- Division of Pharmaceutics and Pharmacology, The Ohio State University, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Gregory Nagy
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, The Ohio State University, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Terence M Williams
- Department of Radiation Oncology, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Chiang CL, Cheng MH, Lin CH. From Nanoparticles to Cancer Nanomedicine: Old Problems with New Solutions. NANOMATERIALS 2021; 11:nano11071727. [PMID: 34209111 PMCID: PMC8308137 DOI: 10.3390/nano11071727] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Anticancer nanomedicines have been studied over 30 years, but fewer than 10 formulations have been approved for clinical therapy today. Despite abundant options of anticancer drugs, it remains challenging to have agents specifically target cancer cells while reducing collateral toxicity to healthy tissue. Nanocompartments that can be selective toward points deeply within malignant tissues are a promising concept, but the heterogeneity of tumor tissue, inefficiency of cargo loading and releasing, and low uniformity of manufacture required from preclinical to commercialization are major obstacles. Technological advances have been made in this field, creating engineered nanomaterials with improved uniformity, flexibility of cargo loading, diversity of surface modification, and less inducible immune responses. This review highlights the developmental process of approved nanomedicines and the opportunities for novel materials that combine insights of tumors and nanotechnology to develop a more effective nanomedicine for cancer patients.
Collapse
Affiliation(s)
- Chi-Ling Chiang
- Comprehensive Cancer Center, Division of Hematology, Ohio State University, Columbus, OH 43202, USA;
- NSEC Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, OH 43202, USA
| | - Ming-Huei Cheng
- Center of Lymphedema Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Hsin Lin
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Muttaqien SE, Nomoto T, Dou X, Takemoto H, Matsui M, Nishiyama N. Photodynamic therapy using LCST polymers exerting pH-responsive isothermal phase transition. J Control Release 2020; 328:608-616. [DOI: 10.1016/j.jconrel.2020.09.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022]
|
7
|
Asghar K, Qasim M, Dharmapuri G, Das D. Thermoresponsive polymer gated and superparamagnetic nanoparticle embedded hollow mesoporous silica nanoparticles as smart multifunctional nanocarrier for targeted and controlled delivery of doxorubicin. NANOTECHNOLOGY 2020; 31:455604. [PMID: 32311684 DOI: 10.1088/1361-6528/ab8b0e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design and development of drug-delivery nanocarriers with high loading capacity, excellent biocompatibility, targeting ability and controllability have been the ultimate goal of the biomedical research community. In this work, we have reported the synthesis and characterization of novel and smart thermoresponsive polymer coated and Fe3O4 embedded hollow mesoporous silica (HmSiO2) based multifunctional superparamagnetic nanocarriers for the delivery of doxorubicin (Dox) for cancer treatment. P(NIPAM-MAm) coated and Fe3O4 nanoparticle (NP) embedded hollow mesoporous silica nanocomposite (HmSiO2-F-P(NIPAM-MAm)) was prepared by the in situ polymerization of NIPAM and MAm monomers on the surface of hollow mesoporous silica NPs (HmSiO2) in the presence of Fe3O4 NPs, oxidizer and crosslinker. TEM analysis showed nearly spherical morphology of HmSiO2-F-P(NIPAM-MAm) nanocarrier with a diameter in the range of 100-300 nm. The coating of P(NIPAM-MAm) layer and embedding of Fe3O4 NPs on the surface of the HmSiO2 NPs was revealed by HRTEM analysis. XRD and FTIR analysis also confirmed the presence of P(NIPAM-MAm) shells and Fe3O4 NPs on hollow mesoporous silica NPs. VSM analysis suggested the superparamagnetic nature of HmSiO2-F-P(NIPAM-MAm) nanocarrier. DSC analysis of HmSiO2-F-P(NIPAM-MAm) nanocarrier showed a phase transition at the temperature of ∼38 °C. The prepared HmSiO2-F-P(NIPAM-MAm) nanocarrier was investigated for its suitability for drug-delivery application using doxorubicin as the model drug by an in vitro method. The encapsulation efficiency and encapsulation capacity were found to be 95% and 6.8%, respectively. HmSiO2-F-P(NIPAM-MAm)-Dox has shown a pH and temperature-dependent Dox release profile. A relatively faster release of Dox from the nanocarrier was observed at temperature above the lower critical solution temperature (LCST) than below the LCST. HmSiO2-F-P(NIPAM-MAm) nanocarrier was found to be biocompatible in nature. In vitro cytotoxicity studies against Hela cells suggested that the HmSiO2-F-P(NIPAM-MAm)-Dox nanocomposite nanocarrier has good anticancer activity. In vitro cellular uptake study of HmSiO2-F-P(NIPAM-MAm)-Dox nanocomposite nanocarrier demonstrated its good internalisation ability into Hela cells. Thus, the prepared nanocomposites show potential as nanocarrier for targeted and controlled drug delivery for cancer treatment.
Collapse
Affiliation(s)
- Khushnuma Asghar
- School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046, India
| | | | | | | |
Collapse
|
8
|
Farjadian F, Ghasemi S, Andami Z, Tamami B. Thermo-responsive nanocarrier based on poly(N-isopropylacrylamide) serving as a smart doxorubicin delivery system. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00785-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Cheng Y, Lu T, Wang Y, Song Y, Wang S, Lu Q, Yang L, Tan F, Li J, Li N. Glutathione-Mediated Clearable Nanoparticles Based on Ultrasmall Gd2O3 for MSOT/CT/MR Imaging Guided Photothermal/Radio Combination Cancer Therapy. Mol Pharm 2019; 16:3489-3501. [DOI: 10.1021/acs.molpharmaceut.9b00332] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yu Cheng
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Tong Lu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yidan Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yilin Song
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Siyu Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qianglan Lu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Lifang Yang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fengping Tan
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jiao Li
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Lu L, Shen X, Tao B, Lin C, Li K, Luo Z, Cai K. The nanoparticle-facilitated autophagy inhibition of cancer stem cells for improved chemotherapeutic effects on glioblastomas. J Mater Chem B 2019; 7:2054-2062. [DOI: 10.1039/c8tb03165g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Paclitaxel (PTX) and chloroquine (CQ) loaded bovine serum albumin (BSA) nanoparticles can achieve efficient glioma therapyviaautophagy inhibition.
Collapse
Affiliation(s)
- Lu Lu
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Xinkun Shen
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Bailong Tao
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Chuanchuan Lin
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Ke Li
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Zhong Luo
- School of Life Science
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Kaiyong Cai
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| |
Collapse
|
11
|
Begum R, Farooqi ZH, Ahmed E, Sharif A, Wu W, Irfan A. Fundamentals and applications of acrylamide based microgels and their hybrids: a review. RSC Adv 2019; 9:13838-13854. [PMID: 35519604 PMCID: PMC9064016 DOI: 10.1039/c9ra00699k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Recent advances in synthesis, characterization and applications of acrylamide based polymer microgels and their hybrids are discussed for further development in this area.
Collapse
Affiliation(s)
- Robina Begum
- Institute of Chemistry
- University of the Punjab
- Lahore 54590
- Pakistan
- Centre for Undergraduate Studies
| | | | - Ejaz Ahmed
- Institute of Chemistry
- University of the Punjab
- Lahore 54590
- Pakistan
| | - Ahsan Sharif
- Institute of Chemistry
- University of the Punjab
- Lahore 54590
- Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Ahmad Irfan
- Research Center for Advance Materials Science
- King Khalid University
- Abha 61413
- Saudi Arabia
- Department of Chemistry
| |
Collapse
|
12
|
Kuo YC, Chang YH, Rajesh R. Targeted delivery of etoposide, carmustine and doxorubicin to human glioblastoma cells using methoxy poly(ethylene glycol)‑poly(ε‑caprolactone) nanoparticles conjugated with wheat germ agglutinin and folic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:114-128. [PMID: 30606517 DOI: 10.1016/j.msec.2018.10.094] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/25/2018] [Accepted: 10/30/2018] [Indexed: 11/19/2022]
Abstract
Wheat germ agglutinin (WGA) and folic acid (FA)-grafted methoxy poly(ethylene glycol) (MPEG)‑poly(ε‑caprolactone) (PCL) nanoparticles (WFNPs) were applied to transport anticancer drugs across the blood-brain barrier and treat glioblastoma multiforme (GBM). PCL was copolymerized with MPEG, and MPEG-PCL NPs were stabilized with pluronic F127 using a microemulsion-solvent evaporation technique and crosslinked with WGA and FA. The targeting ability of WFNPs loaded with etoposide (ETO), carmustine (BCNU) and doxorubicin (DOX) was investigated via the binding affinity of drug-loaded NP formulations to N‑acetylglucosamine expressed in human brain microvascular endothelial cells and to folate receptor in malignant U87MG cells. We found that a shorter PCL chain in drug-loaded MPEG-PCL NPs yielded a smaller average size of the particles. An increase in PCL chain length (stronger hydrophobicity) enhanced drug entrapment efficiencies in MPEG-PCL NPs, and reduced drug-releasing rates from NP formulations. In addition, anti-proliferative activity against U87MG cells for the 3 drugs followed the order of WFNPs > FA-grafted NPs > WGA-grafted NPs > MPEG-PCL NPs. Immunofluorescence staining revealed that the ligands of drug-loaded WFNPs connected to N‑acetylglucosamine and folate receptor with the help of surface WGA and FA. WFNPs carrying ETO, BCNU and DOX acted as dual-targeting nanocarriers, and their use can be a promising approach to inhibiting GBM growth in the brain.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, Republic of China.
| | - Yu-Hsuan Chang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, Republic of China
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, Republic of China
| |
Collapse
|
13
|
Zheng Q, He Y, Tang Q, Wang Y, Zhang N, Liu J, Liu Q, Zhao S, Hu P. An NIR-Guided Aggregative and Self-Immolative Nanosystem for Efficient Cancer Targeting and Combination Anticancer Therapy. Mol Pharm 2018; 15:4985-4994. [DOI: 10.1021/acs.molpharmaceut.8b00599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiang Zheng
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, China
| | - Yun He
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, China
| | - Qing Tang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, China
| | - Yanfang Wang
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang 832008, PR China
| | - Ning Zhang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, China
| | - Jin Liu
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, China
| | - Qiang Liu
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, China
| | - Sheng Zhao
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, China
| | - Ping Hu
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, China
| |
Collapse
|
14
|
Khan J, Siddiq M, Akram B, Ashraf MA. In-situ synthesis of CuO nanoparticles in P(NIPAM-co-AAA) microgel, structural characterization, catalytic and biological applications. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2017.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
15
|
Hoogenboezem EN, Duvall CL. Harnessing albumin as a carrier for cancer therapies. Adv Drug Deliv Rev 2018; 130:73-89. [PMID: 30012492 PMCID: PMC6200408 DOI: 10.1016/j.addr.2018.07.011] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Serum albumin, a natural ligand carrier that is highly concentrated and long-circulating in the blood, has shown remarkable promise as a carrier for anti-cancer agents. Albumin is able to prolong the circulation half-life of otherwise rapidly cleared drugs and, importantly, promote their accumulation within tumors. The applications for using albumin as a cancer drug carrier are broad and include both traditional cancer chemotherapeutics and new classes of biologics. Strategies for leveraging albumin for drug delivery can be classified broadly into exogenous and in situ binding formulations that utilize covalent attachment, non-covalent association, or encapsulation in albumin-based nanoparticles. These methods have shown remarkable preclinical and clinical successes that are examined in this review.
Collapse
Affiliation(s)
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN.
| |
Collapse
|
16
|
|
17
|
Kudarha RR, Sawant KK. Albumin based versatile multifunctional nanocarriers for cancer therapy: Fabrication, surface modification, multimodal therapeutics and imaging approaches. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:607-626. [DOI: 10.1016/j.msec.2017.08.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 12/30/2022]
|
18
|
Fei X, Li S, Cao L, Zhang B, Yu M. Multifunctional polymer drug loading system with pH-sensitive, fluorescent and targeting property. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1151-1159. [DOI: 10.1016/j.msec.2017.04.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 01/17/2023]
|
19
|
Chakraborty S, Dhakshinamurthy GS, Misra SK. Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications. J Biomed Mater Res A 2017. [PMID: 28643475 DOI: 10.1002/jbm.a.36141] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanotechnology has emerged strongly as a viable option to overcome the challenge of early diagnosis and effective drug delivery, for cancer treatment. Emerging research articles have expounded the advantages of using a specific type of nanomaterial-based system called as "nanocarriers," for anti-cancer therapy. The nanocarrier system is used as a transport unit for targeted drug delivery of the therapeutic drug moiety. In order for the nanocarriers to be effective for anticancer therapy, their physicochemical parameter needs to be tuned so that bio-functionalisation can be achieved to (1) allow drugs being attached to the substrate and for their controlled release, (2) ensure the stability of the nanocarrier up to the point of delivery, and (3) clearance of the nanocarrier after the delivery. It is therefore envisaged that tailoring of the physicochemical properties of nanocarriers can greatly influence their reactivity and interaction in the biological milieu, and this is becoming an important parameter for increasing the efficacy of cancer therapy. This review emphasizes the importance of physicochemical properties of nanocarriers, and how they influence its usage as chemotherapeutic drug carriers. The goal of this review is to present a correlation between the physicochemical properties of the nanocarriers and its intended action, and how their design based on these properties can enhance their cancer combating abilities while minimizing damage to the healthy tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2906-2928, 2017.
Collapse
Affiliation(s)
- Swaroop Chakraborty
- Biological Engineering, Indian Institute of Technology-Gandhinagar, Ahmedabad, 382424, India
| | | | - Superb K Misra
- Materials Science and Engineering, Indian Institute of Technology-Gandhinagar, Ahmedabad, 382424, India
| |
Collapse
|
20
|
|
21
|
Jiang Y, Wong S, Chen F, Chang T, Lu H, Stenzel MH. Influencing Selectivity to Cancer Cells with Mixed Nanoparticles Prepared from Albumin–Polymer Conjugates and Block Copolymers. Bioconjug Chem 2017; 28:979-985. [DOI: 10.1021/acs.bioconjchem.6b00698] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yanyan Jiang
- Centre for Advanced Macromolecular
Design, School of Chemistry, University of New South Wales, Kensington NSW 2052, Australia
| | - Sandy Wong
- Centre for Advanced Macromolecular
Design, School of Chemistry, University of New South Wales, Kensington NSW 2052, Australia
| | - Fan Chen
- Centre for Advanced Macromolecular
Design, School of Chemistry, University of New South Wales, Kensington NSW 2052, Australia
| | - Ted Chang
- Centre for Advanced Macromolecular
Design, School of Chemistry, University of New South Wales, Kensington NSW 2052, Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular
Design, School of Chemistry, University of New South Wales, Kensington NSW 2052, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular
Design, School of Chemistry, University of New South Wales, Kensington NSW 2052, Australia
| |
Collapse
|
22
|
Jiang Y, Stenzel M. Drug Delivery Vehicles Based on Albumin-Polymer Conjugates. Macromol Biosci 2016; 16:791-802. [DOI: 10.1002/mabi.201500453] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/23/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Yanyan Jiang
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales, UNSW; Kensington NSW 2052 Australia
| | - Martina Stenzel
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales, UNSW; Kensington NSW 2052 Australia
| |
Collapse
|
23
|
Reduced toxicological manifestations of cisplatin following encapsulation in folate grafted albumin nanoparticles. Life Sci 2015; 142:76-85. [DOI: 10.1016/j.lfs.2015.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/05/2015] [Accepted: 10/16/2015] [Indexed: 01/18/2023]
|
24
|
Junyaprasert VB, Dhanahiranpruk S, Suksiriworapong J, Sripha K, Moongkarndi P. Enhanced toxicity and cellular uptake of methotrexate-conjugated nanoparticles in folate receptor-positive cancer cells by decorating with folic acid-conjugated d -α-tocopheryl polyethylene glycol 1000 succinate. Colloids Surf B Biointerfaces 2015; 136:383-93. [DOI: 10.1016/j.colsurfb.2015.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/11/2015] [Accepted: 09/07/2015] [Indexed: 12/31/2022]
|
25
|
Armagan E, Ozaydin Ince G. Coaxial nanotubes of stimuli responsive polymers with tunable release kinetics. SOFT MATTER 2015; 11:8069-8075. [PMID: 26333009 DOI: 10.1039/c5sm01074h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stimuli responsive polymeric (SRP) nanotubes have great potential as nanocarriers of macromolecules due to their large surface areas and release mechanisms that can be activated externally. In this work, we demonstrate vapor phase synthesis of coaxial nanotubes with layers of different SRP polymers for improved release kinetics. Temperature responsive poly(N-isopropylacrylamide) (pNIPAAm), pH responsive poly(methacrylic acid) (pMAA) and poly(hydroxyethyl methacrylate) (pHEMA) are used to fabricate the responsive coaxial nanotubes and the phloroglucinol dye is used as the model molecule to study the release kinetics. Fastest release is observed with single layer pNIPAAm nanotubes with rates of 0.134 min(-1), whereas introducing pHEMA or pMAA as inner layers slows down the release, enabling tuning of the response. Furthermore, repeating the release studies multiple times shows that the release rates remain similar after each run, confirming the stability of the nanotubes.
Collapse
Affiliation(s)
- Efe Armagan
- Materials Science and Nanoengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | | |
Collapse
|
26
|
Xie J, Nakai K, Ohno S, Butt HJ, Koynov K, Yusa SI. Fluorescence Correlation Spectroscopy Monitors the Hydrophobic Collapse of pH-Responsive Hairy Nanoparticles at the Individual Particle Level. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Xie
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Keita Nakai
- Graduate
School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Sayaka Ohno
- Graduate
School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Hans-Juergen Butt
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Shin-ichi Yusa
- Graduate
School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| |
Collapse
|
27
|
Wilson B, Paladugu L, Priyadarshini SRB, Jenita JJL. Development of albumin-based nanoparticles for the delivery of abacavir. Int J Biol Macromol 2015; 81:763-7. [PMID: 26365020 DOI: 10.1016/j.ijbiomac.2015.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022]
Abstract
The study was designed to prepare and evaluate albumin nanoparticles containing antiviral drug abacavir sulphate. Various batches of albumin nanoparticles containing abacavir sulphate were prepared by desolvation method. The abacavir loaded particles were characterized for their yield, percentage of drug loading, surface morphology, particle size, surface charge, pattern of in vitro drug release and release mechanism studies. Drug loading ranged from 1.2 to 5.9%w/w. The mean particle size and the surface charge were 418.2nm and -40.8mV respectively. The in vitro drug release varied between 38.73 and 51.36%w/w for 24h. The n value for Korsmeyer-Peppas was 0.425 indicating Fickian type drug release. The preliminary findings indicated that albumin nanoparticles of abacavir can be prepared by desolvation method with good yield, high drug loading and sustained release.
Collapse
Affiliation(s)
- Barnabas Wilson
- Department of Pharmaceutics, Dayananda Sagar College of Pharmacy, Kumaraswamy Layout, Bangalore, Karnataka 560078, India.
| | - Latishkumar Paladugu
- Department of Pharmaceutics, Dayananda Sagar College of Pharmacy, Kumaraswamy Layout, Bangalore, Karnataka 560078, India
| | - S R Brahmani Priyadarshini
- Department of Pharmaceutics, Dayananda Sagar College of Pharmacy, Kumaraswamy Layout, Bangalore, Karnataka 560078, India
| | - J Josephine Leno Jenita
- Department of Pharmaceutics, Dayananda Sagar College of Pharmacy, Kumaraswamy Layout, Bangalore, Karnataka 560078, India
| |
Collapse
|
28
|
Shen Z, Wu H, Yang S, Ma X, Li Z, Tan M, Wu A. A novel Trojan-horse targeting strategy to reduce the non-specific uptake of nanocarriers by non-cancerous cells. Biomaterials 2015; 70:1-11. [PMID: 26295434 DOI: 10.1016/j.biomaterials.2015.08.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 08/09/2015] [Indexed: 12/22/2022]
Abstract
One big challenge with active targeting of nanocarriers is non-specific binding between targeting molecules and non-target moieties expressed on non-cancerous cells, which leads to non-specific uptake of nanocarriers by non-cancerous cells. Here, we propose a novel Trojan-horse targeting strategy to hide or expose the targeting molecules of nanocarriers on-demand. The non-specific uptake by non-cancerous cells can be reduced because the targeting molecules are hidden in hydrophilic polymers. The nanocarriers are still actively targetable to cancer cells because the targeting molecules can be exposed on-demand at tumor regions. Typically, Fe3O4 nanocrystals (FN) as magnetic resonance imaging (MRI) contrast agents were encapsulated into albumin nanoparticles (AN), and then folic acid (FA) and pH-sensitive polymers (PP) were grafted onto the surface of AN-FN to construct PP-FA-AN-FN nanoparticles. Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), transmission electron microscope (TEM) and gel permeation chromatography (GPC) results confirm successful construction of PP-FA-AN-FN. According to difference of nanoparticle-cellular uptake between pH 7.4 and 5.5, the weight ratio of conjugated PP to nanoparticle FA-AN-FN (i.e. graft density) and the molecular weight of PP (i.e. graft length) are optimized to be 1.32 and 5.7 kDa, respectively. In vitro studies confirm that the PP can hide ligand FA to prevent it from binding to cells with FRα at pH 7.4 and shrink to expose FA at pH 5.5. In vivo studies demonstrate that our Trojan-horse targeting strategy can reduce the non-specific uptake of the PP-FA-AN-FN by non-cancerous cells. Therefore, our PP-FA-AN-FN might be used as an accurately targeted MRI contrast agent.
Collapse
Affiliation(s)
- Zheyu Shen
- Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology & Engineering, Key Laboratory of Magnetic Materials and Devices, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Hao Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sugeun Yang
- Department of New Drug Development, School of Medicine, Inha University, Incheon, 400-712, South Korea
| | - Xuehua Ma
- Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology & Engineering, Key Laboratory of Magnetic Materials and Devices, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Zihou Li
- Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology & Engineering, Key Laboratory of Magnetic Materials and Devices, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Mingqian Tan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Aiguo Wu
- Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology & Engineering, Key Laboratory of Magnetic Materials and Devices, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China.
| |
Collapse
|
29
|
Kaur S, Prasad C, Balakrishnan B, Banerjee R. Trigger responsive polymeric nanocarriers for cancer therapy. Biomater Sci 2015. [PMID: 26221933 DOI: 10.1039/c5bm00002e] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional chemotherapy for the treatment of cancer has limited specificity when administered systemically and is often associated with toxicity issues. Enhanced accumulation of polymeric nanocarriers at a tumor site may be achieved by passive and active targeting. Incorporation of trigger responsiveness into these polymeric nanocarriers improves the anticancer efficacy of such systems by modulating the release of the drug according to the tumor environment. Triggers used for tumor targeting include internal triggers such as pH, redox and enzymes and external triggers such as temperature, magnetic field, ultrasound and light. While internal triggers are specific cues of the tumor microenvironment, external triggers are those which are applied externally to control the release. This review highlights the various strategies employed for the preparation of such trigger responsive polymeric nanocarriers for cancer therapy and provides an overview of the state of the art in this field.
Collapse
Affiliation(s)
- Shahdeep Kaur
- Nanomedicine Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India.
| | | | | | | |
Collapse
|
30
|
Implications of Protein- and Peptide-Based Nanoparticles as Potential Vehicles for Anticancer Drugs. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 98:169-221. [DOI: 10.1016/bs.apcsb.2014.12.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Chen X, Sun H, Xu J, Han X, Liu H, Hu Y. pH-modulated double LCST behaviors with diverse aggregation processes of random-copolymer grafted silica nanoparticles in aqueous solution. RSC Adv 2015. [DOI: 10.1039/c5ra13557e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thermo-responsive hybrid nanoparticles composed of silica-core and poly(N,N-dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) P(DMAEMA-co-NIPAM) copolymer-shell were prepared through a one-pot ATRP technique.
Collapse
Affiliation(s)
- Xiaolu Chen
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Hui Sun
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jian Xu
- Shanghai Institute of Measurement and Testing Technology
- Shanghai 201203
- China
| | - Xia Han
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Honglai Liu
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Ying Hu
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
32
|
Hiruta Y, Shimamura M, Matsuura M, Maekawa Y, Funatsu T, Suzuki Y, Ayano E, Okano T, Kanazawa H. Temperature-Responsive Fluorescence Polymer Probes with Accurate Thermally Controlled Cellular Uptakes. ACS Macro Lett 2014; 3:281-285. [PMID: 35590521 DOI: 10.1021/mz5000569] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm)-based temperature-responsive fluorescence polymer probes were developed using radical polymerization, with 3-mercaptopropionic acid as the chain-transfer agent, followed by activation of terminal carboxyl groups with N-hydroxysuccinimide and reaction with 5-aminofluorescein (FL). The lower critical solution temperatures (LCSTs) of the resulting fluorescent polymer probes differed depending on the copolymer composition, and had a sharp phase-transition (hydrophilic/hydrophobic) boundary at the LCST. The cellular uptakes of the fluorescent polymer probes were effectively suppressed below the LCST, and increased greatly above the LCST. In particular, the cellular uptake of a copolymer with N,N-dimethylaminopropylacrylamide, P(NIPAAm-co-DMAPAAm2%)-FL (LCST: 37.4 °C), can be controlled within only 1 °C near body temperature, which is suitable for biological applications. These results indicated that the cellular uptakes of thermoresponsive polymers could be accurately controlled by the temperature, and such polymers have potential applications in discriminating between normal and pathological cells, and in intracellular drug delivery systems with local hyperthermia.
Collapse
Affiliation(s)
- Yuki Hiruta
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Mirai Shimamura
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Minami Matsuura
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Yutaro Maekawa
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Takaaki Funatsu
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Yuichi Suzuki
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Eri Ayano
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Teruo Okano
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | - Hideko Kanazawa
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| |
Collapse
|
33
|
Xu W, Xing FJ, Dong K, You C, Yan Y, Zhang L, Zhao G, Chen Y, Wang K. Application of traditional Chinese medicine preparation in targeting drug delivery system. Drug Deliv 2014; 22:258-65. [DOI: 10.3109/10717544.2014.892545] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Bhambere D, Shirivastava B, Sharma P, Bukane N, Gide P. Preparation and Optimization of Dry PLGA Nanoparticles by Spray Drying Technique. PARTICULATE SCIENCE AND TECHNOLOGY 2013. [DOI: 10.1080/02726351.2013.782932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Gaweł K, Karewicz A, Bielska D, Szczubiałka K, Rysak K, Bonarek P, Nowakowska M. A thermosensitive carrageenan-based polymer: Synthesis, characterization and interactions with a cationic surfactant. Carbohydr Polym 2013; 96:211-7. [DOI: 10.1016/j.carbpol.2013.03.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 03/14/2013] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
|
36
|
Yang L, Liu H. Stimuli-responsive magnetic particles and their applications in biomedical field. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2012.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Ak G, Yɪlmaz H, Sanlɪer SH. Preparation of magnetically responsive albumin nanospheres andin vitrodrug release studies. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:18-26. [DOI: 10.3109/21691401.2013.768627] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Liang X, Sun Y, Liu L, Ma X, Hu X, Fan J, Zhao Y. Folate-functionalized nanoparticles for controlled ergosta-4,6,8(14),22-tetraen-3-one delivery. Int J Pharm 2013; 441:1-8. [PMID: 23262423 DOI: 10.1016/j.ijpharm.2012.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/14/2012] [Accepted: 12/12/2012] [Indexed: 11/16/2022]
Abstract
To improve the therapeutic effect of ergosta-4,6,8(14),22-tetraen-3-one (ergone), a folate-decorated ergone-bovine serum albumin nanoparticles (abbreviated FA-ergone-BSANPs) was prepared. The properties were extensively studied by Zetasizer Nano Particle Size Analyzer and TEM, which indicated the prepared nanoparticles were spherical in shape and uniform in size with a zeta potential of -23.8 mV. The drug-loading capacity also has been determined with drug loading content of 2.73% and encapsulation efficiency of 61.8%. In vitro release studies proved the much slow drug release from the nanoparticles during circulating in the blood stream and the increase of drug release at the target sites. The FA-ergone-BSANPs showed enhanced cellular uptake, increased targeting capacity, and increased cytotoxicity against KB cells over-expressing folate receptor (FR), which indicated that its potent cell-killing activity is specific for cells that express the FR. In vivo experiment also confirmed that FA-ergone-BSANPs represent a FR-targeted chemotherapeutic that can produce potent activity against FR-positive tumors. In conclusion, this report has a great significance in pharmacology and clinical medicine as well as methodology. Further detailed dose-optimization studies will be required for better understanding in vivo pharmacokinetic and bio-distribution behaviors.
Collapse
Affiliation(s)
- Xuhua Liang
- School of Chemical Engineering, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Ma XH, Gong A, Xiang LC, Chen TX, Gao YX, Liang XJ, Shen ZY, Wu AG. Biocompatible composite nanoparticles with large longitudinal relaxivity for targeted imaging and early diagnosis of cancer. J Mater Chem B 2013; 1:3419-3428. [DOI: 10.1039/c3tb20648c] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Kolluru LP, Rizvi SAA, D'Souza M, D'Souza MJ. Formulation development of albumin based theragnostic nanoparticles as a potential delivery system for tumor targeting. J Drug Target 2012; 21:77-86. [PMID: 23036042 DOI: 10.3109/1061186x.2012.729214] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Generally, chemotherapeutic drugs attack on both normal and tumor cells non-specifically causing life threatening side effects, necessitating targeted drug delivery to tumors. PURPOSE The purpose of this study is to formulate albumin-based nanoparticles for tumor targeted drug delivery and noninvasive diagnosis. METHODS Albumin based nanoparticles (NPs) were developed as a potential tumor theragnostic agent by entrapping an anti cancer drug, doxorubicin and a near infrared dye, indocyanine green. Theragnostic nanoparticles were prepared using a well established coacervation/nanoprecipitation method followed by lyophilization. The formulation was optimized by varying process parameters using full factorial design of experiments. Release of dye and drug from NPs and physical state of the drug in NPs was studied using DSC. The NPs were injected into tumor bearing mice intravenously and imaged using a bio-imager. RESULTS The optimized nanoparticle formulation had a particle size of 125.0 ± 1.8 nm, poly dispersity index of 0.180 ± 0.057 and zeta potential of -32.7 ± 0.9 mV. The release of dye and drug from the nanoparticles was determined to be quasi-fickian diffusion mediated. Differential scanning calorimetry (DSC) studies revealed the stability of drug in the NP. The in-vivo studies showed enhanced accumulation of the dye loaded NPs at the tumor site than the dye solution, thus allowing noninvasive tumor monitoring. CONCLUSION These results project the newly proposed and evaluated nanoparticle formulation as a potential tumor targeting and imaging delivery system.
Collapse
Affiliation(s)
- Lakshmi Prasanna Kolluru
- Vaccine Nanotechnology Laboratory, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA 30341, USA
| | | | | | | |
Collapse
|
41
|
Jaber J, Mohsen E. Synthesis of Fe3O4@silica/poly(N-isopropylacrylamide) as a novel thermo-responsive system for controlled release of H3PMo12O40 nano drug in AC magnetic field. Colloids Surf B Biointerfaces 2012; 102:265-72. [PMID: 23010117 PMCID: PMC7127514 DOI: 10.1016/j.colsurfb.2012.08.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 12/25/2022]
Abstract
In this work, a new method is introduced for synthesis of nano drug for the first time. H3PMo12O40 and Fe3O4@SiO2/poly(N-isopropylacrylamide), were prepared as nano drug and magneto thermally responsive nano-carrier respectively. Then the released behavior of H3PMo12O40 nano-drug from this thermo-responsive carrier was investigated in an AC magnetic field. When a drug particle is broken up to nanometer range, the total surface area is increased; therefore the rate of dissolution and the rate of release are increased. The as-synthesized nanostructures were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and Fourier transform infrared spectroscopy (FT-IR). Furthermore, experimental condition which lead to the released profile of H3PMo12O40 nano-drug from Fe3O4@SiO2/poly(N-isopropylacrylamide), such as strength of magnetic field (H), temperature (T), particle size of drug and content of loaded drug were tested. Increasing the strength of magnetic field, temperature and content of loaded drug, the rate of drug release was also increased.
Collapse
Affiliation(s)
- Javidi Jaber
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran.
| | | |
Collapse
|
42
|
Thermo-responsive monodisperse core–shell microspheres with PNIPAM core and biocompatible porous ethyl cellulose shell embedded with PNIPAM gates. J Colloid Interface Sci 2012; 376:97-106. [DOI: 10.1016/j.jcis.2012.03.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/10/2012] [Accepted: 03/12/2012] [Indexed: 11/21/2022]
|
43
|
Tietze R, Lyer S, Dürr S, Alexiou C. Nanoparticles for cancer therapy using magnetic forces. Nanomedicine (Lond) 2012; 7:447-57. [DOI: 10.2217/nnm.12.10] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The term ‘nanomedicine’ refers to the use of nanotechnology in the treatment, diagnosis and monitoring of diseases. Magnetic drug targeting is a particularly promising application in this field. The goal of the carrier systems involved is to achieve active enrichment of effective substances in diseased tissue. Numerous nanosystems can be used as carriers, but magnetic iron oxide nanoparticles are particularly important. On the one hand, the particles serve as carriers for the active substance, while on the other hand they can also be visualized using conventional imaging techniques and can therefore be used for ‘theranostic’ purposes. They can also be used in hyperthermia, another important pillar of nanomedicine. Both procedures are intended to lead to specific forms of treatment, which is of medical and economic relevance in view of the increasing numbers of cancer patients worldwide. This study offers a brief overview of current developments in medical applications for magnetic nanoparticles in cancer therapy.
Collapse
Affiliation(s)
- Rainer Tietze
- Department of Oto-rhino-laryngology, Head & Neck Surgery, Erlangen University Hospital, Section for Experimental Oncology & Nanomedicine (Else Kröner–Fresenius-Stiftungsprofessur), Glückstrasse 10, 91054 Erlangen, Germany
| | - Stefan Lyer
- Department of Oto-rhino-laryngology, Head & Neck Surgery, Erlangen University Hospital, Section for Experimental Oncology & Nanomedicine (Else Kröner–Fresenius-Stiftungsprofessur), Glückstrasse 10, 91054 Erlangen, Germany
| | - Stephan Dürr
- Department of Oto-rhino-laryngology, Head & Neck Surgery, Erlangen University Hospital, Section for Experimental Oncology & Nanomedicine (Else Kröner–Fresenius-Stiftungsprofessur), Glückstrasse 10, 91054 Erlangen, Germany
| | - Christoph Alexiou
- Department of Oto-rhino-laryngology, Head & Neck Surgery, Erlangen University Hospital, Section for Experimental Oncology & Nanomedicine (Else Kröner–Fresenius-Stiftungsprofessur), Glückstrasse 10, 91054 Erlangen, Germany
| |
Collapse
|
44
|
Abulateefeh SR, Spain SG, Aylott JW, Chan WC, Garnett MC, Alexander C. Thermoresponsive polymer colloids for drug delivery and cancer therapy. Macromol Biosci 2011; 11:1722-34. [PMID: 22012834 DOI: 10.1002/mabi.201100252] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/23/2011] [Indexed: 11/12/2022]
Abstract
Many difficulties in treating cancer arise from the problems in directing highly cytotoxic agents to the deseased tissues, cells and intracellular compartments. Many drug delivery systems have been devised to address this problem, including those that show a change in properties in response to a temperature stimulus. In particular, colloidal materials based on thermoresponsive polymers offer a means to transport drugs selectively into tumour tissues that are hyperthermic, either intrinsically or through the application of clinical procedures such as localised heating. In this paper, the key attributes of thermoresponsive polymer colloids are considered, a number of important recent examples are discussed and the possible future developments of these materials are evaluated.
Collapse
Affiliation(s)
- Samer R Abulateefeh
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|
45
|
Jung B, Anvari B. Synthesis and characterization of bovine serum albumin-coated nanocapsules loaded with indocyanine green as potential multifunctional nanoconstructs. Biotechnol Prog 2011; 28:533-9. [DOI: 10.1002/btpr.732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/26/2011] [Indexed: 11/11/2022]
|
46
|
Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 2011; 157:168-82. [PMID: 21839127 DOI: 10.1016/j.jconrel.2011.07.031] [Citation(s) in RCA: 1008] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
Abstract
Albumin, a versatile protein carrier for drug delivery, has been shown to be nontoxic, non-immunogenic, biocompatible and biodegradable. Therefore, it is ideal material to fabricate nanoparticles for drug delivery. Albumin nanoparticles have gained considerable attention owing to their high binding capacity of various drugs and being well tolerated without any serious side-effects. The current review embodies an in-depth discussion of albumin nanoparticles with respect to types, formulation aspects, major outcomes of in vitro and in vivo investigations as well as site-specific drug targeting using various ligands modifying the surface of albumin nanoparticles with special insights to the field of oncology. Specialized nanotechnological techniques like desolvation, emulsification, thermal gelation and recently nano-spray drying, nab-technology and self-assembly that have been investigated for fabrication of albumin nanoparticles, are also discussed. Nanocomplexes of albumin with other components in the area of drug delivery are also included in this review.
Collapse
Affiliation(s)
- Ahmed O Elzoghby
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, El-Khartoum Square, Azarita, Alexandria 21521, Egypt.
| | | | | |
Collapse
|
47
|
Shen Z, Wei W, Tanaka H, Kohama K, Ma G, Dobashi T, Maki Y, Wang H, Bi J, Dai S. A galactosamine-mediated drug delivery carrier for targeted liver cancer therapy. Pharmacol Res 2011; 64:410-9. [PMID: 21723392 DOI: 10.1016/j.phrs.2011.06.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/30/2011] [Accepted: 06/15/2011] [Indexed: 11/26/2022]
Abstract
In order to minimize the side effect of cancer chemotherapy, a novel galactosamine-mediated drug delivery carrier, galactosamine-conjugated albumin nanoparticles (GAL-AN), was developed for targeted liver cancer therapy. The albumin nanoparticles (AN) and doxorubicin-loaded AN (DOX-AN) were prepared by the desolvation of albumin in the presence of glutaraldehyde crosslinker. Morphological study indicated the spherical structure of these synthesized particles with an average diameter of around 200 nm. The functional ligand of galactosamine (GAL) was introduced onto the surfaces of AN and DOX-AN via carbodiimide chemistry to obtain GAL-AN and GAL-DOX-AN. Cellular uptake and kinetic studies showed that GAL-AN is able to be selectively incorporated into the HepG2 cells rather than AoSMC cells due to the existence of asialoglycoprotein receptors on HepG2 cell surface. The cytotoxicity, measured by MTT test, indicated that AN and GAL-AN are non-toxic and GAL-DOX-AN is more effective in HepG2 cell killing than that of DOX-AN. As such, our results implied that GAL-AN and GAL-DOX-AN have specific interaction with HepG2 cells via the recognition of GAL and asialoglycoprotein receptor, which renders GAL-AN a promising anticancer drug delivery carrier for liver cancer therapy.
Collapse
Affiliation(s)
- Zheyu Shen
- School of Chemical Engineering, The University of Adelaide, Adelaide SA5005, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Xiong W, Wang W, Wang Y, Zhao Y, Chen H, Xu H, Yang X. Dual temperature/pH-sensitive drug delivery of poly(N-isopropylacrylamide-co-acrylic acid) nanogels conjugated with doxorubicin for potential application in tumor hyperthermia therapy. Colloids Surf B Biointerfaces 2011; 84:447-53. [DOI: 10.1016/j.colsurfb.2011.01.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 01/15/2011] [Accepted: 01/26/2011] [Indexed: 10/18/2022]
|
49
|
[Nanomedicine : Magnetic nanoparticles for drug delivery and hyperthermia - new chances for cancer therapy]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2011; 53:839-45. [PMID: 20700784 DOI: 10.1007/s00103-010-1097-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The application of nanotechnology for the treatment, diagnosis, and monitoring of illnesses is summarized under the term nanomedicine. A particularly promising application is attributed to nanoparticular drug delivery systems. The goal of these new carrier systems is the selective enrichment of active substances in diseased tissue structures, an increase in bioavailability, the decrease of the active substance degradation and, above all, the reduction and/or avoidance of unwanted side effects. Apart from numerous nanosystems acting as carriers, the use of iron oxide nanoparticles has to be particularly emphasized. On the one hand, those particles are the carriers of the active substance and, on the other hand, can also be visualized with conventional imaging techniques (x-ray tomography, magnetic resonance imaging), called theranostic. In addition, they can be used for hyperthermia, another important supporting pillar of nanomedicine. Both procedures should lead to a personalized and goal-oriented therapy, which is of special medical and socioeconomic importance in view of the increasing number of cancer patients worldwide.
Collapse
|
50
|
James C, Johnson AL, Jenkins ATA. Antimicrobial surface grafted thermally responsive PNIPAM-co-ALA nano-gels. Chem Commun (Camb) 2011; 47:12777-9. [DOI: 10.1039/c1cc15372b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|