1
|
Schlosser CS, Rozek W, Mellor RD, Manka SW, Morris CJ, Brocchini S, Williams GR. A lipid-based delivery platform for thermo-responsive delivery of teriparatide. Int J Pharm 2024; 667:124853. [PMID: 39437847 DOI: 10.1016/j.ijpharm.2024.124853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Teriparatide (and analogue peptides) are the only FDA approved anabolic treatments for osteoporosis. Current therapies are administered as a daily subcutaneous injection, which limits patient adherence and clinical efficacy. To achieve the desired anabolic effect, a controlled delivery system must ensure a pulsatile release profile over a prolonged period. Thermo-responsive formulations (e.g. liposomes) can undergo a temperature-related phase-transition which can allow active control of drug release. Herein, thermo-responsive liposomes were developed to permit control over teriparatide release rate through modulation of temperature. Entrapment of hydrophilic molecules, including peptides, within liposomes remains challenging due to the large volume of hydration. In this work, hydrophobic ion pairing was employed for the first time to enhance peptide entrapment within liposomes. The method resulted in a hydrophobic complex that achieved high teriparatide entrapment (>75 %) in sub-200 nm monodispersed liposomes. Hydrophobic ion pairing outperformed other entrapment approaches. Several liposomal formulations with transition temperatures between 38 and 50 °C were obtained by modulation of the phospholipid composition. In vitro assays demonstrated temperature-dependent release kinetics with faster rates of release observed at/above the transition temperature. The maintenance of biological activity of released teriparatide was demonstrated in a cell-based assay utilising the PTH1 receptor. Overall, this provides the first proof-of-concept of the suitability of thermo-responsive systems for pulsatile delivery of teriparatide and similar peptides.
Collapse
Affiliation(s)
- Corinna S Schlosser
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Wojciech Rozek
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ryan D Mellor
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Szymon W Manka
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London W1W 7FF, UK
| | - Christopher J Morris
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
2
|
Kuntsche J, Rajakulendran K, Sabriye HMT, Tawakal N, Khandelia H, Hakami Zanjani AA. Drastic differences between the release kinetics of two highly related porphyrins in liposomal membranes: mTHPP and pTHPP. J Colloid Interface Sci 2023; 651:750-759. [PMID: 37572612 DOI: 10.1016/j.jcis.2023.07.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/14/2023]
Abstract
HYPOTHESIS The release of hydrophobic compounds from liposomal membranes occurs by partitioning and is thus determined by the physicochemical properties (e.g. logP and water solubility) of the drug. We postulate that even minor structural differences, e.g. the position of the phenolic OH-group of the hydrophobic porphyrins mTHPP and pTHPP (meta vs. para substitution), distinctly affect their partitioning and release behavior from liposomes. EXPERIMENTS The release and redistribution of mTHPP and pTHPP from lecithin or POPC/POPG liposomes to different acceptor particles (DSPE-mPEG micelles and liposomes) was studied by asymmetrical flow field-flow fractionation to separate donor and acceptor particles. Reversed phase HPLC was applied to detect differences in partitioning. Molecular dynamics (MD) simulations were carried out to obtain molecular insight in the different behavior of the two compounds inside a lipid bilayer. FINDINGS Despite the minor differences in chemical structure, mTHPP is more hydrophobic and redistributes much slower to both acceptor phases than pTHPP. MD simulations indicate that compared to pTHPP, mTHPP makes stronger hydrogen bonds with the lipid head groups, is oriented more parallel to the lipid tails and is embedded slightly deeper in the membrane.
Collapse
Affiliation(s)
- Judith Kuntsche
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Kirishana Rajakulendran
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Hibo Mohamed Takane Sabriye
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Navidullah Tawakal
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Himanshu Khandelia
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Ali Asghar Hakami Zanjani
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
3
|
Bordon G, Ramakrishna SN, Edalat SG, Eugster R, Arcifa A, Vermathen M, Aleandri S, Bertoncelj MF, Furrer J, Vermathen P, Isa L, Crockett R, Distler O, Luciani P. Liposomal aggregates sustain the release of rapamycin and protect cartilage from friction. J Colloid Interface Sci 2023; 650:1659-1670. [PMID: 37494862 DOI: 10.1016/j.jcis.2023.07.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Liposomes show promise as biolubricants for damaged cartilage, but their small size results in low joint and cartilage retention. We developed a zinc ion-based liposomal drug delivery system for local osteoarthritis therapy, focusing on sustained release and tribological protection from phospholipid lubrication properties. Our strategy involved inducing aggregation of negatively charged liposomes with zinc ions to extend rapamycin (RAPA) release and improve cartilage lubrication. Liposomal aggregation occurred within 10 min and was irreversible, facilitating excess cation removal. The aggregates extended RAPA release beyond free liposomes and displayed irregular morphology influenced by RAPA. At nearly 100 µm, the aggregates were large enough to exceed the previously reported size threshold for increased joint retention. Tribological assessment on silicon surfaces and ex vivo porcine cartilage revealed the system's excellent protective ability against friction at both nano- and macro-scales. Moreover, RAPA was shown to attenuate the fibrotic response in human OA synovial fibroblasts. Our findings suggest the zinc ion-based liposomal drug delivery system has potential to enhance OA therapy through extended release and cartilage tribological protection, while also illustrating the impact of a hydrophobic drug like RAPA on liposome aggregation and morphology.
Collapse
Affiliation(s)
- Gregor Bordon
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Shivaprakash N Ramakrishna
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Vladimir- Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Sam G Edalat
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Remo Eugster
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Andrea Arcifa
- Laboratory for Surface Science and Coating Technologies, EMPA, Uberlandstrasse 129, 8600 Dubendorf, Switzerland
| | - Martina Vermathen
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Peter Vermathen
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University & Inselspital Bern, sitem-insel AG, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Vladimir- Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Rowena Crockett
- Laboratory for Surface Science and Coating Technologies, EMPA, Uberlandstrasse 129, 8600 Dubendorf, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
4
|
Sun L, Zhou JE, Luo T, Wang J, Kang L, Wang Y, Luo S, Wang Z, Zhou Z, Zhu J, Yu J, Yu L, Yan Z. Nanoengineered Neutrophils as a Cellular Sonosensitizer for Visual Sonodynamic Therapy of Malignant Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109969. [PMID: 35174915 DOI: 10.1002/adma.202109969] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The rapid evolution of cell-based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to generate multifunctional living cells may hold a tremendous promise. Here, the nanoengineering method is used to combine customized liposomes with neutrophils, generating oxygen-carrying sonosensitizer cells with acoustic functions, which are called Acouscyte/O2 , for the visual diagnosis and treatment of cancer. Specifically, oxygen-carried perfluorocarbon and temoporfin are encapsulated into cRGD peptide modified multilayer liposomes (C-ML/HPT/O2 ), which are then loaded into live neutrophils to obtain Acouscyte/O2 . Acouscyte/O2 can not only carry a large amount of oxygen but also exhibits the ability of long circulation, inflammation-triggered recruitment, and decomposition. Importantly, Acouscyte/O2 can be selectively accumulated in tumors, effectively enhancing tumor oxygen levels, and triggering anticancer sonodynamics in response to ultrasound stimulation, leading to complete obliteration of tumors and efficient extension of the survival time of tumor-bearing mice with minimal systemic adverse effects. Meanwhile, the tumors can be monitored in real time by temoporfin-mediated fluorescence imaging and perfluorocarbon (PFC)-microbubble-enhanced ultrasound imaging. Therefore, the nanoengineered neutrophils, i.e., Acouscyte/O2 , are a new type of multifunctional cellular drug, which provides a new platform for the diagnosis and sonodynamic therapy of solid malignant tumors.
Collapse
Affiliation(s)
- Lei Sun
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Department of NanoEngineering and Chemical Engineering Program University of California, San Diego La Jolla, CA, 92093, USA
| | - Jing-E Zhou
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Tengshuo Luo
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Jing Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Liqing Kang
- Shanghai Unicar-Therapy Bio-medicine Technology Co. Ltd, No 1525 Minqiang Road, Shanghai, 201612, P. R. China
| | - Yeying Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Shenggen Luo
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Zhehao Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Ziyu Zhou
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Jiaxi Zhu
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, P. R. China
| | - Jiahui Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Zhiqiang Yan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
5
|
High-Resolution Ultrasound Spectroscopy for the Determination of Phospholipid Transitions in Liposomal Dispersions. Pharmaceutics 2022; 14:pharmaceutics14030668. [PMID: 35336042 PMCID: PMC8955896 DOI: 10.3390/pharmaceutics14030668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
High-resolution ultrasound spectroscopy (HR-US) is a spectroscopic technique using ultrasound waves at high frequencies to investigate the structural properties of dispersed materials. This technique is able to monitor the variation of ultrasound parameters (sound speed and attenuation) due to the interaction of ultrasound waves with samples as a function of temperature and concentration. Despite being employed for the characterization of several colloidal systems, there is a lack in the literature regarding the comparison between the potential of HR-US for the determination of phospholipid thermal transitions and that of other common techniques both for loaded or unloaded liposomes. Thermal transitions of liposomes composed of pure phospholipids (dimyristoylphosphatidylcholine, DMPC; dipalmitoylphosphatidylcholine, DPPC and distearoylphosphatidylcholine, DSPC), cholesterol and their mixtures were investigated by HR-US in comparison to the most commonly employed microcalorimetry (mDSC) and dynamic light scattering (DLS). Moreover, tramadol hydrochloride, caffeine or miconazole nitrate as model drugs were loaded in DPPC liposomes to study the effect of their incorporation on thermal properties of a phospholipid bilayer. HR-US provided the determination of phospholipid sol-gel transition temperatures from both attenuation and sound speed that are comparable to those calculated by mDSC and DLS techniques for all analysed liposomal dispersions, both loaded and unloaded. Therefore, HR-US is proposed here as an alternative technique to determine the transition temperature of phospholipid membrane in liposomes.
Collapse
|
6
|
Németh Z, Pallagi E, Dobó DG, Kozma G, Kónya Z, Csóka I. An Updated Risk Assessment as Part of the QbD-Based Liposome Design and Development. Pharmaceutics 2021; 13:1071. [PMID: 34371762 PMCID: PMC8309007 DOI: 10.3390/pharmaceutics13071071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023] Open
Abstract
Liposomal formulation development is a challenging process. Certain factors have a critical influence on the characteristics of the liposomes, and even the relevant properties can vary based on the predefined interests of the research. In this paper, a Quality by Design-guided and Risk Assessment (RA)-based study was performed to determine the Critical Material Attributes and the Critical Process Parameters of an "intermediate" active pharmaceutical ingredient-free liposome formulation prepared via the thin-film hydration method, collect the Critical Quality Attributes of the future carrier system and show the process of narrowing a general initial RA for a specific case. The theoretical liposome design was proved through experimental models. The investigated critical factors covered the working temperature, the ratio between the wall-forming agents (phosphatidylcholine and cholesterol), the PEGylated phospholipid content (DPPE-PEG2000), the type of the hydration media (saline or phosphate-buffered saline solutions) and the cryoprotectants (glucose, sorbitol or trehalose). The characterisation results (size, surface charge, thermodynamic behaviours, formed structure and bonds) of the prepared liposomes supported the outcomes of the updated RA. The findings can be used as a basis for a particular study with specified circumstances.
Collapse
Affiliation(s)
- Zsófia Németh
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6. Eötvös u, H-6720 Szeged, Hungary; (Z.N.); (E.P.); (D.G.D.)
| | - Edina Pallagi
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6. Eötvös u, H-6720 Szeged, Hungary; (Z.N.); (E.P.); (D.G.D.)
| | - Dorina Gabriella Dobó
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6. Eötvös u, H-6720 Szeged, Hungary; (Z.N.); (E.P.); (D.G.D.)
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, Institute of Chemistry, University of Szeged, 1, Rerrich Béla tér, H-6720 Szeged, Hungary; (G.K.); (Z.K.)
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, Institute of Chemistry, University of Szeged, 1, Rerrich Béla tér, H-6720 Szeged, Hungary; (G.K.); (Z.K.)
| | - Ildikó Csóka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6. Eötvös u, H-6720 Szeged, Hungary; (Z.N.); (E.P.); (D.G.D.)
| |
Collapse
|
7
|
Yakavets I, Francois A, Lamy L, Piffoux M, Gazeau F, Wilhelm C, Zorin V, Silva AKA, Bezdetnaya L. Effect of stroma on the behavior of temoporfin-loaded lipid nanovesicles inside the stroma-rich head and neck carcinoma spheroids. J Nanobiotechnology 2021; 19:3. [PMID: 33407564 PMCID: PMC7789590 DOI: 10.1186/s12951-020-00743-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
Background Despite the highly expected clinical application of nanoparticles (NPs), the translation of NPs from lab to the clinic has been relatively slow. Co-culture 3D spheroids account for the 3D arrangement of tumor cells and stromal components, e.g., cancer-associated fibroblasts (CAFs) and extracellular matrix, recapitulating microenvironment of head and neck squamous cell carcinoma (HNSCC). In the present study, we investigated how the stroma-rich tumor microenvironment affects the uptake, penetration, and photodynamic efficiency of three lipid-based nanoformulations of approved in EU photosensitizer temoporfin (mTHPC): Foslip® (mTHPC in conventional liposomes), drug-in-cyclodextrin-in-liposomes (mTHPC-DCL) and extracellular vesicles (mTHPC-EVs). Results Collagen expression in co-culture stroma-rich 3D HNSCC spheroids correlates with the amount of CAFs (MeWo cells) in individual spheroid. The assessment of mTHPC loading demonstrated that Foslip®, mTHPC-DCL and mTHPC-EVs encapsulated 0.05 × 10− 15 g, 0.07 × 10− 15 g, and 1.3 × 10− 15 g of mTHPC per nanovesicle, respectively. The mid-penetration depth of mTHPC NPs in spheroids was 47.8 µm (Foslip®), 87.8 µm (mTHPC-DCL), and 49.7 µm (mTHPC-EVs), irrespective of the percentage of stromal components. The cellular uptake of Foslip® and mTHPC-DCL was significantly higher in stroma-rich co-culture spheroids and was increasing upon the addition of serum in the culture medium. Importantly, we observed no significant difference between PDT effect in monoculture and co-culture spheroids treated with lipid-based NPs. Overall, in all types of spheroids mTHPC-EVs demonstrated outstanding total cellular uptake and PDT efficiency comparable to other NPs. Conclusions The stromal microenvironment strongly affects the uptake of NPs, while the penetration and PDT efficacy are less sensitive to the presence of stromal components. mTHPC-EVs outperform other lipid nanovesicles due to the extremely high loading capacity. The results of the present study enlarge our understanding of how stroma components affect the delivery of NPs into the tumors. ![]()
Collapse
Affiliation(s)
- Ilya Yakavets
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506, Vandoeuvre-lès-Nancy, France. .,Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France. .,Laboratory of Biophysics and Biotechnology, Belarusian State University, 4 Nezavisimosti Avenue, 220030, Minsk, Belarus.
| | - Aurelie Francois
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506, Vandoeuvre-lès-Nancy, France.,Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Laureline Lamy
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506, Vandoeuvre-lès-Nancy, France.,Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Max Piffoux
- Laboratoire Matière et systèmes complexes, CNRS UMR 7057, Université de Paris, 75205, Paris Cedex 13, France
| | - Florence Gazeau
- Laboratoire Matière et systèmes complexes, CNRS UMR 7057, Université de Paris, 75205, Paris Cedex 13, France
| | - Claire Wilhelm
- Laboratoire Matière et systèmes complexes, CNRS UMR 7057, Université de Paris, 75205, Paris Cedex 13, France
| | - Vladimir Zorin
- Laboratory of Biophysics and Biotechnology, Belarusian State University, 4 Nezavisimosti Avenue, 220030, Minsk, Belarus
| | - Amanda K A Silva
- Laboratoire Matière et systèmes complexes, CNRS UMR 7057, Université de Paris, 75205, Paris Cedex 13, France
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506, Vandoeuvre-lès-Nancy, France. .,Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
8
|
Exploiting Lipid and Polymer Nanocarriers to Improve the Anticancer Sonodynamic Activity of Chlorophyll. Pharmaceutics 2020; 12:pharmaceutics12070605. [PMID: 32629767 PMCID: PMC7408081 DOI: 10.3390/pharmaceutics12070605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/17/2020] [Accepted: 06/28/2020] [Indexed: 01/31/2023] Open
Abstract
Sonodynamic therapy is an emerging approach that uses low-intensity ultrasound to activate a sonosensitizer agent triggering its cytotoxicity for selective cancer cell killing. Several molecules have been proposed as sonosensitizer agents, but most of these, as chlorophyll, are strongly hydrophobic with a low selectivity towards cancer tissues. Nanocarriers can help to deliver more efficiently the sonosensitizer agents in the target tumor site, increasing at the same time their sonodynamic effect, since nanosystems act as cavitation nuclei. Herein, we propose the incorporation of unmodified plant-extracted chlorophyll into nanocarriers with different composition and structure (i.e., liposomes, solid lipid nanoparticles and poly(lactic-co-glycolic acid) nanoparticles) to obtain aqueous formulations of this natural pigment. The nanocarriers have been deeply characterized and then incubated with human prostatic cancer cells (PC-3) and spheroids (DU-145) to assess the influence of the different formulations on the chlorophyll sonodynamic effect. The highest sonodynamic cytotoxicity was obtained with chlorophyll loaded into poly(lactic-co-glycolic acid) nanoparticles, showing promising results for future clinical investigations on sonodynamic therapy.
Collapse
|
9
|
Asfour MH, Kassem AA, Salama A, Abd El-Alim SH. Hydrophobic ion pair loaded self-emulsifying drug delivery system (SEDDS): A novel oral drug delivery approach of cromolyn sodium for management of bronchial asthma. Int J Pharm 2020; 585:119494. [PMID: 32505578 DOI: 10.1016/j.ijpharm.2020.119494] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/01/2023]
Abstract
The aim of the present study is to develop a self-emulsifying drug delivery system (SEDDS) for the hydrophobic ion pair (HIP) complex of cromolyn sodium (CS), in order to enhance its intestinal absorption and biological activity. Two ion pairing agents (IPAs) were investigated: hexadecyl pyridininum chloride (HPC) and myristyl trimethyl ammonium bromide (MTAB). The optimum binding efficiency for complexation between investigated IPAs and CS was observed at a molar ratio of 1.5:1, where CS binding efficiency was found to be 76.10 ± 2.12 and 91.37 ± 1.73% for MTAB and HPC, respectively. The two prepared complexes exhibited a significant increase in partition coefficient indicating increased lipophilicity. The optimized CS-HIP complex was incorporated into SEDDS formulations. SEDDS formulations F2 (40% oleic acid, 40% BrijTM98, 20% propylene glycol) and F3 (25% oleic acid, 50% BrijTM98, 25% propylene glycol) exhibited nanometric droplet diameters with monodisperse distribution and nearly neutral zeta potential values. Ex vivo intestinal permeation study, using the non-everted gut sac technique, revealed a significantly higher cumulative amount of permeated drug, after 2 h, for F2 and F3 (53.836 and 77.617 µg/cm2, respectively) compared to 8.649 µg/cm2 for plain CS solution. The in vivo evaluation of plain CS solution compared to F2 and F3 was conducted in an ovalbumin sensitization-induced bronchial asthma rat model. Lung function parameters (tidal volume and peak expiratory flow), biochemical parameters (interleukin-5, immunoglobulin-E, myeloperoxidase and airway remodelling parameters) were assessed in addition to histopathological examination. The results indicated the superiority of F3 followed by F2 compared to plain CS solution for prophylaxis of bronchial asthma in rats.
Collapse
Affiliation(s)
- Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St, Dokki, Cairo 12622, Egypt.
| | - Ahmed Alaa Kassem
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St, Dokki, Cairo 12622, Egypt
| | - Abeer Salama
- Pharmacology Department, National Research Centre, El-Buhouth St, Dokki, Cairo 12622, Egypt
| | - Sameh Hosam Abd El-Alim
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St, Dokki, Cairo 12622, Egypt
| |
Collapse
|
10
|
Falsafi SR, Rostamabadi H, Assadpour E, Jafari SM. Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Adv Colloid Interface Sci 2020; 280:102166. [PMID: 32387755 DOI: 10.1016/j.cis.2020.102166] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
Efficient characterization of the physicochemical attributes of bioactive-loaded micro/nano-vehicles is crucial for the successful product development. The introduction of outstanding science-based strategies and techniques makes it possible to realize how the characteristics of the formulation ingredients affect the structural and (bio)functional properties of the final bioactive-loaded carriers. The important points to be solved, at a microscopic level, are investigating how the features of the formulation ingredients affect the morphology, surface, size, dispersity, as well as the particulate interactions within bioactive-comprising nano/micro-delivery systems. This review presents a detailed description concerning the application of advanced microscopy techniques, i.e., confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) in characterizing the attributes of nano/microcarriers for the efficient delivery of bioactive compounds. Furthermore, the fundamental principles of these approaches, instrumentation, specific applications, and the strategy to choose the most proper technique for different carriers has been discussed.
Collapse
|
11
|
Wölk C, Hause G, Gutowski O, Harvey RD, Brezesinski G. Enhanced chain packing achieved via putative headgroup ion-triplet formation in binary anionic lipid/cationic surfactant mixed monolayers. Chem Phys Lipids 2019; 225:104827. [DOI: 10.1016/j.chemphyslip.2019.104827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/16/2019] [Accepted: 09/17/2019] [Indexed: 11/25/2022]
|
12
|
Ghosh S, Carter KA, Lovell JF. Liposomal formulations of photosensitizers. Biomaterials 2019; 218:119341. [PMID: 31336279 PMCID: PMC6663636 DOI: 10.1016/j.biomaterials.2019.119341] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022]
Abstract
Photodynamic therapy (PDT) is a clinical ablation modality to treat cancers and other diseases. PDT involves administration of a photosensitizer, followed by irradiation of target tissue with light. As many photosensitizers are small and hydrophobic, solubilization approaches and nanoscale delivery vehicles have been extensively explored. Liposomes and lipid-based formulations have been used for the past 30 years, and in some cases have been developed into well-defined commercial PDT products. This review provides an overview of common liposomal formulation strategies for photosensitizers for PDT and also photothermal therapy. Furthermore, research efforts have examined the impact of co-loading therapeutic cargo along with photosensitizers within liposomes. Additional recent approaches including imaging, overcoming hypoxia, upconversion and activatable liposomal formulations are discussed.
Collapse
Affiliation(s)
- Sanjana Ghosh
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Kevin A Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
13
|
Matryoshka-Type Liposomes Offer the Improved Delivery of Temoporfin to Tumor Spheroids. Cancers (Basel) 2019; 11:cancers11091366. [PMID: 31540319 PMCID: PMC6770699 DOI: 10.3390/cancers11091366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
The balance between the amount of drug delivered to tumor tissue and the homogeneity of its distribution is a challenge in the efficient delivery of photosensitizers (PSs) in photodynamic therapy (PDT) of cancer. To date, many efforts have been made using various nanomaterials to efficiently deliver temoporfin (mTHPC), one of the most potent photosensitizers. The present study aimed to develop double-loaded matryoshka-type hybrid nanoparticles encapsulating mTHPC/cyclodextrin inclusion complexes in mTHPC-loaded liposomes. This system was expected to improve the transport of mTHPC to target tissues and to strengthen its accumulation in the tumor tissue. Double-loaded hybrid nanoparticles (DL-DCL) were prepared, characterized, and tested in 2D and 3D in vitro models and in xenografted mice in vivo. Our studies indicated that DL-DCL provided deep penetration of mTHPC into the multicellular tumor spheroids via cyclodextrin nanoshuttles once the liposomes had been destabilized by serum proteins. Unexpectedly, we observed similar PDT efficiency in xenografted HT29 tumors for liposomal mTHPC formulation (Foslip®) and DL-DCL.
Collapse
|
14
|
Abstract
The photodynamic reaction involves the light-induced generation of an excited state in a photosensitizer molecule (PS), which then results in the formation of reactive oxygen species in the presence of oxygen, or a direct modification of a cellular molecule. Most PSs are porphyrinoids, which are highly lipophilic, and are administered usually in liposomes to facilitate their effective delivery to target cells. The currently available liposomal formulations are Visudyne® and Fospeg®. Novel PSs were developed and tested for their photodynamic activity against cancer cells. Several compounds were highly phototoxic to oral cancer cells both in free and liposome-encapsulated form, with nanomolar IC50 values. The lowest IC50s (7-13 nM) were obtained with a PS encapsulated in cationic liposomes.
Collapse
|
15
|
Yakavets I, Millard M, Zorin V, Lassalle HP, Bezdetnaya L. Current state of the nanoscale delivery systems for temoporfin-based photodynamic therapy: Advanced delivery strategies. J Control Release 2019; 304:268-287. [PMID: 31136810 DOI: 10.1016/j.jconrel.2019.05.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022]
Abstract
Enthusiasm for photodynamic therapy (PDT) as a promising technique to eradicate various cancers has increased exponentially in recent decades. The majority of clinically approved photosensitizers are hydrophobic in nature, thus, the effective delivery of photosensitizers at the targeted site is the main hurdle associated with PDT. Temoporfin (mTHPC, medicinal product name: Foscan®), is one of the most potent clinically approved photosensitizers, is not an exception. Successful temoporfin-PDT requires nanoscale delivery systems for selective delivery of photosensitizer. Over the last 25 years, the number of papers on nanoplatforms developed for mTHPC delivery such as conjugates, host-guest inclusion complexes, lipid-and polymer-based nanoparticles and carbon nanotubes is burgeoning. However, none of them appeared to be "ultimate". The present review offers the description of different challenges and achievements in nanoparticle-based mTHPC delivery focusing on the synergetic combination of various nano-platforms to improve temoporfin delivery at all stages of biodistribution. Furthermore, the association of different nanoparticles in one nanoplatform might be considered as an advanced strategy allowing the combination of several treatment modalities.
Collapse
Affiliation(s)
- Ilya Yakavets
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France; Laboratory of Biophysics and Biotechnology, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus.
| | - Marie Millard
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | - Vladimir Zorin
- Laboratory of Biophysics and Biotechnology, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus; International Sakharov Environmental Institute, Belarusian State University, Dauhabrodskaja 23, 220030 Minsk, Belarus.
| | - Henri-Pierre Lassalle
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
16
|
Feng Q, Wang J, Song H, Zhuo LG, Wang G, Liao W, Feng Y, Wei H, Chen Y, Yang Y, Yang X. Uptake and light-induced cytotoxicity of hyaluronic acid-grafted liposomes containing porphyrin in tumor cells. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Chen L, Liang R, Wang Y, Yokoyama W, Chen M, Zhong F. Characterizations on the Stability and Release Properties of β-ionone Loaded Thermosensitive Liposomes (TSLs). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8336-8345. [PMID: 29847116 DOI: 10.1021/acs.jafc.7b06130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Liposomes with phase transition temperatures, Tm, near pathogenic site temperature are potential chemoprophylactic delivery vehicles. We prepared and characterized the thermal properties of liposomes composed of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and hydrogenated soy phosphatidylcholine (HSPC) incorporating β-ionone with Tm at 42 °C. Liposomes with β-ionone/lipid ratio (w/w) of 1:20 and 1:8 had the necessary stability and released most of the β-ionone. The molecular architecture surrounding Tm was studied by fluorescent probes, Raman spectroscopy, and differential scanning calorimeter (DSC). β-Ionone was found to be preferentially located in the deep regions of the lipid bilayer (toward the long chain alkyl of the lipid) at moderate loading. The results showed that β-ionone encapsulated liposomes have a superior release at higher loading amount. Increasing β-ionone leads to disorder in the liquid crystalline state and accelerates the release rate. These studies provide information on the membrane structural properties of β-ionone loaded liposomes that guide rational bioactive molecular delivery systems design for health products.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , P.R. China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China
| | - Rong Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , P.R. China
| | - Yihan Wang
- Zhejiang Institute for Food and Drug Control , Zhejiang 310000 , P.R. China
| | - Wallace Yokoyama
- Western Regional Research Center, ARS , USDA , Albany , California 94710 , United States
| | - Maoshen Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , P.R. China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China
| | - Fang Zhong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , P.R. China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China
| |
Collapse
|
18
|
Vetta MD, González L, Nogueira JJ. Hydrogen Bonding Regulates the Rigidity of Liposome-Encapsulated Chlorin Photosensitizers. ChemistryOpen 2018; 7:475-483. [PMID: 29938159 PMCID: PMC6010911 DOI: 10.1002/open.201800050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Indexed: 11/16/2022] Open
Abstract
Liposomal formulations facilitate the administration of hydrophobic drugs, avoiding precipitation and aggregation phenomena when injected in polar solvents. The integration of the photosensitizer into the liposome may alter the fluidity of the system and, thus, modify the delivery process of the drug. Such a change has been observed for the liposomal formulation of Temoporfin, which is one of the most potent chlorin photosensitizers employed in photodynamic therapy. Here, all-atom molecular dynamics simulations have been performed to identify the nature of the intermolecular interactions that might be responsible of the different lipids freedom of motion when the drug is introduced in the bilayer. It is found that Temoporfin participates as a hydrogen donor in strong hydrogen-bonding interactions with the polar groups of the phospholipids. The theoretical analysis suggests that the rigidity of drug/liposome complexes can be modulated by considering the different hydrogen-bond ability of the photosensitizer and the carrier material.
Collapse
Affiliation(s)
- Martina De Vetta
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
- Departamento de QuímicaUniversidad Autónoma de MadridFrancisco Tomás y Valiente, 728049 CantoblancoMadridSpain
| | - Leticia González
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
| | - Juan J. Nogueira
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
| |
Collapse
|
19
|
Skupin-Mrugalska P, Sobotta L, Warowicka A, Wereszczynska B, Zalewski T, Gierlich P, Jarek M, Nowaczyk G, Kempka M, Gapinski J, Jurga S, Mielcarek J. Theranostic liposomes as a bimodal carrier for magnetic resonance imaging contrast agent and photosensitizer. J Inorg Biochem 2018; 180:1-14. [DOI: 10.1016/j.jinorgbio.2017.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/03/2017] [Accepted: 11/27/2017] [Indexed: 01/17/2023]
|
20
|
Yudintsev AV, Shilyagina NY, Dyakova DV, Lermontova SA, Klapshina LG, Guryev EL, Balalaeva IV, Vodeneev VA. Liposomal Form of Tetra(Aryl)Tetracyanoporphyrazine: Physical Properties and Photodynamic Activity In Vitro. J Fluoresc 2018; 28:513-522. [DOI: 10.1007/s10895-018-2212-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
21
|
Hinger D, Gräfe S, Navarro F, Spingler B, Pandiarajan D, Walt H, Couffin AC, Maake C. Lipid nanoemulsions and liposomes improve photodynamic treatment efficacy and tolerance in CAL-33 tumor bearing nude mice. J Nanobiotechnology 2016; 14:71. [PMID: 27716314 PMCID: PMC5048629 DOI: 10.1186/s12951-016-0223-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/27/2016] [Indexed: 11/15/2022] Open
Abstract
Background Photodynamic therapy (PDT) as promising alternative to conventional cancer treatments works by irradiation of a photosensitizer (PS) with light, which creates reactive oxygen species and singlet oxygen (1O2), that damage the tumor. However, a routine use is hindered by the PS’s poor water solubility and extended cutaneous photosensitivity of patients after treatment. In our study we sought to overcome these limitations by encapsulation of the PS m-tetrahydroxyphenylchlorin (mTHPC) into a biocompatible nanoemulsion (Lipidots). Results In CAL-33 tumor bearing nude mice we compared the Lipidots to the existing liposomal mTHPC nanoformulation Foslip and the approved mTHPC formulation Foscan. We established biodistribution profiles via fluorescence measurements in vivo and high performance liquid chromatography (HPLC) analysis. All formulations accumulated in the tumors and we could determine the optimum treatment time point for each substance (8 h for mTHPC, 24 h for Foslip and 72 h for the Lipidots). We used two different light doses (10 and 20 J/cm2) and evaluated immediate PDT effects 48 h after treatment and long term effects 14 days later. We also analyzed tumors by histological analysis and performing reverse transcription real-time PCR with RNA extracts. Concerning tumor destruction Foslip was superior to Lipidots and Foscan while with regard to tolerance and side effects Lipidots were giving the best results. Conclusions We could demonstrate in our study that nanoformulations are superior to the free PS mTHPC. The development of a potent nanoformulation is of major importance because the free PS is related to several issues such as poor bioavailability, solubility and increased photosensibility of patients. We could show in this study that Foslip is very potent in destroying the tumors itself. However, because the Lipidots' biocompatibility is outstanding and superior to the liposomes we plan to carry out further investigations and protocol optimization. Both nanoformulations show great potential to revolutionize PDT in the future. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0223-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Doris Hinger
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.
| | - Susanna Gräfe
- Biolitec Research GmbH, Otto-Schott-Str. 15, 07745, Jena, Germany
| | - Fabrice Navarro
- CEA, LETI, MINATEC Campus, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Technologies for Biology and Healthcare Division, 38054, Grenoble, France.,Université Grenoble Alpes, Grenoble, 38000, France
| | - Bernhard Spingler
- Department of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Devaraj Pandiarajan
- Department of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Heinrich Walt
- Department of Cranio-Maxillofacial Surgery, University Hospital Zurich, Frauenklinikstrasse 24, Zurich, 8091, Switzerland
| | - Anne-Claude Couffin
- CEA, LETI, MINATEC Campus, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Technologies for Biology and Healthcare Division, 38054, Grenoble, France.,Université Grenoble Alpes, Grenoble, 38000, France
| | - Caroline Maake
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
22
|
Till U, Gibot L, Mingotaud C, Vicendo P, Rols MP, Gaucher M, Violleau F, Mingotaud AF. Self-assembled polymeric vectors mixtures: characterization of the polymorphism and existence of synergistic effects in photodynamic therapy. NANOTECHNOLOGY 2016; 27:315102. [PMID: 27334669 DOI: 10.1088/0957-4484/27/31/315102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The objective of this work was to assess the relation between the purity of polymeric self-assemblies vectors solution and their photodynamic therapeutic efficiency. For this, several amphiphilic block copolymers of poly(ethyleneoxide-b-ε-caprolactone) have been used to form self-assemblies with different morphologies (micelles, worm-like micelles or vesicles). In a first step, controlled mixtures of preformed micelles and vesicles have been characterized both by dynamic light scattering and asymmetrical flow field flow fractionation (AsFlFFF). For this, a custom-made program, STORMS, was developed to analyze DLS data in a thorough manner by providing a large set of fitting parameters. This showed that DLS only sensed the larger vesicles when the micelles/vesicles ratio was 80/20 w/w. On the other hand, AsFlFFF allowed clear detection of the presence of micelles when this same ratio was as low as 10/90. Subsequently, the photodynamic therapy efficiency of various controlled mixtures was assessed using multicellular spheroids when a photosensitizer, pheophorbide a, was encapsulated in the polymer self-assemblies. Some mixtures were shown to be as efficient as monomorphous systems. In some cases, mixtures were found to exhibit a higher PDT efficiency compared to the individual nano-objects, revealing a synergistic effect for the efficient delivery of the photosensitizer. Polymorphous vectors can therefore be superior in therapeutic applications.
Collapse
Affiliation(s)
- Ugo Till
- Université de Toulouse, Institut National Polytechnique de Toulouse-Ecole d'Ingénieurs de Purpan, Département Sciences Agronomiques et Agroalimentaires, 75 voie du TOEC, BP 57611, F-31076 Toulouse Cedex 03, France. Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, F-31062, Toulouse Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
The use of asymmetrical flow field-flow fractionation with on-line detection in the study of drug retention within liposomal nanocarriers and drug transfer kinetics. J Pharm Biomed Anal 2016; 124:157-163. [DOI: 10.1016/j.jpba.2016.02.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/12/2016] [Accepted: 02/24/2016] [Indexed: 11/23/2022]
|
24
|
Svane S, Kuntsche J, Steiniger F, Eich A, Duelund L, McKee V, McKenzie C. Dimetallic functionalities in liposome bilayers. Supramol Chem 2015. [DOI: 10.1080/10610278.2015.1067316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- S. Svane
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - J. Kuntsche
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - F. Steiniger
- Center for Electron Microscopy of the Medical Faculty, Friedrich Schiller University, Jena 07740, Germany
| | - A. Eich
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
- Department of Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53012 Bonn, Germany
| | - L. Duelund
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - V. McKee
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - C.J. McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
25
|
Hinna A, Steiniger F, Hupfeld S, Stein P, Kuntsche J, Brandl M. Filter-extruded liposomes revisited: a study into size distributions and morphologies in relation to lipid-composition and process parameters. J Liposome Res 2015; 26:11-20. [PMID: 25826203 DOI: 10.3109/08982104.2015.1022556] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Filter-extrusion is a widely used technique for down-sizing of phospholipid vesicles. In order to gain a detailed insight into size and size distributions of filter-extruded vesicles composed of egg phosphatidyl-choline (with varying fractions of cholesterol)--in relation to extrusion-parameters (pore-size, number of filter passages, and flow-rate), flow field-flow fractionation in conjunction with multi-angle laser light scattering (AF4-MALLS, Wyatt Technology Corp., Santa Barbara, CA) was employed. Liposome size-distributions determined by AF4-MALLS were compared with those of dynamic light scattering and correlated with cryo-transmission electron microscopy and (31)P-NMR-analysis of lamellarity. Both the mean size of liposome and the width of size distribution were found to decrease with sequential extrusion through smaller pore size filters, starting at a size range of ≈70-415 nm upon repeated extrusion through 400 nm pore-filters, eventually ending with a size range from ≈30 to 85 nm upon extrusion through 30 nm pore size filters. While for small pores sizes (50 nm), increased flow rates resulted in smaller vesicles, no significant influence of flow rate on mean vesicle size was seen with larger pores. Cholesterol at increasing mol fractions up to 0.45 yielded bigger vesicles (at identical process conditions). For a cholesterol mol fraction of 0.5 in combination with small filter pore size, a bimodal size distribution was seen indicating cholesterol micro-crystallites. Finally, a protocol is suggested to prepare large (∼ 300 nm) liposomes with rather narrow size distribution, based on the filter extrusion at defined flow-rates in combination with freeze-/thaw-cycling and bench-top centrifugation.
Collapse
Affiliation(s)
- Askell Hinna
- a Department of Physics , Chemistry and Pharmacy, University of Southern Denmark , Campusvej , Odense , Denmark
| | - Frank Steiniger
- b Center for Electron Microscopy of the Medical Faculty, Friedrich Schiller University Jena , Ziegelmühlenweg , Jena , Germany , and
| | | | - Paul Stein
- a Department of Physics , Chemistry and Pharmacy, University of Southern Denmark , Campusvej , Odense , Denmark
| | - Judith Kuntsche
- a Department of Physics , Chemistry and Pharmacy, University of Southern Denmark , Campusvej , Odense , Denmark
| | - Martin Brandl
- a Department of Physics , Chemistry and Pharmacy, University of Southern Denmark , Campusvej , Odense , Denmark
| |
Collapse
|
26
|
Gibot L, Lemelle A, Till U, Moukarzel B, Mingotaud AF, Pimienta V, Saint-Aguet P, Rols MP, Gaucher M, Violleau F, Chassenieux C, Vicendo P. Polymeric micelles encapsulating photosensitizer: structure/photodynamic therapy efficiency relation. Biomacromolecules 2014; 15:1443-55. [PMID: 24552313 DOI: 10.1021/bm5000407] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Various polymeric micelles were formed from amphiphilic block copolymers, namely, poly(ethyleneoxide-b-ε-caprolactone), poly(ethyleneoxide-b-d,l-lactide), and poly(ethyleneoxide-b-styrene). The micelles were characterized by static and dynamic light scattering, electron microscopy, and asymmetrical flow field-flow fractionation. They all displayed a similar size close to 20 nm. The influence of the chemical structure of the block copolymers on the stability upon dilution of the polymeric micelles was investigated to assess their relevance as carriers for nanomedicine. In the same manner, the stability upon aging was assessed by FRET experiments under various experimental conditions (alone or in the presence of blood proteins). In all cases, a good stability over 48 h for all systems was encountered, with PDLLA copolymer-based systems being the first to release their load slowly. The cytotoxicity and photocytotoxicity of the carriers were examined with or without their load. Lastly, the photodynamic activity was assessed in the presence of pheophorbide a as photosensitizer on 2D and 3D tumor cell culture models, which revealed activity differences between the 2D and 3D systems.
Collapse
Affiliation(s)
- Laure Gibot
- Equipe de Biophysique Cellulaire, IPBS-CNRS UMR 5089 , 205 route de Narbonne, BP 64182, 31077 Toulouse Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hinna A, Steiniger F, Hupfeld S, Brandl M, Kuntsche J. Asymmetrical flow field-flow fractionation with on-line detection for drug transfer studies: a feasibility study. Anal Bioanal Chem 2014; 406:7827-39. [DOI: 10.1007/s00216-014-7643-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
|
28
|
Chen J, He CQ, Lin AH, Xu F, Wang F, Zhao B, Liu X, Chen ZP, Cai BC. Brucine-loaded liposomes composed of HSPC and DPPC at different ratios: in vitro and in vivo evaluation. Drug Dev Ind Pharm 2014; 40:244-51. [PMID: 23600656 DOI: 10.3109/03639045.2012.756009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The objective of this study is to test the hypothesis that the phase transition temperature (T(m)), the main property of liposomes, can be easily controlled by changing the molar ratio of hydrogenated soy phosphatidylcholine (HSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphacholine (DPPC) after drug encapsulation. MATERIALS AND METHODS Brucine, an antitumor alkaloid, was encapsulated into the liposomes with different HSPC/DPPC compositions. The T(m)s of the brucine-loaded liposomes (BLs) were determined by differential scanning calorimetry (DSC). Then the physicochemical properties and pharmacokinetics of the BLs with different HSPC/DPPC compositions were investigated and compared. RESULTS The results of DSC revealed that HSPC and DPPC can combine into one phase. The findings of molecular modeling study suggested that HSPC interacts with DPPC via electrostatic interaction. The molar ratio of HSPC/DPPC influenced the sizes of BLs but had little effect on the entrapment efficiency (EE). The stability of BLs was improved with the increase of the HSPC ratios, especially with the presence of plasma. Following i.v. administration, it was found that AUC values of BLs in vivo were directly related to the HSPC/DPPC ratios of BLs, namely the T(m)s of BLs. DISCUSSION The behavior of liposomes, especially in vivo pharmacokinetic behavior, can be controlled by the modification of T(m). CONCLUSION The characterization of BLs in vitro and in vivo had demonstrated that the Tm could be flexibly modified for liposomes composed of both HSPC and DPPC. Using HSPC/DPPC composition may be an efficient strategy to control the T(m), thus control the in vivo pharmacokinetic behavior, of BLs.
Collapse
Affiliation(s)
- Jun Chen
- National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine , Nanjing , P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Peng H, Li W, Ning F, Yao L, Luo M, Zhu X, Zhao Q, Xiong H. Amphiphilic chitosan derivatives-based liposomes: synthesis, development, and properties as a carrier for sustained release of salidroside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:626-633. [PMID: 24372377 DOI: 10.1021/jf4039925] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel amphiphilic chitosan derivative of N,N-dimethylhexadecyl carboxymethyl chitosan (DCMCs) was synthesized. The structure of DCMCs was confirmed via FT-IR and (1)H NMR, and the critical micelle concentration (CMC) was investigated by fluorescence spectroscopy. The results indicated that DCMCs has hydrophilic carboxyl and hydrophobic methylene groups and the CMC value was 23.00 mg·L(-1). The polymeric liposomes (DCMCs/cholesterol liposomes, DC-Ls) were developed, and its properties were evaluated. The DC-Ls exhibited multilamellar spheres with positive charge (+73.30 mV), narrow size distribution (PDI = 0.277), and good crystal properties. Salidroside was first to encapsulate into DC-Ls. Compared with traditional liposomes (phosphatidylcholine/cholesterol liposome, PC-Ls), DC-Ls showed higher encapsulation efficiency (82.46%) and slower sustained release rate. The in vitro salidroside release from DC-Ls was governed by two distinct stages (i.e., burst release and sustained release) and was dependent on the pH of the release medium. The case II transport and case I Fichian diffusion were the main release mechanisms for the entire release procedure. These results indicated that DC-Ls may be a potential carrier system for the production of functional foods that contain salidroside or other bioactive food ingredients.
Collapse
Affiliation(s)
- Hailong Peng
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang, Jiangxi 330047, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Conte C, Ungaro F, Mazzaglia A, Quaglia F. Photodynamic Therapy for Cancer: Principles, Clinical Applications, and Nanotechnological Approaches. NANO-ONCOLOGICALS 2014. [DOI: 10.1007/978-3-319-08084-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
31
|
Preparation and characterization of mTHPC-loaded solid lipid nanoparticles for photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:161-9. [DOI: 10.1016/j.jphotobiol.2013.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/09/2013] [Accepted: 11/11/2013] [Indexed: 11/16/2022]
|
32
|
Reshetov V, Lassalle HP, François A, Dumas D, Hupont S, Gräfe S, Filipe V, Jiskoot W, Guillemin F, Zorin V, Bezdetnaya L. Photodynamic therapy with conventional and PEGylated liposomal formulations of mTHPC (temoporfin): comparison of treatment efficacy and distribution characteristics in vivo. Int J Nanomedicine 2013; 8:3817-31. [PMID: 24143087 PMCID: PMC3797282 DOI: 10.2147/ijn.s51002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A major challenge in the application of a nanoparticle-based drug delivery system for anticancer agents is the knowledge of the critical properties that influence their in vivo behavior and the therapeutic performance of the drug. The effect of a liposomal formulation, as an example of a widely-used delivery system, on all aspects of the drug delivery process, including the drug’s behavior in blood and in the tumor, has to be considered when optimizing treatment with liposomal drugs, but that is rarely done. This article presents a comparison of conventional (Foslip®) and polyethylene glycosylated (Fospeg®) liposomal formulations of temoporfin (meta-tetra[hydroxyphenyl]chlorin) in tumor-grafted mice, with a set of comparison parameters not reported before in one model. Foslip® and Fospeg® pharmacokinetics, drug release, liposome stability, tumor uptake, and intratumoral distribution are evaluated, and their influence on the efficacy of the photodynamic treatment at different light–drug intervals is discussed. The use of whole-tumor multiphoton fluorescence macroscopy imaging is reported for visualization of the in vivo intratumoral distribution of the photosensitizer. The combination of enhanced permeability and retention-based tumor accumulation, stability in the circulation, and release properties leads to a higher efficacy of the treatment with Fospeg® compared to Foslip®. A significant advantage of Fospeg® lies in a major decrease in the light–drug interval, while preserving treatment efficacy.
Collapse
Affiliation(s)
- Vadzim Reshetov
- Université de lorraine, centre de Recherche en Automatique de Nancy, Campus Sciences, Vandœuvre-lès-Nancy, France ; Centre National de la Recherche Scientifique, Centre de Recherche en Automatique de Nancy, France ; Laboratory of Biophysics and Biotechnology, Physics Faculty, Belarusian State University, Minsk, Belarus
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Decker C, Steiniger F, Fahr A. Transfer of a lipophilic drug (temoporfin) between small unilamellar liposomes and human plasma proteins: influence of membrane composition on vesicle integrity and release characteristics. J Liposome Res 2013; 23:154-65. [DOI: 10.3109/08982104.2013.770017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Skupin-Mrugalska P, Piskorz J, Goslinski T, Mielcarek J, Konopka K, Düzgüneş N. Current status of liposomal porphyrinoid photosensitizers. Drug Discov Today 2013; 18:776-84. [PMID: 23591149 DOI: 10.1016/j.drudis.2013.04.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/02/2013] [Accepted: 04/09/2013] [Indexed: 10/27/2022]
Abstract
The complete eradication of various targets, such as infectious agents or cancer cells, while leaving healthy host cells untouched, is still a great challenge faced in the field of medicine. Photodynamic therapy (PDT) seems to be a promising approach for anticancer treatment, as well as to combat various dermatologic and ophthalmic diseases and microbial infections. The application of liposomes as delivery systems for porphyrinoids has helped overcome many drawbacks of conventional photosensitizers and facilitated the development of novel effective photosensitizers that can be encapsulated in liposomes. The development, preclinical studies and future directions for liposomal delivery of conventional and novel photosensitizers are reviewed.
Collapse
Affiliation(s)
- Paulina Skupin-Mrugalska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
35
|
Pharmacokinetics of temoporfin-loaded liposome formulations: correlation of liposome and temoporfin blood concentration. J Control Release 2013; 166:277-85. [PMID: 23313962 DOI: 10.1016/j.jconrel.2013.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/20/2012] [Accepted: 01/04/2013] [Indexed: 01/20/2023]
Abstract
Liposomal formulations of the highly hydrophobic photosensitizer temoporfin were developed in order to overcome solubility-related problems associated with the current therapy scheme. We have incorporated temoporfin into liposomes of varying membrane composition, cholesterol content, and vesicle size. Specifically, two phosphatidyl oligoglycerols were compared to PEG2000-DSPE with respect to the ability to prolong circulation half life of the liposomal carrier. We measured the resulting pharmacokinetic profile of the liposomal carrier and the incorporated temoporfin in a rat model employing a radioactive lipid label and (14)C-temoporfin. The data for the removal of liposomes and temoporfin were analyzed in terms of classical pharmacokinetic theory assuming a two-compartment model. This model, however, does not allow in a straightforward manner to distinguish between temoporfin eliminated together with the liposomal carrier and temoporfin that is first transferred to other blood components (e. g. plasma proteins) before being eliminated from the blood. We therefore additionally analyzed the data based on two separate one-compartment models for the liposomes and temoporfin. The model yields the ratio of the rate constant of temoporfin elimination together with the liposomal carrier and the rate constant of temoporfin elimination following the transfer to e. g. plasma proteins. Our analysis using this model demonstrates that a fraction of temoporfin is released from the liposomes prior to being eliminated from the blood. In case of unmodified liposomes this temoporfin release was observed to increase with decreasing bilayer fluidity, indicating an accelerated temoporfin transfer from gel-phase liposomes to e. g. plasma proteins. Interestingly, liposomes carrying either one of the three investigated surface-modifying agents did not adhere to the tendencies observed for unmodified liposomes. Although surface-modified liposomes exhibited improved pharmacokinetic properties with regard to the liposomal carrier, an enhanced temoporfin loss and elimination from the PEGylated-liposomes was observed. This effect was more pronounced for PEGylated liposomes than for the two oligo-glycerols. Our combined experimental-theoretical approach for in vivo plasma re-distribution of liposomal drugs may help to optimize colloidal drug carrier systems.
Collapse
|
36
|
Transferrin conjugation does not increase the efficiency of liposomal Foscan during in vitro photodynamic therapy of oesophageal cancer. Eur J Pharm Sci 2013; 48:202-10. [DOI: 10.1016/j.ejps.2012.10.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/31/2012] [Accepted: 10/16/2012] [Indexed: 12/20/2022]
|
37
|
Moret F, Scheglmann D, Reddi E. Folate-targeted PEGylated liposomes improve the selectivity of PDT with meta-tetra(hydroxyphenyl)chlorin (m-THPC). Photochem Photobiol Sci 2013; 12:823-34. [DOI: 10.1039/c3pp25384h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Comparative characterization of the cellular uptake and photodynamic efficiency of Foscan® and Fospeg in a human prostate cancer cell line. Photodiagnosis Photodyn Ther 2012. [DOI: 10.1016/j.pdpdt.2012.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Wang Q, Rojas EC, Papadopoulos KD. Cationic liposomes in double emulsions for controlled release. J Colloid Interface Sci 2012; 383:89-95. [DOI: 10.1016/j.jcis.2012.06.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
|
40
|
Kuntsche J, Decker C, Fahr A. Analysis of liposomes using asymmetrical flow field-flow fractionation: Separation conditions and drug/lipid recovery. J Sep Sci 2012; 35:1993-2001. [DOI: 10.1002/jssc.201200143] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Christiane Decker
- Department of Pharmaceutical Technology; Friedrich Schiller University Jena; Jena; Germany
| | - Alfred Fahr
- Department of Pharmaceutical Technology; Friedrich Schiller University Jena; Jena; Germany
| |
Collapse
|
41
|
Reshetov V, Zorin V, Siupa A, D'Hallewin MA, Guillemin F, Bezdetnaya L. Interaction of liposomal formulations of meta-tetra(hydroxyphenyl)chlorin (temoporfin) with serum proteins: protein binding and liposome destruction. Photochem Photobiol 2012; 88:1256-64. [PMID: 22607362 DOI: 10.1111/j.1751-1097.2012.01176.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
mTHPC is a non polar photosensitizer used in photodynamic therapy. To improve its solubility and pharmacokinetic properties, liposomes were proposed as drug carriers. Binding of liposomal mTHPC to serum proteins and stability of drug carriers in serum are of major importance for PDT efficacy; however, neither was reported before. We studied drug binding to human serum proteins using size-exclusion chromatography. Liposomes destruction in human serum was measured by nanoparticle tracking analysis (NTA). Inclusion of mTHPC into conventional (Foslip(®)) and PEGylated (Fospeg(®)) liposomes does not affect equilibrium serum protein binding compared with solvent-based mTHPC. At short incubation times the redistribution of mTHPC from Foslip(®) and Fospeg(®) proceeds by both drug release and liposomes destruction. At longer incubation times, the drug redistributes only by release. The release of mTHPC from PEGylated vesicles is delayed compared with conventional liposomes, alongside with greatly decreased liposomes destruction. Thus, for long-circulation times the pharmacokinetic behavior of Fospeg(®) could be influenced by a combination of protein- and liposome-bound drug. The study highlights the modes of interaction of photosensitizer-loaded nanovesicles in serum to predict optimal drug delivery and behavior in vivo in preclinical models, as well as the novel application of NTA to assess the destruction of liposomes.
Collapse
Affiliation(s)
- Vadzim Reshetov
- Centre de Recherche en Automatique de Nancy, Université de Lorraine, CNRS UMR 7039, Centre Alexis Vautrin, Vandœuvre-Les-Nancy, France
| | | | | | | | | | | |
Collapse
|
42
|
Decker C, Fahr A, Kuntsche J, May S. Selective partitioning of cholesterol and a model drug into liposomes of varying size. Chem Phys Lipids 2012; 165:520-9. [DOI: 10.1016/j.chemphyslip.2012.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/05/2012] [Accepted: 04/07/2012] [Indexed: 01/15/2023]
|
43
|
Lyophilization of cholesterol-free PEGylated liposomes and its impact on drug loading by passive equilibration. Int J Pharm 2012; 430:167-75. [DOI: 10.1016/j.ijpharm.2012.04.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/22/2012] [Accepted: 04/08/2012] [Indexed: 12/29/2022]
|
44
|
Muehlmann LA, Joanitti GA, Silva JR, Longo JPF, Azevedo RB. Liposomal photosensitizers: potential platforms for anticancer photodynamic therapy. Braz J Med Biol Res 2012; 44:729-37. [PMID: 21969965 DOI: 10.1590/s0100-879x2011007500091] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Photodynamic therapy is a well-established and clinically approved treatment for several types of cancer. Antineoplastic photodynamic therapy is based on photosensitizers, i.e., drugs that absorb photons translating light energy into a chemical potential that damages tumor tissues. Despite the encouraging clinical results with the approved photosensitizers available today, the prolonged skin phototoxicity, poor selectivity for diseased tissues, hydrophobic nature, and extended retention in the host organism shown by these drugs have stimulated researchers to develop new formulations for photodynamic therapy. In this context, due to their amphiphilic characteristic (compatibility with both hydrophobic and hydrophilic substances), liposomes have proven to be suitable carriers for photosensitizers, improving the photophysical properties of the photosensitizers. Moreover, as nanostructured drug delivery systems, liposomes improve the efficiency and safety of antineoplastic photodynamic therapy, mainly by the classical phenomenon of extended permeation and retention. Therefore, the association of photosensitizers with liposomes has been extensively studied. In this review, both current knowledge and future perspectives on liposomal carriers for antineoplastic photodynamic therapy are critically discussed.
Collapse
Affiliation(s)
- L A Muehlmann
- Departamento de Genética e Morfologia, Instituto de Biologia, Universidade de Brasília.
| | | | | | | | | |
Collapse
|
45
|
Chen J, Cheng D, Li J, Wang Y, Guo JX, Chen ZP, Cai BC, Yang T. Influence of lipid composition on the phase transition temperature of liposomes composed of both DPPC and HSPC. Drug Dev Ind Pharm 2012; 39:197-204. [PMID: 22443684 DOI: 10.3109/03639045.2012.668912] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Phase transition of the lipid membrane is one of the most important properties of liposomes. The objective of this study was to investigate the influence of molar ratio of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and hydrogenated soy phosphatidylcholine (HSPC) on the phase transition temperature (T(m)) of the liposomes. MATERIALS AND METHODS The T(m)s of the liposomes with different phosphatidylcholine (PC) composition were determined by calcein release test and differential scanning calorimetry (DSC). RESULTS Only one phase transition was observed for liposomes composed of both DPPC and HSPC, indicating that DPPC and HSPC might combine into one phase with single phase transition. The T(m) of the liposomes composed of both DPPC and HSPC was directly dependent on the molar ratio of the two PCs. Moreover, DPPC percentage and T(m) relationship could be fitted with a linear equation (r(2) > 0.98). In addition, the serum stability of the liposomes at 37°C was directly increased with the increase of DPPC percentage. When 10% DSPE-PEG2000 was added, the significant increase of calcein release at T(m) and decrease at 37°C were observed. DISCUSSION It is easy to obtain liposomes with a T(m) in between that of DPPC and HSPC by modifying the molar ratio of DPPC and HSPC. CONCLUSION With the modification of T(m), the liposomes containing various ratios of DPPC and HSPC may have promising application potential in the field of thermosensitive liposomes (TSLs). After 10% DSPE-PEG2000 is added, a formulation of sterically stabilized liposomes with the proper thermal sensitivity can be obtained.
Collapse
Affiliation(s)
- Jun Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dĕdic R, Molnár A, Svoboda A, Hála J. Light-induced TPP photoproduct formation in chloroform and protective role of lipids. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424610002811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this contribution, the influence of lipids on excitation energy transfer from lipophilic photosensitizer tetraphenylporphyrin to oxygen was investigated in chloroform solutions of phosphatidylcholine as well as in bulk lipid. The excited states kinetics were examined in a wide range of lipid concentrations (from zero to the saturated concentration) by direct time- and spectral-resolved detection of weak near infrared phosphorescence of the photosensitizer (around 840 nm) and singlet oxygen (about 1278 nm). While photosensitizer triplet kinetics follows single-exponential decay with lifetime of 0.52 μs in pure chloroform, two distinct components with lifetimes of approximately 0.4 and 1 μs appear after phosphatidylcholine addition. Both the lifetimes exhibit shortening tendency with increasing lipid concentration. Relative weights of the two components depend on the lipid concentration. Singlet oxygen kinetics exhibit single-exponential rise with lifetimes roughly corresponding to the shorter components of photosensitizer decays while their decays require two exponentials. The lifetime of the longer component decreases with increasing concentration of lipid from (77.6 ± 1.3) μ s at pure chloroform to (14.3 ± 1.1) μ s at the saturated lipid concentration. The time-constants obtained in bulk lipid sample follow the above-mentioned trends. Tetraphenylporphyrin photoproduct formation under pulsed excitation in chloroform solutions was demonstrated. The quantum yield of singlet oxygen production of the photoproduct is lower than that of the tetraphenylporphyrin. It was shown that lipids prevent the singlet-oxygen mediated formation of TPP photoproduct, probably by efficient quenching of singlet oxygen. This quenching is justified by shortening of the longer component of singlet oxygen luminescence decays with increasing concentration of the lipid. Moreover, the lipids also quench triplet states of the photosensitizer.
Collapse
Affiliation(s)
- Roman Dĕdic
- Charles University in Prague, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Ke Karlovu 3, Praha 2 12116, Czech Republic
| | - Alexander Molnár
- Charles University in Prague, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Ke Karlovu 3, Praha 2 12116, Czech Republic
| | - Antonín Svoboda
- Charles University in Prague, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Ke Karlovu 3, Praha 2 12116, Czech Republic
| | - Jan Hála
- Charles University in Prague, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Ke Karlovu 3, Praha 2 12116, Czech Republic
| |
Collapse
|
47
|
Petri A, Alexandratou E, Kyriazi M, Rallis M, Roussis V, Yova D. Combination of Fospeg-IPDT and a natural antioxidant compound prevents photosensitivity in a murine prostate cancer tumour model. Photodiagnosis Photodyn Ther 2011; 9:100-8. [PMID: 22594979 DOI: 10.1016/j.pdpdt.2011.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/08/2011] [Accepted: 11/16/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND The aim of the present research was to investigate the potential use of a natural compound rich in antioxidant agents, derived from Pinus halepensis (P. halepensis), to prevent PDT induced photosensitivity. The present research progressed in two levels. The first one evolved the optimization of Fospeg-interstitial photodynamic therapy (IPDT) in a prostate cancer animal model. In the second one, P. halepensis bark extract, was evaluated for its potential use to prevent photosensitivity. METHODS Two sets of experiments were performed, IPDT only and IPDT in the presence of antioxidant. For both of them, Fospeg was administrated intravenously to SCID mice bearing prostate cancer, followed by IPDT after 6 h. For the IPDT+antioxidant experiments, P. halepensis was injected intratumourously 1 h prior the tumour illumination. Treatment outcome was monitored twice a week by an imaging system and by measuring tumour dimensions using a caliper. Photosensitivity was assessed by monitoring erythema of the tail using the imaging system. RESULTS IPDT with Fospeg and 15 J total light energy is a therapeutic scheme that can eliminate tumours in the murine model of prostate cancer. Two months after complete tumour remission no tumour recurrence was observed. Also, the cosmetic outcome of the research was excellent. The major drawback of this treatment scheme was that 90% of the animals developed photosensitivity. The addition of P. halepensis bark extract resulted in prevention of the photosensitivity, leaving PDT outcome unaffected. CONCLUSIONS The combined use of PDT and the used antioxidant agent could broaden the implementation of photodynamic therapy, by eliminating photosensitivity.
Collapse
Affiliation(s)
- Aspasia Petri
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Politechniou 9, Zografou Campus, 15780 Athens, Greece.
| | | | | | | | | | | |
Collapse
|
48
|
Senge MO, Brandt JC. Temoporfin (Foscan®, 5,10,15,20-tetra(m-hydroxyphenyl)chlorin)--a second-generation photosensitizer. Photochem Photobiol 2011; 87:1240-96. [PMID: 21848905 DOI: 10.1111/j.1751-1097.2011.00986.x] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review traces the development and study of the second-generation photosensitizer 5,10,15,20-tetra(m-hydroxyphenyl)chlorin through to its acceptance and clinical use in modern photodynamic (cancer) therapy. The literature has been covered up to early 2011.
Collapse
Affiliation(s)
- Mathias O Senge
- Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.
| | | |
Collapse
|
49
|
Yang K, Gitter B, Rüger R, Albrecht V, Wieland GD, Fahr A. Wheat Germ Agglutinin Modified Liposomes for the Photodynamic Inactivation of Bacteria†. Photochem Photobiol 2011; 88:548-56. [DOI: 10.1111/j.1751-1097.2011.00983.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Kuntsche J, Horst JC, Bunjes H. Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int J Pharm 2011; 417:120-37. [DOI: 10.1016/j.ijpharm.2011.02.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/29/2011] [Accepted: 02/01/2011] [Indexed: 01/25/2023]
|