1
|
Yin C, Hemstedt J, Scheuer K, Struczyńska M, Weber C, Schubert US, Bossert J, Jandt KD. The Effect of Stereocomplexation and Crystallinity on the Degradation of Polylactide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:440. [PMID: 38470771 DOI: 10.3390/nano14050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/03/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Polymeric nanoparticles (PNPs) are frequently researched and used in drug delivery. The degradation of PNPs is highly dependent on various properties, such as polymer chemical structure, size, crystallinity, and melting temperature. Hence, a precise understanding of PNP degradation behavior is essential for optimizing the system. This study focused on enzymatic hydrolysis as a degradation mechanism by investigation of the degradation of PNP with various crystallinities. The aliphatic polyester polylactide ([C3H4O2]n, PLA) was used as two chiral forms, poly l-lactide (PlLA) and poly d-lactide (PdLA), and formed a unique crystalline stereocomplex (SC). PNPs were prepared via a nanoprecipitation method. In order to further control the crystallinity and melting temperatures of the SC, the polymer poly(3-ethylglycolide) [C6H8O4]n (PEtGly) was synthesized. Our investigation shows that the PNP degradation can be controlled by various chemical structures, crystallinity and stereocomplexation. The influence of proteinase K on PNP degradation was also discussed in this research. AFM did not reveal any changes within the first 24 h but indicated accelerated degradation after 7 days when higher EtGly content was present, implying that lower crystallinity renders the particles more susceptible to hydrolysis. QCM-D exhibited reduced enzyme adsorption and a slower degradation rate in SC-PNPs with lower EtGly contents and higher crystallinities. A more in-depth analysis of the degradation process unveiled that QCM-D detected rapid degradation from the outset, whereas AFM exhibited delayed changes of degradation. The knowledge gained in this work is useful for the design and creation of advanced PNPs with enhanced structures and properties.
Collapse
Affiliation(s)
- Chuan Yin
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Jenny Hemstedt
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Karl Scheuer
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Maja Struczyńska
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
| | - Christine Weber
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Ulrich S Schubert
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Jörg Bossert
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Klaus D Jandt
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
| |
Collapse
|
2
|
Asami J, Quevedo BV, Santos AR, Giorno LP, Komatsu D, de Rezende Duek EA. The impact of non-deproteinization on physicochemical and biological properties of natural rubber latex for biomedical applications. Int J Biol Macromol 2023; 253:126782. [PMID: 37690638 DOI: 10.1016/j.ijbiomac.2023.126782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Latex is a colloidal suspension derived from the Hevea brasiliensis tree, derived from natural rubber, poly(isoprene), and assorted constituents including proteins and phospholipids. These constituents are inherent to both natural rubber and latex serum. This investigation was undertaken to examine the impact of the deproteinization process on chemical and biological dynamics of natural rubber latex. Natural Rubber (NR) extracted from the pure latex (LNCP) was obtained through centrifugation, followed by six rounds of solvent purification (LP6). The structure was characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), swelling test, surface zeta potential (ζ), scanning electron microscopy (SEM) and in vitro assay. The results revealed that the LP6 group presented decreased swelling kinetics, reduced cell adhesion and proliferation, and a smoother surface with decreased negative surface charge. Conversely, the LNCP group shown accelerated swelling, heightened adhesion and cellular growth, and a more negatively charged and rougher surface. As such, the attributes of latex serum and proteins have potential usage across numerous biomedical applications.
Collapse
Affiliation(s)
- Jessica Asami
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil.
| | - Bruna V Quevedo
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil; Postgraduate Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba, SP, Brazil
| | - Arnaldo R Santos
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Luciana Pastena Giorno
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Daniel Komatsu
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil
| | - Eliana Aparecida de Rezende Duek
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil; Postgraduate Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba, SP, Brazil
| |
Collapse
|
3
|
Zhang H, Yang Z, Wu D, Hao B, Liu Y, Wang X, Pu W, Yi Y, Shang R, Wang S. The Effect of Polymer Blends on the In Vitro Release/Degradation and Pharmacokinetics of Moxidectin-Loaded PLGA Microspheres. Int J Mol Sci 2023; 24:14729. [PMID: 37834176 PMCID: PMC10573114 DOI: 10.3390/ijms241914729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
To investigate the effect of polymer blends on the in vitro release/degradation and pharmacokinetics of moxidectin-loaded PLGA microspheres (MOX-MS), four formulations (F1, F2, F3 and F4) were prepared using the O/W emulsion solvent evaporation method by blending high (75/25, 75 kDa) and low (50/50, 23 kDa) molecular weight PLGA with different ratios. The addition of low-molecular-weight PLGA did not change the release mechanism of microspheres, but sped up the drug release of microspheres and drastically shortened the lag phase. The in vitro degradation results show that the release of microspheres consisted of a combination of pore diffusion and erosion, and especially autocatalysis played an important role in this process. Furthermore, an accelerated release method was also developed to reduce the period for drug release testing within one month. The pharmacokinetic results demonstrated that MOX-MS could be released for at least 60 days with only a slight blood drug concentration fluctuation. In particular, F3 displayed the highest AUC and plasma concentration (AUC0-t = 596.53 ng/mL·d, Cave (day 30-day 60) = 8.84 ng/mL), making it the optimal formulation. Overall, these results indicate that using polymer blends could easily adjust hydrophobic drug release from microspheres and notably reduce the lag phase of microspheres.
Collapse
Affiliation(s)
- Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Di Wu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Xuehong Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Yunpeng Yi
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| |
Collapse
|
4
|
Qureshi MI, Jamil QA, Usman F, Wani TA, Farooq M, Shah HS, Ahmad H, Khalil R, Sajjad M, Zargar S, Kausar S. Tioconazole-Loaded Transethosomal Gel Using Box-Behnken Design for Topical Applications: In Vitro, In Vivo, and Molecular Docking Approaches. Gels 2023; 9:767. [PMID: 37754448 PMCID: PMC10530999 DOI: 10.3390/gels9090767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Tioconazole (TCZ) is a broad-spectrum fungicidal BCS class II drug with reported activity against Candida albicans, dermatophytes, and certain Staphylococci bacteria. We report the use of TCZ-loaded transethosomes (TEs) to overcome the skin's barrier function. TCZ-loaded TEs were fabricated by using a cold method with slight modification. Box-Behnken composite design was utilized to investigate the effect of independent variables. The fabricated TEs were assessed with various physicochemical characterizations. The optimized formulation of TCZ-loaded TEs was incorporated into gel and evaluated for pH, conductivity, drug content, spreadability, rheology, in vitro permeation, ex vivo permeation, and in vitro and in vivo antifungal activity. The fabricated TCZ-loaded TEs had a % EE of 60.56 to 86.13, with particle sizes ranging from 219.1 to 757.1 nm. The SEM images showed spherically shaped vesicles. The % drug permeation was between 77.01 and 92.03. The kinetic analysis of all release profiles followed Higuchi's diffusion model. The FTIR, DSC, and XRD analysis showed no significant chemical interactions between the drug and excipients. A significantly higher antifungal activity was observed for TCZ-loaded transethosomal gel in comparison to the control. The in vivo antifungal study on albino rats indicated that TCZ-loaded transethosomal gel showed a comparable therapeutic effect in comparison to the market brand Canesten®. Molecular docking demonstrated that the TCZ in the TE composition was surrounded by hydrophobic excipients with increased overall hydrophobicity and better permeation. Therefore, TCZ in the form of transethosomal gel can serve as an effective drug delivery system, having the ability to penetrate the skin and overcome the stratum corneum barrier with improved efficacy.
Collapse
Affiliation(s)
- Muhammad Imran Qureshi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 66000, Pakistan; (M.I.Q.); (Q.A.J.)
| | - Qazi Adnan Jamil
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 66000, Pakistan; (M.I.Q.); (Q.A.J.)
| | - Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassir Farooq
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jillani (Out Fall) Road, Lahore 54000, Pakistan;
| | - Hassan Ahmad
- Faculty of Pharmaceutical Sciences, University of Central Punjab, 1-Khayabaan-e-Jinnah Road, Johar Town, Lahore 54000, Pakistan;
| | - Ruqaiya Khalil
- Centro De Investigaciones Biomédicas, University of Vigo (CINBO), 36310 Vigo, Spain;
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Muhammad Sajjad
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Seema Zargar
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Safina Kausar
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| |
Collapse
|
5
|
Bao Z, Ding S, Dai Z, Wang Y, Jia J, Shen S, Yin Y, Li X. Significantly enhanced high-temperature capacitive energy storage in cyclic olefin copolymer dielectric films via ultraviolet irradiation. MATERIALS HORIZONS 2023; 10:2120-2127. [PMID: 36946201 DOI: 10.1039/d3mh00078h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polymer dielectrics with high operation temperature (∼150 °C) and excellent capacitive energy storage performance are vital for electric power systems and advanced electronic devices. Here, a very convenient and competitive strategy by preparing ultraviolet-irradiated cyclic olefin copolymer films is demonstrated to be effective in improving the energy storage performance at high temperatures. Compared with the unirradiated film, irradiated films exhibit a higher dielectric constant, higher breakdown strength and stronger mechanical properties as a result of the emergence of the carbonyl group and cross-linking network. Consequently, with a high efficiency above 95%, a superior discharged energy density of ∼3.34 J cm-3 is achieved at 150 °C, surpassing the current dielectric polymers and polymer nanocomposites. In particular, the energy storage performance remains highly reliable over 20 000 cycles under actual operating conditions (200 MV m-1 at 150 °C) in hybrid electric vehicles. This research offers a valuable pathway to build high-energy-density polymer-based capacitor devices working under harsh environments.
Collapse
Affiliation(s)
- Zhiwei Bao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Song Ding
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Zhizhan Dai
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Yiwei Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Jiangheng Jia
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Shengchun Shen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Yuewei Yin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Xiaoguang Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
6
|
Dose-Dependent Cytotoxicity of Polypropylene Microplastics (PP-MPs) in Two Freshwater Fishes. Int J Mol Sci 2022; 23:ijms232213878. [PMID: 36430357 PMCID: PMC9692651 DOI: 10.3390/ijms232213878] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The massive accumulation of plastics over the decades in the aquatic environment has led to the dispersion of plastic components in aquatic ecosystems, invading the food webs. Plastics fragmented into microplastics can be bioaccumulated by fishes via different exposure routes, causing several adverse effects. In the present study, the dose-dependent cytotoxicity of 8−10 μm polypropylene microplastics (PP-MPs), at concentrations of 1 mg/g (low dose) and 10 mg/g dry food (high dose), was evaluated in the liver and gill tissues of two fish species, the zebrafish (Danio rerio) and the freshwater perch (Perca fluviatilis). According to our results, the inclusion of PP-MPs in the feed of D. rerio and P. fluviatilis hampered the cellular function of the gills and hepatic cells by lipid peroxidation, DNA damage, protein ubiquitination, apoptosis, autophagy, and changes in metabolite concentration, providing evidence that the toxicity of PP-MPs is dose dependent. With regard to the individual assays tested in the present study, the biggest impact was observed in DNA damage, which exhibited a maximum increase of 18.34-fold in the liver of D. rerio. The sensitivity of the two fish species studied differed, while no clear tissue specificity in both fish species was observed. The metabolome of both tissues was altered in both treatments, while tryptophan and nicotinic acid exhibited the greatest decrease among all metabolites in all treatments in comparison to the control. The battery of biomarkers used in the present study as well as metabolomic changes could be suggested as early-warning signals for the assessment of the aquatic environment quality against MPs. In addition, our results contribute to the elucidation of the mechanism induced by nanomaterials on tissues of aquatic organisms, since comprehending the magnitude of their impact on aquatic ecosystems is of great importance.
Collapse
|
7
|
Multifunctional PLA/Gelatin Bionanocomposites for Tailored Drug Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14061138. [PMID: 35745711 PMCID: PMC9227928 DOI: 10.3390/pharmaceutics14061138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
A series of bionanocomposites composed of shark gelatin hydrogels and PLA nanoparticles featuring different nanostructures were designed to generate multifunctional drug delivery systems with tailored release rates required for personalized treatment approaches. The global conception of the systems was considered from the desired customization of the drug release while featuring the viscoelastic properties needed for their ease of storage and posterior local administration as well as their biocompatibility and cell growth capability for the successful administration at the biomolecular level. The hydrogel matrix offers the support to develop a direct thermal method to convert the typical kinetic trapped nanostructures afforded by the formulation method whilst avoiding the detrimental nanoparticle agglomeration that diminishes their therapeutic effect. The nanoparticles generated were successfully formulated with two different antitumoral compounds (doxorubicin and dasatinib) possessing different structures to prove the loading versatility of the drug delivery system. The bionanocomposites were characterized by several techniques (SEM, DLS, RAMAN, DSC, SAXS/WAXS and rheology) as well as their reversible sol–gel transition upon thermal treatment that occurs during the drug delivery system preparation and the thermal annealing step. In addition, the local applicability of the drug delivery system was assessed by the so-called “syringe test” to validate both the storage capability and its flow properties at simulated physiological conditions. Finally, the drug release profiles of the doxorubicin from both the PLA nanoparticles or the bionanocomposites were analyzed and correlated to the nanostructure of the drug delivery system.
Collapse
|
8
|
Paliperidone palmitate depot microspheres based on biocompatible poly(alkylene succinate) polyesters as long-acting injectable formulations. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Terzopoulou Z, Zamboulis A, Bikiaris DN, Valera MA, Mangas A. Synthesis, Properties, and Enzymatic Hydrolysis of Poly(lactic acid)- co-Poly(propylene adipate) Block Copolymers Prepared by Reactive Extrusion. Polymers (Basel) 2021; 13:4121. [PMID: 34883625 PMCID: PMC8659515 DOI: 10.3390/polym13234121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 01/25/2023] Open
Abstract
Poly(lactic acid) (PLA) is a biobased polyester with ever-growing applications in the fields of packaging and medicine. Despite its popularity, it suffers from inherent brittleness, a very slow degradation rate and a high production cost. To tune the properties of PLA, block copolymers with poly(propylene adipate) (PPAd) prepolymer were prepared by polymerizing L-lactide and PPAd oligomers via reactive extrusion (REX) in a torque rheometer. The effect of reaction temperature and composition on the molecular weight, chemical structure, and physicochemical properties of the copolymers was studied. The introduction of PPAd successfully increased the elongation and the biodegradation rate of PLA. REX is an efficient and economical alternative method for the fast and continuous synthesis of PLA-based copolymers with tunable properties.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.Z.); (D.N.B.)
| | - Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.Z.); (D.N.B.)
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.Z.); (D.N.B.)
| | - Miguel Angel Valera
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain; (M.A.V.); (A.M.)
| | - Ana Mangas
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain; (M.A.V.); (A.M.)
| |
Collapse
|
10
|
Pappa A, Papadimitriou-Tsantarliotou A, Kaloyianni M, Kastrinaki G, Dailianis S, Lambropoulou DA, Christodoulou E, Kyzas GZ, Bikiaris DN. Insights into the toxicity of biomaterials microparticles with a combination of cellular and oxidative biomarkers. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125335. [PMID: 33930942 DOI: 10.1016/j.jhazmat.2021.125335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Considering that the extensive biomedical, pharmaceutics, cosmetic and other industrial applications of biomaterials (BMs) is of great concern nowadays, regarding their environmental risk, the present study aimed to investigate the effects of four BMs, poly(ε-caprolactone) (PCL), poly(butylene succinate) (PBSu), chitosan (CS) and modified chitosan (succinic acid grafted chitosan) (CS-Suc) in the form of microplastics (particle sizes less than 1 mm) on biochemical parameters of snails Cornu aspersum hemocytes. Due to the absence of knowledge about the environmentally relevant concentrations of BMs, snails were initially treated through their food with a wide range of nominal concentrations of each BM to define the half maximal effective concentration (NRRT50), according to the destabilization degree of hemocytes' lysosomal membranes (by mean of neutral red retention time/NRRT assay). Thereafter, snails were treated with each BM, at concentrations lower than the estimated NRRT50 values in all cases, for periods up to 15 days. After the end of the exposure period, a battery of stress indices were measured in hemocytes of challenged snails. According to the results, all parameters tested in BMs-treated snails statistically differed from those measured in BMs-free snails, thus indicating the pro-oxidant potential of BMs, as well as their ability to affect animals' physiology. The most considerable effect in most cases seems to be caused by modified chitosan and PCL, while chitosan appears to be the least toxic. A common response mechanism of snails' blood cells against the 4 BMs used in the present study was shown. After exposure to each of the studied BMs a significant augmentation in protein carbonyls, MDA equivalents and DNA damage, while a significant reduction in NRRT values was determined in the snails hemocytes, in relation to the unexposed animals. From the biochemical parameters examined, MDA equivalents and DNA damage seem to be more susceptible than the other parameters studied, to respond to BMs effect, with MDA to react with more sensitivity to PCL and CS, while DNA damage to CS-Suc and PBSu. Our results could suggest the simultaneous use of the latter biomarkers in biomonitoring studies of terrestrial ecosystems against the specific BMs.
Collapse
Affiliation(s)
- Anna Pappa
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Aliki Papadimitriou-Tsantarliotou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | | | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Patras 26 500, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala GR-654 04, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
11
|
Poly(l-Lactic Acid)-co-poly(Butylene Adipate) New Block Copolymers for the Preparation of Drug-Loaded Long Acting Injectable Microparticles. Pharmaceutics 2021; 13:pharmaceutics13070930. [PMID: 34201567 PMCID: PMC8308927 DOI: 10.3390/pharmaceutics13070930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
The present study evaluates the use of newly synthesized poly(l-lactic acid)-co-poly(butylene adipate) (PLA/PBAd) block copolymers as microcarriers for the preparation of aripiprazole (ARI)-loaded long acting injectable (LAI) formulations. The effect of various PLA to PBAd ratios (95/5, 90/10, 75/25 and 50/50 w/w) on the enzymatic hydrolysis of the copolymers showed increasing erosion rates by increasing the PBAd content, while cytotoxicity studies revealed non-toxicity for all prepared biomaterials. SEM images showed the formation of well-shaped, spherical MPs with a smooth exterior surface and no particle's agglomeration, while DSC and pXRD data revealed that the presence of PBAd in the copolymers favors the amorphization of ARI. FTIR spectroscopy showed the formation of new ester bonds between the PLA and PBAd parts, while analysis of the MP formulations showed no molecular drug-polyester matrix interactions. In vitro dissolution studies suggested a highly tunable biphasic extended release, for up to 30 days, indicating the potential of the synthesized copolymers to act as promising LAI formulations, which will maintain a continuous therapeutic level for an extended time period. Lastly, several empirical and mechanistic models were also tested, with respect to their ability to fit the experimental release data.
Collapse
|
12
|
Balla E, Daniilidis V, Karlioti G, Kalamas T, Stefanidou M, Bikiaris ND, Vlachopoulos A, Koumentakou I, Bikiaris DN. Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties-From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers (Basel) 2021; 13:1822. [PMID: 34072917 PMCID: PMC8198026 DOI: 10.3390/polym13111822] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Environmental problems, such as global warming and plastic pollution have forced researchers to investigate alternatives for conventional plastics. Poly(lactic acid) (PLA), one of the well-known eco-friendly biodegradables and biobased polyesters, has been studied extensively and is considered to be a promising substitute to petroleum-based polymers. This review gives an inclusive overview of the current research of lactic acid and lactide dimer techniques along with the production of PLA from its monomers. Melt polycondensation as well as ring opening polymerization techniques are discussed, and the effect of various catalysts and polymerization conditions is thoroughly presented. Reaction mechanisms are also reviewed. However, due to the competitive decomposition reactions, in the most cases low or medium molecular weight (MW) of PLA, not exceeding 20,000-50,000 g/mol, are prepared. For this reason, additional procedures such as solid state polycondensation (SSP) and chain extension (CE) reaching MW ranging from 80,000 up to 250,000 g/mol are extensively investigated here. Lastly, numerous practical applications of PLA in various fields of industry, technical challenges and limitations of PLA use as well as its future perspectives are also reported in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (E.B.); (V.D.); (G.K.); (T.K.); (M.S.); (N.D.B.); (A.V.); (I.K.)
| |
Collapse
|
13
|
Mbah C, Ogbonna J, Nzekwe I, Ugwu G, Ezeh R, Builders P, Attama A, Adikwu M, Ofoefule S. Nanovesicle Formulation Enhances Anti-inflammatory Property and Safe Use of Piroxicam. Pharm Nanotechnol 2021; 9:177-190. [PMID: 33511937 DOI: 10.2174/2211738509666210129151844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Enhanced utilization of certain drugs may be possible through the development of alternative delivery forms. It has been observed that NSAIDs have adverse gastrointestinal tract effects such as irritation and ulceration during anti-inflammatory therapy. This challenge may be overcome through nano topical formulations. OBJECTIVE This study aimed to explore the potentials of a transdermal nanovesicular formulation for safe and enhanced delivery of piroxicam (PRX), a poorly water-soluble NSAID. METHODS Preformulation studies were conducted using DSC and FTIR. Ethosomal nanovesicular carrier (ENVC) was prepared by thin-film deposition technique using Phospholipon® 90 H (P90H) and ethanol and then converted into gel form. The formulation was characterized using a commercial PRX gel as control. Permeation studies were conducted using rat skin and Franz diffusion cell. Samples were assayed spectrophotometrically, and the obtained data was analyzed by ANOVA using GraphPad Prism software. RESULTS The preformulation studies showed compatibility between PRX and P90H. Spherical vesicles of mean size 343.1 ± 5.9 nm, and polydispersity index 0.510 were produced, which remained stable for over 2 years. The optimized formulation (PE30) exhibited pseudoplastic flow, indicating good consistency. The rate of permeation increased with time in the following order: PE30 > Commercial, with significant difference (p< 0.05). It also showed higher inhibition of inflammation (71.92 ± 9.67%) than the reference (64.12 ± 7.92%). CONCLUSION ENVC gel of PRX was formulated. It showed potentials for enhanced transdermal delivery and anti-inflammatory activity relative to the reference. This may be further developed as a safe alternative to the oral form.
Collapse
Affiliation(s)
- Chukwuemeka Mbah
- Drug Delivery and Nanotechnology Research Unit (RUNDD), Department of Pharmaceutical Technology and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Josephat Ogbonna
- Drug Delivery and Nanotechnology Research Unit (RUNDD), Department of Pharmaceutical Technology and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ifeanyi Nzekwe
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - George Ugwu
- Department of Obstetrics and Gynaecology, College of Medicine, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Richard Ezeh
- Department of Medical Biochemistry, Enugu State University of Science and Technology Teaching Hospital, Enugu, Nigeria
| | - Philip Builders
- Department of Pharmaceutical Technology and Raw Materials Development, National Institute for Pharmaceutical Research and Development, Idu, 900001, Abuja, Nigeria
| | - Anthony Attama
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Michael Adikwu
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Sabinus Ofoefule
- Drug Delivery and Nanotechnology Research Unit (RUNDD), Department of Pharmaceutical Technology and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
14
|
Scheuer K, Bandelli D, Helbing C, Weber C, Alex J, Max JB, Hocken A, Stranik O, Seiler L, Gladigau F, Neugebauer U, Schacher FH, Schubert US, Jandt KD. Self-Assembly of Copolyesters into Stereocomplex Crystallites Tunes the Properties of Polyester Nanoparticles. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karl Scheuer
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, Jena 07743, Germany
| | - Damiano Bandelli
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena 07743, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena 07743, Germany
| | - Christian Helbing
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, Jena 07743, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena 07743, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena 07743, Germany
| | - Julien Alex
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena 07743, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena 07743, Germany
| | - Johannes B. Max
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena 07743, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena 07743, Germany
| | - Alexis Hocken
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, Jena 07743, Germany
| | - Ondrej Stranik
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07743, Germany
| | - Lisa Seiler
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07743, Germany
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany
| | - Frederike Gladigau
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07743, Germany
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany
| | - Ute Neugebauer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena 07743, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07743, Germany
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, Jena 07747, Germany
| | - Felix H. Schacher
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena 07743, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena 07743, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena 07743, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena 07743, Germany
| | - Klaus D. Jandt
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, Jena 07743, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena 07743, Germany
| |
Collapse
|
15
|
Guidotti G, Soccio M, Gazzano M, Salatelli E, Lotti N, Munari A. Micro/nanoparticles fabricated with triblock PLLA-based copolymers containing PEG-like subunit for controlled drug release: Effect of chemical structure and molecular architecture on drug release profile. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Christodoulou E, Klonos PA, Tsachouridis K, Zamboulis A, Kyritsis A, Bikiaris DN. Synthesis, crystallization, and molecular mobility in poly(ε-caprolactone) copolyesters of different architectures for biomedical applications studied by calorimetry and dielectric spectroscopy. SOFT MATTER 2020; 16:8187-8201. [PMID: 32789409 DOI: 10.1039/d0sm01195a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we synthesized poly(ε-caprolactone) (PCL) and three copolyesters of different architectures based on three different alcohols, namely a three arm-copolymer based on 1% glycerol (PCL_Gly), a four arm-copolymer based on 1% pentaerythrytol (PCL_PE), and a linear block copolymer based on ∼50% methoxy-poly(ethylene glycol) (PCL_mPEG), all simultaneously with the ring opening polymerization (ROP) of PCL. Due to their biocompatibility and low toxicity, these systems are envisaged for use in drug delivery and tissue engineering applications. Due to the in situ ROP during the copolyesters synthesis, the molecular weight of PCL, Wm initially ∼62 kg mol-1, drops in the copolymers from ∼60k down to ∼5k. For the structure-properties investigation we employed differential scanning calorimetry (DSC and TMDSC), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), Fourier transform infra red (FTIR) spectroscopy, polarized optical microscopy (POM), broadband dielectric spectroscopy (BDS) and isothermal water sorption. DSC revealed that the crystalline fraction of PCL increases whereas the crystallization rate drops in the copolymers in the order PCL ∼ PCL_Gly > PCL_PE ≫ PCL_mPEG, which coincides with that of decreasing Wm. In PCL_mPEG the major amount of PCL (87%) was found to crystallize while the majority of mPEG (92%) was found amorphous exhibiting constrained amorphous mobility and severely slower/weaker crystallization as compared to neat mPEG. Segmental dynamics in BDS, in agreement with DSC, is similar and in general slow for the samples of star-like structure for Wm ≥ 30k arising from PCL, whereas it is severely faster and enhanced in strength for the linear PCL_mPEG (lower Wm) copolymer arising from mPEG. For the latter system, the data provide indications for the formation of complex structures consisting of many small PCL crystallites surrounded by amorphous mPEG segments with constrained dynamics and severely suppressed hydrophilicity. These effects cannot be easily assessed by conventional XRD and POM, confirming the power of the dielectric technique. The overall recordings indicated that the different polymer architecture results in severe changes in the semicrystalline morphology, which demonstrates the potential for tuning the final product performance (permeability, mechanical).
Collapse
Affiliation(s)
- Evi Christodoulou
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Panagiotis A Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece. and Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Kostas Tsachouridis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Alexandra Zamboulis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Dimitrios N Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| |
Collapse
|
17
|
Shkodra-Pula B, Kretzer C, Jordan PM, Klemm P, Koeberle A, Pretzel D, Banoglu E, Lorkowski S, Wallert M, Höppener S, Stumpf S, Vollrath A, Schubert S, Werz O, Schubert US. Encapsulation of the dual FLAP/mPEGS-1 inhibitor BRP-187 into acetalated dextran and PLGA nanoparticles improves its cellular bioactivity. J Nanobiotechnology 2020; 18:73. [PMID: 32408877 PMCID: PMC7227278 DOI: 10.1186/s12951-020-00620-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/19/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Dual inhibitors of the 5-lipoxygenase-activating protein (FLAP) and the microsomal prostaglandin E2 synthase-1 (mPGES-1) may exert better anti-inflammatory efficacy and lower risks of adverse effects versus non-steroidal anti-inflammatory drugs. Despite these advantages, many dual FLAP/mPGES-1 inhibitors are acidic lipophilic molecules with low solubility and strong tendency for plasma protein binding that limit their bioavailability and bioactivity. Here, we present the encapsulation of the dual FLAP/mPGES-1 inhibitor BRP-187 into the biocompatible polymers acetalated dextran (Acdex) and poly(lactic-co-glycolic acid) (PLGA) via nanoprecipitation. RESULTS The nanoparticles containing BRP-187 were prepared by the nanoprecipitation method and analyzed by dynamic light scattering regarding their hydrodynamic diameter, by scanning electron microscopy for morphology properties, and by UV-VIS spectroscopy for determination of the encapsulation efficiency of the drug. Moreover, we designed fluorescent BRP-187 particles, which showed high cellular uptake by leukocytes, as analyzed by flow cytometry. Finally, BRP-187 nanoparticles were tested in human polymorphonuclear leukocytes and macrophages to determine drug uptake, cytotoxicity, and efficiency to inhibit FLAP and mPGES-1. CONCLUSION Our results demonstrate that encapsulation of BRP-187 into Acdex and PLGA is feasible, and both PLGA- and Acdex-based particles loaded with BRP-187 are more efficient in suppressing 5-lipoxygenase product formation and prostaglandin E2 biosynthesis in intact cells as compared to the free compound, particularly after prolonged preincubation periods.
Collapse
Affiliation(s)
- Blerina Shkodra-Pula
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Paul Klemm
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
- Michael Popp Reseach Institute, University of Innsbruck, Mitterweg 24, 6020, Innsbruck, Austria
| | - David Pretzel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, Yenimahalle, 06330, Ankara, Turkey
| | - Stefan Lorkowski
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 25, 07743, Jena, Germany
| | - Maria Wallert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 25, 07743, Jena, Germany
| | - Stephanie Höppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Steffi Stumpf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Antje Vollrath
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany
| | - Oliver Werz
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany.
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
| |
Collapse
|
18
|
Kim S, Korolovych VF, Muhlbauer RL, Tsukruk VV. 3D‐printed
polymer packing structures: Uniformity of morphology and mechanical properties via microprocessing conditions. J Appl Polym Sci 2020. [DOI: 10.1002/app.49381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sunghan Kim
- School of Mechanical EngineeringChung‐Ang University Seoul South Korea
| | - Volodymyr F. Korolovych
- School of Materials Science and EngineeringGeorgia Institute of Technology Atlanta Georgia USA
| | | | - Vladimir V. Tsukruk
- School of Materials Science and EngineeringGeorgia Institute of Technology Atlanta Georgia USA
| |
Collapse
|
19
|
Rosso A, Lollo G, Chevalier Y, Troung N, Bordes C, Bourgeois S, Maniti O, Granjon T, Dugas PY, Urbaniak S, Briançon S. Development and structural characterization of a novel nanoemulsion for oral drug delivery. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124614] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Kohno M, Andhariya JV, Wan B, Bao Q, Rothstein S, Hezel M, Wang Y, Burgess DJ. The effect of PLGA molecular weight differences on risperidone release from microspheres. Int J Pharm 2020; 582:119339. [PMID: 32305366 DOI: 10.1016/j.ijpharm.2020.119339] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 12/31/2022]
Abstract
The objective of the present study was to investigate the effect of molecular weight differences of poly (lactic-co-glycolic acid) (PLGA) on the in vitro release profile of risperidone microspheres. Four different PLGA molecular weights were investigated and all the microsphere formulations were prepared using the same manufacturing process. Physicochemical properties (particle size, drug loading, morphology and molecular weight) as well as in vitro degradation profiles of the prepared microspheres were investigated in addition to in vitro release testing. The in vitro release tests were performed using a previously developed flow through cell (USP apparatus 4) method. The particle size of the four prepared microsphere formulations varied, however there were no significant differences in the drug loading. Interestingly, the in vitro release profiles did not follow the molecular weight of the polymers used. Instead, the drug release appeared to be dependent on the glass transition temperature of the polymers as well as the porosity of the prepared formulations. The catalytic effect of risperidone (an amine drug) on PLGA during manufacturing and release testing, minimized the differences in the molecular weights of the four formulations, explaining the independence of the release profiles on PLGA molecular weight.
Collapse
Affiliation(s)
- Moe Kohno
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, United States
| | - Janki V Andhariya
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, United States
| | - Bo Wan
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, United States
| | - Quanying Bao
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, United States
| | | | | | - Yan Wang
- FDA/CDER, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD 20993, United States
| | - Diane J Burgess
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, United States.
| |
Collapse
|
21
|
Nanaki S, Viziridou A, Zamboulis A, Kostoglou M, Papageorgiou GZ, Bikiaris DN. New Biodegradable Poly(l-lactide)-Block-Poly(propylene adipate) Copolymer Microparticles for Long-Acting Injectables of Naltrexone Drug. Polymers (Basel) 2020; 12:E852. [PMID: 32272700 PMCID: PMC7240759 DOI: 10.3390/polym12040852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 01/30/2023] Open
Abstract
In the present study, novel block copolymers of poly(l-lactide)-block-poly(propylene adipate) (PLLA-b-PPAd) were synthesized in two ratios, 90/10 and 75/25 w/w and were further investigated as long-acting injectable (LAI) polymeric matrices in naltrexone base microparticle formulations. The synthesized polymers were characterized by 1H-NMR, 13C-NMR, FTIR, XRD, TGA and DSC. NMR and FTIR spectroscopies confirmed the successful synthesis of copolymers while DSC showed that these are block copolymers with well-defined and separated blocks. Microparticles were prepared by single emulsification method and were further characterized. Nanoparticles in the range of 0.4-4.5 μm were prepared as indicated by SEM, with copolymers giving the lowest particle size. By XRD and DSC it was found that naltrexone was present in the amorphous state in its microparticles. Dissolution study showed a drug release extending over seven days, indicating that these novel PLLA-b-PPAd copolymers could be promising matrices for naltrexone's LAI formulations. It was evidenced that drug release depended on the copolymer composition. Model release studies showed that drug release is controlled by diffusion.
Collapse
Affiliation(s)
- Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (S.N.); (A.Z.)
| | - Athina Viziridou
- Department of Food Science and Technology, International Hellenic University, GR-57400 Thessaloniki, Greece;
| | - Alexandra Zamboulis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (S.N.); (A.Z.)
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece;
| | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (S.N.); (A.Z.)
| |
Collapse
|
22
|
Optimization of preparation method by W/O/W emulsion for entrapping metformin hydrochloride into poly (lactic acid) microparticles using Box-Behnken design. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Dehkharghani RA, Hosseinzadeh M, Nezafatdoost F, Jahangiri J. Application of Methodological Analysis for Hydrocortisone Nanocapsulation in Biodegradable Polyester and MTT Assay. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x18070027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Bandelli D, Alex J, Helbing C, Ueberschaar N, Görls H, Bellstedt P, Weber C, Jandt KD, Schubert US. Poly(3-ethylglycolide): a well-defined polyester matching the hydrophilic hydrophobic balance of PLA. Polym Chem 2019. [DOI: 10.1039/c9py00875f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel lactide isomer 3-ethyl-1,4-dioxane-2,5-dione (3-ethylglycolide, EtGly) represented the basis for the development of polyesters varying crystallinity.
Collapse
Affiliation(s)
- Damiano Bandelli
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Julien Alex
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Christian Helbing
- Chair of Materials Science (CMS)
- Department of Materials Science and Technology
- Otto Schott Institute of Materials Research
- Faculty of Physics and Astronomy
- Friedrich Schiller University Jena
| | - Nico Ueberschaar
- Mass Spectrometry Platform
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry (IAAC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Peter Bellstedt
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Klaus D. Jandt
- Chair of Materials Science (CMS)
- Department of Materials Science and Technology
- Otto Schott Institute of Materials Research
- Faculty of Physics and Astronomy
- Friedrich Schiller University Jena
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
25
|
Nerantzaki M, Skoufa E, Adam KV, Nanaki S, Avgeropoulos A, Kostoglou M, Bikiaris D. Amphiphilic Block Copolymer Microspheres Derived from Castor Oil, Poly(ε-carpolactone), and Poly(ethylene glycol): Preparation, Characterization and Application in Naltrexone Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1996. [PMID: 30332793 PMCID: PMC6213069 DOI: 10.3390/ma11101996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 11/16/2022]
Abstract
In the present study, the newly synthesized castor oil-derived thioether-containing ω-hydroxyacid (TEHA) block copolymers with polycaprolactone (TEHA-b-PCL), with methoxypoly(ethylene glycol) (mPEG), (TEHA-b-mPEG) and with poly(ethylene glycol) (PEG) (TEHA-b-PEG-b-TEHA), were investigated as polymeric carriers for fabrication of naltrexone (NLX)-loaded microspheres by the single emulsion solvent evaporation technique. These microspheres are appropriate for the long-term treatment of opioid/alcohol dependence. Physical properties of the obtained microspheres were characterized in terms of size, morphology, drug loading capacity, and drug release. A scanning electron microscopy study revealed that the desired NLX-loaded uniform microspheres with a mean particle size of 5⁻10 µm were obtained in all cases. The maximum percentage encapsulation efficiency was found to be about 25.9% for the microspheres obtained from the TEHA-b-PEG-b-TEHA copolymer. Differential scanning calorimetry and X-ray diffractometry analysis confirmed the drug entrapment within microspheres in the amorphous state. In vitro dissolution studies revealed that all NLX-loaded formulations had a similar drug release profile: An initial burst release after 24 h, followed by a sustained and slower drug release for up to 50 days. The analysis of the release kinetic data, which were fitted into the Korsmeyer⁻Peppas release model, indicated that diffusion is the main release mechanism of NLX from TEHA-b-PCL and TEHA-b-mPEG microspheres, while microspheres obtained from TEHA-b-PEG-b-TEHA exhibited a drug release closer to an erosion process.
Collapse
Affiliation(s)
- Maria Nerantzaki
- Physicochemistry Laboratory of Electrolytes and Interfacial Nanosystems (PHENIX), UMR CNRS 8234, Faculty of Science and Engineering, Sorbonne University, 75252 Paris CEDEX 05, France.
- Laboratory of Chemistry and Technology of Polymers and Dyes, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Eirini Skoufa
- Laboratory of Polymeric Materials, Department of Materials Science and Engineering, University of Ioannina, Administration Building, University Campus Dourouti, 45110 Ioannina, Greece.
| | - Kyriakos-Vasileios Adam
- Laboratory of Chemistry and Technology of Polymers and Dyes, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Stavroula Nanaki
- Laboratory of Chemistry and Technology of Polymers and Dyes, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Apostolos Avgeropoulos
- Laboratory of Polymeric Materials, Department of Materials Science and Engineering, University of Ioannina, Administration Building, University Campus Dourouti, 45110 Ioannina, Greece.
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Dimitrios Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
26
|
Ntohogian S, Gavriliadou V, Christodoulou E, Nanaki S, Lykidou S, Naidis P, Mischopoulou L, Barmpalexis P, Nikolaidis N, Bikiaris DN. Chitosan Nanoparticles with Encapsulated Natural and UF-Purified Annatto and Saffron for the Preparation of UV Protective Cosmetic Emulsions. Molecules 2018; 23:E2107. [PMID: 30131464 PMCID: PMC6225254 DOI: 10.3390/molecules23092107] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022] Open
Abstract
The aim of the present work is to evaluate the preparation of sunscreen emulsions based on chitosan (CS) nanoparticles with annatto, ultrafiltrated (UF) annatto, saffron, and ultrafiltrated saffron. Ionic gelation was used for the preparation of chitosan nanoparticles, while their morphological characteristics and physicochemical properties were evaluated via Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and dynamic light scattering (DLS). Results showed that the prepared nanoparticles ranged from ~150 to ~500 nm and had a spherical or irregular shape. In the case of annatto and UF annatto, due to the formation of H-bonds, the sunscreen agents were amorphously dispersed within CS nanoparticles, while in the case of saffron and UF saffron, crystalline dispersion was observed. All encapsulated materials had good thermal stability as well as color stability. In a further step, sunscreen emulsions were prepared based on the formed CS-sunscreen nanoparticles and evaluated for their stability in terms of pH and viscosity, along with their ultraviolet (UV) radiation protection ability in terms of sun protection factor (SPF). All prepared emulsions showed low cytotoxicity and good storage stability for up to 90 days, while minimum sunscreen protection was observed with SPF values varying from 2.15 to 4.85.
Collapse
Affiliation(s)
- Sonia Ntohogian
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Viktoria Gavriliadou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Evi Christodoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Stavroula Nanaki
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Smaro Lykidou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis Naidis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Lily Mischopoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Nikolaos Nikolaidis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
27
|
Nanaki S, Barmpalexis P, Iatrou A, Christodoulou E, Kostoglou M, Bikiaris DN. Risperidone Controlled Release Microspheres Based on Poly(Lactic Acid)-Poly(Propylene Adipate) Novel Polymer Blends Appropriate for Long Acting Injectable Formulations. Pharmaceutics 2018; 10:E130. [PMID: 30104505 PMCID: PMC6161267 DOI: 10.3390/pharmaceutics10030130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 12/13/2022] Open
Abstract
The present study evaluates the preparation of risperidone controlled release microspheres as appropriate long-acting injectable formulations based on a series of novel biodegradable and biocompatible poly(lactic acid)⁻poly(propylene adipate) (PLA/PPAd) polymer blends. Initially, PPAd was synthesized using a two-stage melt polycondensation method (esterification and polycondensation) and characterized by 1H-NMR, differential scanning calorimetry (DSC), and powder X-ray diffraction (XRD) analyses. DSC and XRD results for PLA/PPAd blends (prepared by the solvent evaporation method) showed that these are immiscible, while enzymatic hydrolysis studies performed at 37 °C showed increased mass loss for PPAd compared to PLA. Risperidone-polyester microparticles prepared by the oil⁻water emulsification/solvent evaporation method showed smooth spherical surface with particle sizes from 1 to 15 μm. DSC, XRD, and Fourier-transformed infrared (FTIR) analyses showed that the active pharmaceutical ingredient (API) was dispersed in the amorphous phase within the polymer matrices, whereas in vitro drug release studies showed risperidone controlled release rates in all PLA/PPAd blend formulations. Finally, statistical moment analysis showed that polyester hydrolysis had a major impact on API release kinetics, while in PLA/PPAd blends with high PLA content, drug release was mainly controlled by diffusion.
Collapse
Affiliation(s)
- Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Alexandros Iatrou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
28
|
Nanaki S, Barmpalexis P, Papakonstantinou Z, Christodoulou E, Kostoglou M, Bikiaris DN. Preparation of New Risperidone Depot Microspheres Based on Novel Biocompatible Poly(Alkylene Adipate) Polyesters as Long-Acting Injectable Formulations. J Pharm Sci 2018; 107:2891-2901. [PMID: 30096352 DOI: 10.1016/j.xphs.2018.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/29/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
Risperidone (RIS)-loaded microspheres based on poly(alkylene adipate)s derived from dicarboxylic acids and different aliphatic diols were prepared by the oil in water emulsion and solvent evaporation method. Specifically, 3 polyesters, namely poly(ethylene adipate), poly(propylene adipate), and poly(butylene adipate), were prepared with the aid of a 2-stage melt-polycondensation method and characterized by gel permeation chromatography, proton nuclear magnetic resonance (1H NMR), differential scanning calorimetry, and X-ray diffraction analysis. Results showed that the molecular weight of the polyesters increased as the diol molecular weight increased, while all polymers were of semi-crystalline nature and the melting temperature was varying from 49.1°C to 51.8°C and 65.9°C for poly(propylene adipate), poly(ethylene adipate), and poly(butylene adipate), respectively. The particle size of the RIS-loaded microspheres varied from 10 to 100 μm depending on the polyester type and the drug loading, while X-ray diffraction analysis revealed amorphous active pharmaceutical ingredient in the cases of high drug-loaded microspheres. In vitro drug release studies along with scanning electron microscopy images of microspheres after the completion of dissolution process showed that in all cases RIS release was controlled by the glass transition temperature of polyesters and physical state of active pharmaceutical ingredients via diffusion.
Collapse
Affiliation(s)
- Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Zoi Papakonstantinou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
29
|
Bandelli D, Helbing C, Weber C, Seifert M, Muljajew I, Jandt KD, Schubert US. Maintaining the Hydrophilic–Hydrophobic Balance of Polyesters with Adjustable Crystallinity for Tailor-Made Nanoparticles. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Damiano Bandelli
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christian Helbing
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Michael Seifert
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Irina Muljajew
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Klaus D. Jandt
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
30
|
Fabbri M, Guidotti G, Soccio M, Lotti N, Govoni M, Giordano E, Gazzano M, Gamberini R, Rimini B, Munari A. Novel biocompatible PBS-based random copolymers containing PEG-like sequences for biomedical applications: From drug delivery to tissue engineering. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Bansal KK, Gupta J, Rosling A, Rosenholm JM. Renewable poly(δ-decalactone) based block copolymer micelles as drug delivery vehicle: in vitro and in vivo evaluation. Saudi Pharm J 2018; 26:358-368. [PMID: 29556127 PMCID: PMC5856948 DOI: 10.1016/j.jsps.2018.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/22/2018] [Indexed: 12/24/2022] Open
Abstract
Polymers from natural resources are attracting much attention in various fields including drug delivery as green alternatives to fossil fuel based polymers. In this quest, novel block copolymers based on renewable poly(δ-decalactone) (PDL) were evaluated for their drug delivery capabilities and compared with a fossil fuel based polymer i.e. methoxy-poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-b-PCL). Using curcumin as a hydrophobic drug model, micelles of PDL block copolymers with different orientation i.e. AB (mPEG-b-PDL), ABA (PDL-b-PEG-b-PDL), ABC (mPEG-b-PDL-b-poly(pentadecalactone) and (mPEG-b-PCL) were prepared by nanoprecipitation method. The size, drug loading and curcumin stability studies results indicated that mPEG-b-PDL micelles was comparable to its counterpart mPEG-b-PCL micelles towards improved delivery of curcumin. Therefore, mixed micelles using these two copolymers were also evaluated to see any change in size, loading and drug release. Drug release studies proposed that sustained release can be obtained using poly(pentadecalactone) as crystalline core whereas rapid release can be achieved using amorphous PDL core. Further, mPEG-b-PDL micelles were found to be non-haemolytic, up to the concentration of 40 mg/mL. In vivo toxicity studies on rats advised low-toxic behaviour of these micelles up to 400 mg/kg dose, as evident by histopathological and biochemical analysis. In summary, it is anticipated that mPEG-b-PDL block copolymer micelles could serve as a renewable alternative for mPEG-b-PCL copolymers in drug delivery applications.
Collapse
Affiliation(s)
- Kuldeep K Bansal
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.,Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India.,Laboratory of Polymer Technology, Centre of Excellence in Functional Materials at Biological Interfaces, Åbo Akademi University, Biskopsgatan 8, 20500 Turku, Finland.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Abo Akademi University, 20520 Turku, Finland
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Ari Rosling
- Laboratory of Polymer Technology, Centre of Excellence in Functional Materials at Biological Interfaces, Åbo Akademi University, Biskopsgatan 8, 20500 Turku, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Abo Akademi University, 20520 Turku, Finland
| |
Collapse
|
32
|
Antibiofilm activity of nanoemulsions of Cymbopogon flexuosus against rapidly growing mycobacteria. Microb Pathog 2017; 113:335-341. [DOI: 10.1016/j.micpath.2017.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 11/23/2022]
|
33
|
Development of ethosomal vesicular carrier for topical application of griseofulvin: effect of ethanol concentration. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0367-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Kenechukwu FC, Attama AA, Ibezim EC. Novel solidified reverse micellar solution-based mucoadhesive nano lipid gels encapsulating miconazole nitrate-loaded nanoparticles for improved treatment of oropharyngeal candidiasis. J Microencapsul 2017; 34:592-609. [DOI: 10.1080/02652048.2017.1370029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Franklin Chimaobi Kenechukwu
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Amaechi Attama
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Emmanuel Chinedum Ibezim
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
35
|
Matsuoka SI, Kamijo Y, Suzuki M. Post-polymerization modification of unsaturated polyesters by Michael addition of N-heterocyclic carbenes. Polym J 2017. [DOI: 10.1038/pj.2017.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Washington KE, Kularatne RN, Karmegam V, Biewer MC, Stefan MC. Recent advances in aliphatic polyesters for drug delivery applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1446] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/30/2016] [Accepted: 10/31/2016] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Vasanthy Karmegam
- Department of Chemistry University of Texas at Dallas Richardson TX USA
| | - Michael C. Biewer
- Department of Chemistry University of Texas at Dallas Richardson TX USA
| | - Mihaela C. Stefan
- Department of Chemistry University of Texas at Dallas Richardson TX USA
| |
Collapse
|
37
|
Xu Y, Kim CS, Saylor DM, Koo D. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories. J Biomed Mater Res B Appl Biomater 2016; 105:1692-1716. [PMID: 27098357 DOI: 10.1002/jbm.b.33648] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/25/2016] [Accepted: 02/12/2016] [Indexed: 01/03/2023]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) copolymers have been broadly used in controlled drug release applications. Because these polymers are biodegradable, they provide an attractive option for drug delivery vehicles. There are a variety of material, processing, and physiological factors that impact the degradation rates of PLGA polymers and concurrent drug release kinetics. This work is intended to provide a comprehensive and collective review of the physicochemical and physiological factors that dictate the degradation behavior of PLGA polymers and drug release from contemporary PLGA-based drug-polymer products. In conjunction with the existing experimental results, analytical and numerical theories developed to predict drug release from PLGA-based polymers are summarized and correlated with the experimental observations. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1692-1716, 2017.
Collapse
Affiliation(s)
- Yihan Xu
- Materials Science and Engineering Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53211
| | - Chang-Soo Kim
- Materials Science and Engineering Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53211
| | - David M Saylor
- Division of Biology, Chemistry, and Materials Science, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993
| | - Donghun Koo
- Materials Science R&D, MilliporeSigma, Milwaukee, Wisconsin, 53209
| |
Collapse
|
38
|
Korzhikov V, Averianov I, Litvinchuk E, Tennikova TB. Polyester-based microparticles of different hydrophobicity: the patterns of lipophilic drug entrapment and release. J Microencapsul 2016; 33:199-208. [DOI: 10.3109/02652048.2016.1144818] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Viktor Korzhikov
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | - Ilia Averianov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - Evgeniia Litvinchuk
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - Tatiana B. Tennikova
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
39
|
Teo SY, Lee SY, Coombes A, Rathbone MJ, Gan SN. Synthesis and characterization of novel biocompatible palm oil‐based alkyds. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Siew Yong Teo
- School of Postgraduate Studies and ResearchInternational Medical UniversityKuala LumpurMalaysia
| | - Siang Yin Lee
- Department of Pharmaceutical ChemistrySchool of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Allan Coombes
- Department of Pharmaceutical TechnologySchool of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Michael John Rathbone
- School of Postgraduate Studies and ResearchInternational Medical UniversityKuala LumpurMalaysia
- ULTI PharmaceuticalsHamiltonNew Zealand
| | - Seng Neon Gan
- Department of ChemistryFaculty of ScienceUniversity of MalayaKuala LumpurMalaysia
| |
Collapse
|
40
|
Siafaka PI, Barmpalexis P, Lazaridou M, Papageorgiou GZ, Koutris E, Karavas E, Kostoglou M, Bikiaris DN. Controlled release formulations of risperidone antipsychotic drug in novel aliphatic polyester carriers: Data analysis and modelling. Eur J Pharm Biopharm 2015; 94:473-84. [DOI: 10.1016/j.ejpb.2015.06.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
|
41
|
Bhat R, Patel H, Tsai PC, Sun XL, Daoud D, Lalancette RA, Michniak-Kohn B, Pietrangelo A. Effect of residue structure on the thermal and thermoresponsive properties of γ-substituted poly(N-acryloyl-2-pyrrolidones). Polym Chem 2015. [DOI: 10.1039/c5py00649j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss the results of an investigation into the structure/property correlations of γ-substituted poly(N-acryloyl-2-pyrrolidone)s, a recently reported class of pyrrolidone-based polymers prepared from pyroglutamic acid, a bio-derived resource.
Collapse
Affiliation(s)
- R. Bhat
- Department of Chemistry
- Rutgers University-Newark
- Newark
- USA
| | - H. Patel
- Department of Chemistry
- Rutgers University-Newark
- Newark
- USA
| | - P.-C. Tsai
- Department of Pharmaceutics
- Ernest Mario School of Pharmacy
- Rutgers University
- Piscataway
- USA
| | - X.-L. Sun
- Department of Chemistry
- Rutgers University-Newark
- Newark
- USA
| | - D. Daoud
- Department of Chemistry
- Rutgers University-Newark
- Newark
- USA
| | | | - B. Michniak-Kohn
- Department of Pharmaceutics
- Ernest Mario School of Pharmacy
- Rutgers University
- Piscataway
- USA
| | - A. Pietrangelo
- Department of Chemistry
- Rutgers University-Newark
- Newark
- USA
| |
Collapse
|
42
|
Karavelidis V, Bikiaris D, Avgoustakis K. New thermosensitive nanoparticles prepared by biocompatible pegylated aliphatic polyester block copolymers for local cancer treatment. J Pharm Pharmacol 2014; 67:215-30. [DOI: 10.1111/jphp.12337] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 08/24/2014] [Indexed: 12/24/2022]
Abstract
Abstract
Objective
New pegylated thermosensitive polymers were developed to study them as drug vehicles in targeting release nanoparticulate systems of anticancer drugs.
Methods
The drug vehicles were prepared in the form of core-shell nanoparticles using novel polymeric materials synthesized by copolymerization of poly(propylene adipate) (PPAd) and methoxy-polyethylene glycol (mPEG) with different molecular weights. The physical and chemical properties of the synthesized mPEG-PPAd copolymers were studied using several techniques, and their cytocompatibility was evaluated. For drug nanoencapsulation, a water in oil (W/O) emulsification and solvent evaporation technique was used and the prepared nanoparticles were studied for their physical properties, morphology, drug release and anticancer efficacy against cancer cell lines.
Key findings
The size of the nanoparticles lied in a range suitable for tumour targeting. Drug release was affected by the composition of polymer, the temperature and pH of the release medium. The release results obtained indicate that judicious selection of nanoparticles composition may allow for enhanced drug delivery to the tumours following application of local hyperthermia.
Conclusions
The paclitaxel-loaded mPEG-PPAd nanoparticles were found to be cytotoxic against to the human hepatoma HepG2) and the human epithelial (HeLa) cancer cell lines. Enhanced cytotoxicity against the HeLa cells was observed at elevated temperature (42°C compared with 37°C), providing support for the potential usefulness of the mPEG-PPAd nanoparticles for the development of thermo-sensitive anticancer drug delivery systems.
Collapse
Affiliation(s)
- Vassilios Karavelidis
- Laboratory of Polymer Chemistry and Technology, Chemistry Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Pharmathen S.A., Pharmaceutical Industry, Pallini, Attiki, Greece
| | - Dimitrios Bikiaris
- Laboratory of Polymer Chemistry and Technology, Chemistry Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
43
|
Mbah C, Builders P, Nzekwe I, Kunle O, Adikwu M, Attama A. Formulation and in vitro evaluation of pH-responsive ethosomes for vaginal delivery of metronidazole. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50120-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Sonam, Chaudhary H, Kumar V. Taguchi design for optimization and development of antibacterial drug-loaded PLGA nanoparticles. Int J Biol Macromol 2013; 64:99-105. [PMID: 24315945 DOI: 10.1016/j.ijbiomac.2013.11.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/23/2013] [Accepted: 11/27/2013] [Indexed: 11/30/2022]
Abstract
This research report was to develop Cefixime loaded polylactide-co-glycolide (PLGA) nanoparticles using modified precipitation method. TEM analysis indicated formation of well-formed, smooth, spherical nanoparticles with no aggregates whereas XRD recommended dispersion of drug in PLGA carrier system in amorphous form. The polymer and stabilizer concentration and organic to aqueous ratio were found to be significant factors for nanoparticles and their optimization using Taguchi design (L9). The design formulations showed entrapment efficiency (EE), particle size and poly-dispersity index (PDI) ranging 68.31 ± 1.74%, 159.8-157.7 nm and 0.126-0.149, respectively indicated small and stable nanoparticles with good homogeneity and encapsulation. The design optimized formulation drug release and permeation studies demonstrated that it is four times sustained release behavior and 1.74 times better permeation than free drug. The result of microbiological assay also suggested that optimized formulation has significant antibacterial activity against intracellular multidrug resistance (MDR) of Salmonella typhi.
Collapse
Affiliation(s)
- Sonam
- PDM College of Pharmacy, Sarai Aurangabad, Bahadurgarh, India
| | - Hema Chaudhary
- PDM College of Pharmacy, Sarai Aurangabad, Bahadurgarh, India.
| | - Vikash Kumar
- PDM College of Pharmacy, Sarai Aurangabad, Bahadurgarh, India
| |
Collapse
|
45
|
Mbah CC, Builders PF, Attama AA. Nanovesicular carriers as alternative drug delivery systems: ethosomes in focus. Expert Opin Drug Deliv 2013; 11:45-59. [DOI: 10.1517/17425247.2013.860130] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Sonam, Chaudhary H, Arora V, Kholi K, Kumar V. Effect of Physicochemical Properties of Biodegradable Polymers on Nano Drug Delivery. POLYM REV 2013. [DOI: 10.1080/15583724.2013.828751] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Filippousi M, Papadimitriou SA, Bikiaris DN, Pavlidou E, Angelakeris M, Zamboulis D, Tian H, Van Tendeloo G. Novel core–shell magnetic nanoparticles for Taxol encapsulation in biodegradable and biocompatible block copolymers: Preparation, characterization and release properties. Int J Pharm 2013; 448:221-30. [DOI: 10.1016/j.ijpharm.2013.03.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 11/29/2022]
|
48
|
Ma HL, Jiang Q, Han S, Wu Y, Tomshine JC, Wang D, Gan Y, Zou G, Liang XJ. Multicellular Tumor Spheroids as an in Vivo–Like Tumor Model for Three-Dimensional Imaging of Chemotherapeutic and Nano Material Cellular Penetration. Mol Imaging 2012. [DOI: 10.2310/7290.2012.00012] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Hui-li Ma
- From the CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National
Center for Nanoscience and Technology of China, Beijing, China, and the Department of Psychiatry,
University of California, San Francisco, San Francisco, CA
| | - Qiao Jiang
- From the CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National
Center for Nanoscience and Technology of China, Beijing, China, and the Department of Psychiatry,
University of California, San Francisco, San Francisco, CA
| | - Siyuan Han
- From the CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National
Center for Nanoscience and Technology of China, Beijing, China, and the Department of Psychiatry,
University of California, San Francisco, San Francisco, CA
| | - Yan Wu
- From the CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National
Center for Nanoscience and Technology of China, Beijing, China, and the Department of Psychiatry,
University of California, San Francisco, San Francisco, CA
| | - Jin Cui Tomshine
- From the CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National
Center for Nanoscience and Technology of China, Beijing, China, and the Department of Psychiatry,
University of California, San Francisco, San Francisco, CA
| | - Dongliang Wang
- From the CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National
Center for Nanoscience and Technology of China, Beijing, China, and the Department of Psychiatry,
University of California, San Francisco, San Francisco, CA
| | - Yaling Gan
- From the CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National
Center for Nanoscience and Technology of China, Beijing, China, and the Department of Psychiatry,
University of California, San Francisco, San Francisco, CA
| | - Guozhang Zou
- From the CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National
Center for Nanoscience and Technology of China, Beijing, China, and the Department of Psychiatry,
University of California, San Francisco, San Francisco, CA
| | - Xing-Jie Liang
- From the CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National
Center for Nanoscience and Technology of China, Beijing, China, and the Department of Psychiatry,
University of California, San Francisco, San Francisco, CA
| |
Collapse
|
49
|
Khodaverdi E, Tekie FSM, Amoli SS, Sadeghi F. Comparison of plasticizer effect on thermo-responsive properties of Eudragit RS films. AAPS PharmSciTech 2012; 13:1024-30. [PMID: 22843079 DOI: 10.1208/s12249-012-9827-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/16/2012] [Indexed: 11/30/2022] Open
Abstract
Preparation of an intelligent drug delivery system which releases the drug in response to the environmental stimuli in a controlled manner is one of the interesting subjects and it is the purpose of this study. Films composed of Eudragit RS and different percentages of plasticizers (0%, 5%, 10%, or 20% w/w based on polymer weight), poly ethylene glycol 400 or triethyl citrate (TEC), were prepared by solvent casting method. Glass transition temperatures of the films were determined by differential scanning colorimetery. Water uptake and drug permeation through membranes with the glass transition temperature (Tg) close to the body temperature were investigated. Propranolol hydrochloride and acetaminophen were used as model drugs in permeation studies. The results showed that Eudragit RS films with 20% of either plasticizer showed thermo-responsivity around body temperature. The water uptake of the films and the permeation rates of both drugs increased at temperatures above the Tg of the films. The films containing TEC was found to be more appropriate thermo-responsive membrane due to a higher sensitivity to temperature and more ability to control drug release.
Collapse
|
50
|
Odelius K, Ohlson M, Höglund A, Albertsson A. Polyesters with small structural variations improve the mechanical properties of polylactide. J Appl Polym Sci 2012. [DOI: 10.1002/app.36842] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Karin Odelius
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE‐10044 Stockholm, Sweden
| | - Madelen Ohlson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE‐10044 Stockholm, Sweden
| | - Anders Höglund
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE‐10044 Stockholm, Sweden
| | - Ann‐Christine Albertsson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE‐10044 Stockholm, Sweden
| |
Collapse
|