1
|
Anggraeni R, Ana ID, Agustina D, Martien R. Induction of protein specific antibody by carbonated hydroxy apatite as a candidate for mucosal vaccine adjuvant. Dent Mater J 2022; 41:710-723. [PMID: 35858789 DOI: 10.4012/dmj.2021-254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Buccal mucosae are considered as a site for vaccine delivery since they are relatively abundant with antigen-presenting dendritic cells, mainly Langerhans cells. In this study, we formulated carbonated hydroxy apatite (CHA) with ovalbumin (OVA) (denoted as CHA-OVA), incorporated it into bilayer buccal membrane to form hydrogel films containing CHA-OVA complex for vaccination via buccal mucosae. Ethylcellulose blend with polyethylene glycol 400 were used as impermeable backing layer. Physical properties of all tested buccal membranes were found suitable for mucosal application. In vitro and ex vivo release study showed there was no burst release of OVA found from all tested formula. From the in vivo examination, rabbit buccal mucosae vaccinated by mucoadhesive membranes containing CHA-OVA complex demonstrated mucosal specific antibody induction, represented the potential of CHA as a candidate of needle-free vaccine adjuvant. Future research is awaiting to investigate proper CHA crystallinity in complex with protein against targeted diseases.
Collapse
Affiliation(s)
- Rahmi Anggraeni
- Graduate Program of Dental Science, Faculty of Dentistry, Universitas Gadjah Mada
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada
| | - Dewi Agustina
- Department of Oral Medicine, Faculty of Dentistry, Universitas Gadjah Mada
| | - Ronny Martien
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Gadjah Mada
| |
Collapse
|
2
|
Garcia‐del Rio L, Diaz‐Rodriguez P, Pedersen GK, Christensen D, Landin M. Sublingual Boosting with a Novel Mucoadhesive Thermogelling Hydrogel Following Parenteral CAF01 Priming as a Strategy Against Chlamydia trachomatis. Adv Healthc Mater 2022; 11:e2102508. [PMID: 35124896 PMCID: PMC11468966 DOI: 10.1002/adhm.202102508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/18/2022] [Indexed: 01/13/2023]
Abstract
Chlamydia trachomatis is the most prevalent sexually transmitted disease of bacterial origin. The high number of asymptomatic cases makes it difficult to stop the transmission, requiring vaccine development. Herein, a strategy is proposed to obtain local genital tract immunity against C. trachomatis through parenteral prime and sublingual boost. Subcutaneous administration of chlamydia CTH522 subunit vaccine loaded in the adjuvant CAF01 is combined with sublingual administration of CTH522 loaded in a novel thermosensitive and mucoadhesive hydrogel. Briefly, a ternary optimized hydrogel (OGEL) with desirable biological and physicochemical properties is obtained using artificial intelligence techniques. This formulation exhibits a high gel strength and a strong mucoadhesive, adhesive and cohesive nature. The thermosensitive properties of the hydrogel facilitate application under the tongue. Meanwhile the fast gelation at body temperature together with rapid antigen release should avoid CTH522 leakage by swallowing and increase the contact with sublingual tissue, thus promoting absorption. In vivo studies demonstrate that parenteral-sublingual prime-boost immunization, using CAF01 and OGEL as CTH522 vaccine carriers, shows a tendency to increase cellular (Th1/Th17) immune responses when compared to mucosal or parenteral vaccination alone. Furthermore, parenteral prime with CAF01/CTH522 followed by sublingual boosting with OGEL/CTH522 elicits a local IgA response in the genital tract.
Collapse
Affiliation(s)
- Lorena Garcia‐del Rio
- Departamento de FarmacologíaFarmacia y Tecnología FarmacéuticaGrupo I+D Farma (GI‐1645)Agrupación Estratégica de Materiales (AeMat)Facultad de FarmaciaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)IDIS Research InstituteSantiago de Compostela15706Spain
| | - Patricia Diaz‐Rodriguez
- Departamento de FarmacologíaFarmacia y Tecnología FarmacéuticaGrupo I+D Farma (GI‐1645)Agrupación Estratégica de Materiales (AeMat)Facultad de FarmaciaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)IDIS Research InstituteSantiago de Compostela15706Spain
| | - Gabriel Kristian Pedersen
- Department of Infectious Disease ImmunologyStatens Serum InstitutArtillerivej 5Copenhagen S2300Denmark
| | - Dennis Christensen
- Department of Infectious Disease ImmunologyStatens Serum InstitutArtillerivej 5Copenhagen S2300Denmark
| | - Mariana Landin
- Departamento de FarmacologíaFarmacia y Tecnología FarmacéuticaGrupo I+D Farma (GI‐1645)Agrupación Estratégica de Materiales (AeMat)Facultad de FarmaciaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)IDIS Research InstituteSantiago de Compostela15706Spain
| |
Collapse
|
3
|
Cho CS, Hwang SK, Gu MJ, Kim CG, Kim SK, Ju DB, Yun CH, Kim HJ. Mucosal Vaccine Delivery Using Mucoadhesive Polymer Particulate Systems. Tissue Eng Regen Med 2021; 18:693-712. [PMID: 34304387 PMCID: PMC8310561 DOI: 10.1007/s13770-021-00373-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Vaccination has been recently attracted as one of the most successful medical treatments of the prevalence of many infectious diseases. Mucosal vaccination has been interested in many researchers because mucosal immune responses play part in the first line of defense against pathogens. However, mucosal vaccination should find out an efficient antigen delivery system because the antigen should be protected from degradation and clearance, it should be targeted to mucosal sites, and it should stimulate mucosal and systemic immunity. Accordingly, mucoadhesive polymeric particles among the polymeric particles have gained much attention because they can protect the antigen from degradation, prolong the residence time of the antigen at the target site, and control the release of the loaded vaccine, and results in induction of mucosal and systemic immune responses. In this review, we discuss advances in the development of several kinds of mucoadhesive polymeric particles for mucosal vaccine delivery.
Collapse
Affiliation(s)
- Chong-Su Cho
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Soo-Kyung Hwang
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Lab. of Adhesion & Bio-Composites, Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Min-Jeong Gu
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Cheol-Gyun Kim
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Seo-Kyung Kim
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Do-Bin Ju
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea. .,Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Seoul, Republic of Korea. .,Center for Food and Bioconvergence, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Hyun-Joong Kim
- Lab. of Adhesion & Bio-Composites, Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Hanson SM, Singh S, Tabet A, Sastry KJ, Barry M, Wang C. Mucoadhesive wafers composed of binary polymer blends for sublingual delivery and preservation of protein vaccines. J Control Release 2021; 330:427-437. [DOI: 10.1016/j.jconrel.2020.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 01/31/2023]
|
5
|
Madani F, Hsein H, Busignies V, Tchoreloff P. An overview on dosage forms and formulation strategies for vaccines and antibodies oral delivery. Pharm Dev Technol 2019; 25:133-148. [DOI: 10.1080/10837450.2019.1689402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Abstract
Recent studies on vaccine delivery systems are exploring the possibility of replacing liquid vaccines with solid dose vaccines due to the many advantages that solid dose vaccines can offer. These include the prospect of a needle-free vaccine delivery system leading to better patient compliance, cold chain storage, less-trained vaccinators and fewer chances for needle stick injury hazards. Some studies also indicate that vaccines in a solid dosage form can result in a higher level of immunogenicity compared to the liquid form, thus providing a dose-sparing effect. This review outlines the different approaches in solid vaccine delivery using various routes of administration including, oral, pulmonary, intranasal, buccal, sublingual, and transdermal routes. The various techniques and their current advancements will provide a knowledge base for future work to be carried out in this arena.
Collapse
|
7
|
Creighton RL, Woodrow KA. Microneedle-Mediated Vaccine Delivery to the Oral Mucosa. Adv Healthc Mater 2019; 8:e1801180. [PMID: 30537400 PMCID: PMC6476557 DOI: 10.1002/adhm.201801180] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/12/2018] [Indexed: 12/28/2022]
Abstract
The oral mucosa is a minimally invasive and immunologically rich site that is underutilized for vaccination due to physiological and immunological barriers. To develop effective oral mucosal vaccines, key questions regarding vaccine residence time, uptake, adjuvant formulation, dose, and delivery location must be answered. However, currently available dosage forms are insufficient to address all these questions. An ideal oral mucosal vaccine delivery system would improve both residence time and epithelial permeation while enabling efficient delivery of physicochemically diverse vaccine formulations. Microneedles have demonstrated these capabilities for dermal vaccine delivery. Additionally, microneedles enable precise control over delivery properties like depth, uniformity, and dosing, making them an ideal tool to study oral mucosal vaccination. Select studies have demonstrated the feasibility of microneedle-mediated oral mucosal vaccination, but they have only begun to explore the broad functionality of microneedles. This review describes the physiological and immunological challenges related to oral mucosal vaccine delivery and provides specific examples of how microneedles can be used to address these challenges. It summarizes and compares the few existing oral mucosal microneedle vaccine studies and offers a perspective for the future of the field.
Collapse
Affiliation(s)
- Rachel L Creighton
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
8
|
Ali A, Wahlgren M, Pedersen L, Engblom J. Will a water gradient in oral mucosa affect transbuccal drug absorption? J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Busignies V, Simon G, Mollereau G, Bourry O, Mazel V, Rosa-Calatrava M, Tchoreloff P. Development and pre-clinical evaluation in the swine model of a mucosal vaccine tablet for human influenza viruses: A proof-of-concept study. Int J Pharm 2018; 538:87-96. [DOI: 10.1016/j.ijpharm.2018.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 01/09/2023]
|
10
|
Shakya AK, Chowdhury MYE, Tao W, Gill HS. Mucosal vaccine delivery: Current state and a pediatric perspective. J Control Release 2016; 240:394-413. [PMID: 26860287 PMCID: PMC5381653 DOI: 10.1016/j.jconrel.2016.02.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/21/2016] [Accepted: 02/05/2016] [Indexed: 12/30/2022]
Abstract
Most childhood infections occur via the mucosal surfaces, however, parenterally delivered vaccines are unable to induce protective immunity at these surfaces. In contrast, delivery of vaccines via the mucosal routes can allow antigens to interact with the mucosa-associated lymphoid tissue (MALT) to induce both mucosal and systemic immunity. The induced mucosal immunity can neutralize the pathogen on the mucosal surface before it can cause infection. In addition to reinforcing the defense at mucosal surfaces, mucosal vaccination is also expected to be needle-free, which can eliminate pain and the fear of vaccination. Thus, mucosal vaccination is highly appealing, especially for the pediatric population. However, vaccine delivery across mucosal surfaces is challenging because of the different barriers that naturally exist at the various mucosal surfaces to keep the pathogens out. There have been significant developments in delivery systems for mucosal vaccination. In this review we provide an introduction to the MALT, highlight barriers to vaccine delivery at different mucosal surfaces, discuss different approaches that have been investigated for vaccine delivery across mucosal surfaces, and conclude with an assessment of perspectives for mucosal vaccination in the context of the pediatric population.
Collapse
Affiliation(s)
| | | | - Wenqian Tao
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
11
|
Vaccine Delivery. Drug Deliv 2016. [DOI: 10.1201/9781315382579-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
12
|
Pereira MM, Cruz RAP, Almeida MR, Lima ÁS, Coutinho JAP, Freire MG. Single-Step Purification of Ovalbumin from Egg White Using Aqueous Biphasic Systems. Process Biochem 2016; 51:781-791. [PMID: 27642253 DOI: 10.1016/j.procbio.2016.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of aqueous biphasic systems (ABS) composed of polyethylene glycols of different molecular weights (PEG 400, 600 and 1000) and buffered aqueous solutions of potassium citrate/citric acid (pH = 5.0 - 8.0) to selectively extract ovalbumin from egg white was here investigated. Phase diagrams, tie-lines and tie-line lengths were determined at 25ºC and the partitioning of ovalbumin in these systems was then evaluated. Aiming at optimizing the selective extraction of ovalbumin in the studied ABS, factors such as pH, PEG molecular weight and amount of the phase-forming components were initially investigated with pure commercial ovalbumin. In almost all ABS, it was observed a preferential partitioning of ovalbumin to the polymer-rich phase, with extraction efficiencies higher than 90%. The best ABS were then applied in the purification of ovalbumin from the real egg white matrix. In order to ascertain on the ovalbumin purity and yield, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion high performance liquid chromatography (SE-HPLC) analyses were conducted, confirming that the isolation/purification of ovalbumin from egg white was completely achieved in a single-step with a recovery yield of 65%. The results obtained show that polymer-salt-based ABS allow the selective extraction of ovalbumin from egg white with a simpler approach and better performance than previously reported. Finally, it is shown that ovalbumin can be completely recovered from the PEG-rich phase by an induced precipitation using an inexpensive and sustainable separation platform which can be easily applied on an industrial scale.
Collapse
Affiliation(s)
- Matheus M Pereira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rafaela A P Cruz
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mafalda R Almeida
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Álvaro S Lima
- Programa de Pós-Graduação em Engenharia de Processos, Universidade Tiradentes, Farolândia, CEP 49032-490 Aracaju, SE, Brazil
| | - João A P Coutinho
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
13
|
Lee HJ, Cho H, Kim MG, Heo YK, Cho Y, Gwon YD, Park KH, Jin H, Kim J, Oh YK, Kim YB. Sublingual immunization of trivalent human papillomavirus DNA vaccine in baculovirus nanovector for protection against vaginal challenge. PLoS One 2015; 10:e0119408. [PMID: 25789464 PMCID: PMC4366369 DOI: 10.1371/journal.pone.0119408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/12/2015] [Indexed: 12/27/2022] Open
Abstract
Here, we report the immunogenicity of a sublingually delivered, trivalent human papillomavirus (HPV) DNA vaccine encapsidated in a human endogenous retrovirus (HERV) envelope-coated, nonreplicable, baculovirus nanovector. The HERV envelope-coated, nonreplicable, baculovirus-based DNA vaccine, encoding HPV16L1, -18L1 and -58L1 (AcHERV-triHPV), was constructed and sublingually administered to mice without adjuvant. Following sublingual (SL) administration, AcHERV-triHPV was absorbed and distributed throughout the body. At 15 minutes and 1 day post-dose, the distribution of AcHERV-triHPV to the lung was higher than that to other tissues. At 30 days post-dose, the levels of AcHERV-triHPV had diminished throughout the body. Six weeks after the first of three doses, 1×10(8) copies of SL AcHERV-triHPV induced HPV type-specific serum IgG and neutralizing antibodies to a degree comparable to that of IM immunization with 1×10(9) copies. AcHERV-triHPV induced HPV type-specific vaginal IgA titers in a dose-dependent manner. SL immunization with 1×10(10) copies of AcHERV-triHPV induced Th1 and Th2 cellular responses comparable to IM immunization with 1×10(9) copies. Molecular imaging revealed that SL AcHERV-triHPV in mice provided complete protection against vaginal challenge with HPV16, HPV18, and HPV58 pseudoviruses. These results support the potential of SL immunization using multivalent DNA vaccine in baculovirus nanovector for induction of mucosal, systemic, and cellular immune responses.
Collapse
Affiliation(s)
- Hee-Jung Lee
- Department of Bio-industrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Hansam Cho
- Department of Bio-industrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Mi-Gyeong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Ki Heo
- Department of Bio-industrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Yeondong Cho
- Department of Bio-industrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Yong-Dae Gwon
- Department of Bio-industrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Ki Hoon Park
- Department of Bio-industrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Hyerim Jin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinyoung Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
- * E-mail: (YKO); (YBK)
| | - Young Bong Kim
- Department of Bio-industrial Technologies, Konkuk University, Seoul, Republic of Korea
- * E-mail: (YKO); (YBK)
| |
Collapse
|
14
|
Kraan H, Vrieling H, Czerkinsky C, Jiskoot W, Kersten G, Amorij JP. Buccal and sublingual vaccine delivery. J Control Release 2014; 190:580-92. [PMID: 24911355 PMCID: PMC7114675 DOI: 10.1016/j.jconrel.2014.05.060] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 11/25/2022]
Abstract
Because of their large surface area and immunological competence, mucosal tissues are attractive administration and target sites for vaccination. An important characteristic of mucosal vaccination is its ability to elicit local immune responses, which act against infection at the site of pathogen entry. However, mucosal surfaces are endowed with potent and sophisticated tolerance mechanisms to prevent the immune system from overreacting to the many environmental antigens. Hence, mucosal vaccination may suppress the immune system instead of induce a protective immune response. Therefore, mucosal adjuvants and/or special antigen delivery systems as well as appropriate dosage forms are required in order to develop potent mucosal vaccines. Whereas oral, nasal and pulmonary vaccine delivery strategies have been described extensively, the sublingual and buccal routes have received considerably less attention. In this review, the characteristics of and approaches for sublingual and buccal vaccine delivery are described and compared with other mucosal vaccine delivery sites. We discuss recent progress and highlight promising developments in the search for vaccine formulations, including adjuvants and suitable dosage forms, which are likely critical for designing a successful sublingual or buccal vaccine. Finally, we outline the challenges, hurdles to overcome and formulation issues relevant for sublingual or buccal vaccine delivery.
Collapse
Affiliation(s)
- Heleen Kraan
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| | - Hilde Vrieling
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Cecil Czerkinsky
- Institut de Pharmacologie Moleculaire et Cellulaire, UMR 7275 CNRS-INSERM-UNSA, Valbonne, France
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Gideon Kersten
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Jean-Pierre Amorij
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| |
Collapse
|
15
|
Murugappan S, Patil HP, Frijlink HW, Huckriede A, Hinrichs WLJ. Simplifying influenza vaccination during pandemics: sublingual priming and intramuscular boosting of immune responses with heterologous whole inactivated influenza vaccine. AAPS JOURNAL 2014; 16:342-9. [PMID: 24482005 DOI: 10.1208/s12248-014-9565-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/06/2014] [Indexed: 11/30/2022]
Abstract
The best approach to control the spread of influenza virus during a pandemic is vaccination. Yet, an appropriate vaccine is not available early in the pandemic since vaccine production is time consuming. For influenza strains with a high pandemic potential like H5N1, stockpiling of vaccines has been considered but is hampered by rapid antigenic drift of the virus. It has, however, been shown that immunization with a given H5N1 strain can prime the immune system for a later booster with a drifted variant. Here, we investigated whether whole inactivated virus (WIV) vaccine can be processed to tablets suitable for sublingual (s.l.) use and whether s.l. vaccine administration can prime the immune system for a later intramuscular (i.m.) boost with a heterologous vaccine. In vitro results demonstrate that freeze-drying and tableting of WIV did not affect the integrity of the viral proteins or the hemagglutinating properties of the viral particles. Immunization experiments revealed that s.l. priming with WIV (prepared from the H5N1 vaccine strain NIBRG-14) 4 weeks prior to i.m. booster immunization with the same virus strongly enhanced hemagglutination-inhibition (HI) titers against NIBRG-14 and the drifted variant NIBRG-23. Moreover, s.l. (and i.m.) immunization with NIBRG-14 also primed for a subsequent heterologous i.m. booster immunization with NIBRG-23 vaccine. In addition to HI serum antibodies, s.l. priming enhanced lung and nose IgA responses, while i.m. priming enhanced lung IgA but not nose IgA levels. Our results identify s.l. vaccination as a user-friendly method to prime for influenza-specific immune responses toward homologous and drifted variants.
Collapse
Affiliation(s)
- Senthil Murugappan
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands,
| | | | | | | | | |
Collapse
|