1
|
Padmapriyadarsini C, Szumowski JD, Akbar N, Shanmugasundaram P, Jain A, Bathragiri M, Pattnaik M, Turuk J, Karunaianantham R, Balakrishnan S, Pati S, Kumar AH, Rathore MK, Raja J, Naidu KR, Horn J, Whitworth L, Sewell R, Ramakrishnan L, Swaminathan S, Edelstein PH. A Dose-Finding Study to Guide Use of Verapamil as an Adjunctive Therapy in Tuberculosis. Clin Pharmacol Ther 2024; 115:324-332. [PMID: 37983978 PMCID: PMC7615557 DOI: 10.1002/cpt.3108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Induction of mycobacterial efflux pumps is a cause of Mycobacterium tuberculosis (Mtb) drug tolerance, a barrier to shortening antitubercular treatment. Verapamil inhibits Mtb efflux pumps that mediate tolerance to rifampin, a cornerstone of tuberculosis (TB) treatment. Verapamil's mycobacterial efflux pump inhibition also limits Mtb growth in macrophages in the absence of antibiotic treatment. These findings suggest that verapamil could be used as an adjunctive therapy for TB treatment shortening. However, verapamil is rapidly and substantially metabolized when co-administered with rifampin. We determined in a dose-escalation clinical trial of persons with pulmonary TB that rifampin-induced clearance of verapamil can be countered without toxicity by the administration of larger than usual doses of verapamil. An oral dosage of 360 mg sustained-release (SR) verapamil given every 12 hours concomitantly with rifampin achieved median verapamil exposures of 903.1 ng.h/mL (area under the curve (AUC)0-12 h ) in the 18 participants receiving this highest studied verapamil dose; these AUC findings are similar to those in persons receiving daily doses of 240 mg verapamil SR but not rifampin. Moreover, norverapamil:verapamil, R:S verapamil, and R:S norverapamil AUC ratios were all significantly greater than those of historical controls receiving SR verapamil in the absence of rifampin. Thus, rifampin administration favors the less-cardioactive verapamil metabolites and enantiomers that retain similar Mtb efflux inhibitory activity to verapamil, increasing overall benefit. Finally, rifampin exposures were 50% greater after verapamil administration, which may also be advantageous. Our findings suggest that a higher dosage of verapamil can be safely used as adjunctive treatment in rifampin-containing treatment regimens.
Collapse
Affiliation(s)
| | - John D. Szumowski
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, USA
| | - Nabila Akbar
- National Institute for Research in Tuberculosis, Chennai, India
| | | | - Anilkumar Jain
- National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | - John Horn
- Department of Pharmacy, University of Washington, Seattle, USA
| | - Laura Whitworth
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Lalita Ramakrishnan
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Paul H. Edelstein
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
2
|
Padmapriyadarsini C, Szumowski JD, Akbar N, Shanmugasundaram P, Jain A, Bathragiri M, Pattnaik M, Turuk J, Karunaianantham R, Balakrishnan S, Pati S, Agibothu Kupparam HK, Rathore MK, Raja J, Naidu KR, Horn J, Whitworth L, Sewell R, Ramakrishnan L, Swaminathan S, Edelstein PH. A dose-finding study to guide use of verapamil as an adjunctive therapy in tuberculosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.28.23293316. [PMID: 37577511 PMCID: PMC10418293 DOI: 10.1101/2023.07.28.23293316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Induction of mycobacterial efflux pumps is a cause of Mycobacterium tuberculosis (Mtb) drug tolerance, a barrier to shortening antitubercular treatment. Verapamil inhibits Mtb efflux pumps that mediate tolerance to rifampin, a cornerstone of tuberculosis treatment. Verapamil's mycobacterial efflux pump inhibition also limits Mtb growth in macrophages in the absence of antibiotic treatment. These findings suggest that verapamil could be used as an adjunctive therapy for TB treatment shortening. However, verapamil is rapidly and substantially metabolized when co-administered with rifampin. We determined in a dose-escalation clinical trial that rifampin-induced clearance of verapamil can be countered without toxicity by the administration of larger than usual doses of verapamil. An oral dosage of 360 mg sustained-release (SR) verapamil given every 12 hours concomitantly with rifampin achieved median verapamil exposures of 903.1 ng.h/ml (AUC 0-12h), similar to those in persons receiving daily doses of 240 mg verapamil SR but not rifampin. Norverapamil:verapamil, R:S verapamil and R:S norverapamil AUC ratios were all significantly greater than those of historical controls receiving SR verapamil in the absence of rifampin, suggesting that rifampin administration favors the less-cardioactive verapamil metabolites and enantiomers. Finally, rifampin exposures were significantly greater after verapamil administration. Our findings suggest that a higher dosage of verapamil can be safely used as adjunctive treatment in rifampin-containing treatment regimens.
Collapse
Affiliation(s)
| | - John D Szumowski
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, USA
| | - Nabila Akbar
- National Institute for Research in Tuberculosis, Chennai, India
| | | | - Anilkumar Jain
- National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | - John Horn
- Department of Pharmacy, University of Washington, Seattle, USA
| | - Laura Whitworth
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Lalita Ramakrishnan
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Paul H Edelstein
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
3
|
Comparative Efficacy of Rifapentine Alone and in Combination with Isoniazid for Latent Tuberculosis Infection: a Translational Pharmacokinetic-Pharmacodynamic Modeling Study. Antimicrob Agents Chemother 2021; 65:e0170521. [PMID: 34606336 DOI: 10.1128/aac.01705-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rifapentine has facilitated treatment shortening for latent tuberculosis infection (LTBI) in combination with isoniazid once weekly for 3 months (3HP) or daily for 1 month (1HP). Our objective was to determine the optimal rifapentine dose for a 6-week monotherapy regimen (6wP) and predict clinical efficacy. Rifapentine and isoniazid pharmacokinetics were simulated in mice and humans. Mouse lung CFU data were used to characterize exposure-response relationships of 1HP, 3HP, and 6wP and translated to predict clinical efficacy. A 600-mg daily dose for 6wP delivered greater cumulative rifapentine exposure than 1HP or 3HP. The maximum regimen effect (Emax) was 0.24 day-1. The regimen potencies, measured as the concentration at 50% of Emax (EC50), were estimated to be 2.12 mg/liter for 3HP, 3.72 mg/liter for 1HP, and 4.71 mg/liter for 6wP, suggesting that isoniazid contributes little to 1HP efficacy. Clinical translation predicted that 6wP reduces bacterial loads at a higher rate than 3HP and to a greater extent than 3HP and 1HP. 6wP (600 mg daily) is predicted to result in equal or better efficacy than 1HP and 3HP for LTBI treatment without the potential added toxicity of isoniazid. Results from ongoing and future clinical studies will be required to support these findings.
Collapse
|
4
|
Preclinical models to optimize treatment of tuberculous meningitis - A systematic review. Tuberculosis (Edinb) 2020; 122:101924. [PMID: 32501258 DOI: 10.1016/j.tube.2020.101924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/19/2020] [Accepted: 03/20/2020] [Indexed: 01/04/2023]
Abstract
Tuberculous meningitis (TBM) is the most devastating form of TB, resulting in death or neurological disability in up to 50% of patients affected. Treatment is similar to that of pulmonary TB, despite poor cerebrospinal fluid (CSF) penetration of the cornerstone anti-TB drug rifampicin. Considering TBM pathology, it is critical that optimal drug concentrations are reached in the meninges, brain and/or the surrounding CSF. These type of data are difficult to collect in TBM patients. This review aims to identify and describe a preclinical model representative for human TBM which can provide the indispensable data needed for future pharmacological characterization and prioritization of new TBM regimens in the clinical setting. We reviewed existing literature on treatment of TBM in preclinical models: only eight articles, all animal studies, could be identified. None of the animal models completely recapitulated human disease and in most of the animal studies key pharmacokinetic data were missing, making the comparison with human exposure and CNS distribution, and the study of pharmacokinetic-pharmacodynamic relationships impossible. Another 18 articles were identified using other bacteria to induce meningitis with treatment including anti-TB drugs (predominantly rifampicin, moxifloxacin and levofloxacin). Of these articles the pharmacokinetics, i.e. plasma exposure and CSF:plasma ratios, of TB drugs in meningitis could be evaluated. Exposures (except for levofloxacin) agreed with human exposures and also most CSF:plasma ratios agreed with ratios in humans. Considering the lack of an ideal preclinical pharmacological TBM model, we suggest a combination of 1. basic physicochemical drug data combined with 2. in vitro pharmacokinetic and efficacy data, 3. an animal model with adequate pharmacokinetic sampling, microdialysis or imaging of drug distribution, all as a base for 4. physiologically based pharmacokinetic (PBPK) modelling to predict response to TB drugs in treatment of TBM.
Collapse
|
5
|
Antitubercular nanocarrier monotherapy: Study of In Vivo efficacy and pharmacokinetics for rifampicin. J Control Release 2020; 321:312-323. [PMID: 32067995 DOI: 10.1016/j.jconrel.2020.02.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 02/08/2023]
Abstract
Tuberculosis represents a major global health problem for which improved approaches are needed to shorten the course of treatment and to combat the emergence of resistant strains. The development of effective and safe nanobead-based interventions can be particularly relevant for increasing the concentrations of antitubercular agents within the infected site and reducing the concentrations in the general circulation, thereby avoiding off-target toxic effects. In this work, rifampicin, a first-line antitubercular agent, was encapsulated into biocompatible and biodegradable polyester-based nanoparticles. In a well-established BALB/c mouse model of pulmonary tuberculosis, the nanoparticles provided improved pharmacokinetics and pharmacodynamics. The nanoparticles were well tolerated and much more efficient than an equivalent amount of free rifampicin.
Collapse
|
6
|
Umeda T, Tanaka A, Sakai A, Yamamoto A, Sakane T, Tomiyama T. Intranasal rifampicin for Alzheimer's disease prevention. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:304-313. [PMID: 30094330 PMCID: PMC6076366 DOI: 10.1016/j.trci.2018.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction Oral rifampicin has been shown to significantly reduce amyloid β (Aβ) and tau pathologies in mice. However, it shows occasional adverse effects such as liver injury in humans, making its use difficult for a long period. Methods To explore safer rifampicin treatment, APPOSK mice, a model of Alzheimer's disease, were treated with rifampicin for 1 month via oral, intranasal, and subcutaneous administration, and its therapeutic efficacy and safety were compared. Results Intranasal or subcutaneous administration of rifampicin improved memory more effectively than oral administration. The improvement of memory was accompanied with the reduction of neuropathologies, including Aβ oligomer accumulation, tau abnormal phosphorylation, and synapse loss. Serum levels of a liver enzyme significantly rose only by oral administration. Pharmacokinetic study revealed that the level of rifampicin in the brain was highest with intranasal administration. Discussion Considering its easiness and noninvasiveness, intranasal administration would be the best way for long-term dosing of rifampicin.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Translational Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akiko Tanaka
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ayumi Sakai
- Department of Translational Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Kobe, Japan
| | - Takami Tomiyama
- Department of Translational Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Impact of Clofazimine Dosing on Treatment Shortening of the First-Line Regimen in a Mouse Model of Tuberculosis. Antimicrob Agents Chemother 2018; 62:AAC.00636-18. [PMID: 29735562 DOI: 10.1128/aac.00636-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/30/2018] [Indexed: 01/17/2023] Open
Abstract
The antileprosy drug clofazimine was recently repurposed as part of a newly endorsed short-course regimen for multidrug-resistant tuberculosis. It also enables significant treatment shortening when added to the first-line regimen for drug-susceptible tuberculosis in a mouse model. However, clofazimine causes dose- and duration-dependent skin discoloration in patients, and the optimal clofazimine dosing strategy in the context of the first-line regimen is unknown. We utilized a well-established mouse model to systematically address the impacts of duration, dose, and companion drugs on the treatment-shortening activity of clofazimine in the first-line regimen. In all studies, the primary outcome was relapse-free cure (culture-negative lungs) 6 months after stopping treatment, and the secondary outcome was bactericidal activity, i.e., the decline in the lung bacterial burden during treatment. Our findings indicate that clofazimine activity is most potent when coadministered with first-line drugs continuously throughout treatment and that equivalent treatment-shortening results are obtained with half the dose commonly used in mice. However, our studies also suggest that clofazimine at low exposures may have negative impacts on treatment outcomes, an effect that was evident only after the first 3 months of treatment. These data provide a sound evidence base to inform clofazimine dosing strategies to optimize the antituberculosis effect while minimizing skin discoloration. The results also underscore the importance of conducting long-term studies to allow the full evaluation of drugs administered in combination over long durations.
Collapse
|
8
|
Rudeck J, Bert B, Marx-Stoelting P, Schönfelder G, Vogl S. Liver lobe and strain differences in the activity of murine cytochrome P450 enzymes. Toxicology 2018; 404-405:76-85. [PMID: 29879457 DOI: 10.1016/j.tox.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/17/2018] [Accepted: 06/02/2018] [Indexed: 12/19/2022]
Abstract
The cytochrome P450 (CYP) enzyme superfamily is the most important enzyme system for phase I biotransformation. For toxico- and pharmacokinetic studies, use of liver-based microsomes, including those of mice, is state-of-the-art to study CYP-dependent metabolism. However, reproducibility and interpretation of these data is still very variable, partly because current testing guidelines do not cover details on organ sampling and potential liver lobe differences. Hence, we analyzed CYP activity, CYP protein content, mRNA expression of CYP1A, CYP2C, CYP2D and CYP3A isozymes, and cytochrome P450 reductase (CPR) activity of the four different liver lobes and processus papillaris of male C57BL/6J mice in comparison to whole liver. Additionally, we used whole liver of Balb/cJ and 129S1/SvImJ for strain comparison. Our data show significant differences in CYP activity, being most prominent in lobus sinister lateralis and lobus medialis, and lowest in processus papillaris. These differences were not caused by varying Cyp gene expression or CYP protein level, but partly correspond with lobe specific CPR activities. We also observed significant strain differences in CYP mRNA expression and activities with overall high activities in 129S1/SvImJ mice and low activities in Balb/cJ mice compared to C57BL/6J mice. In addition, strain specific differences in CYP2C and CYP2D activity seem to be reflected in strain dependent differences in CPR activity. In summary, our results indicate that in mice CYP activity and gene expression are strain dependent and may vary highly between liver lobes. To ensure reproducibility and comparability of different probes and studies, this should be taken into account when liver samples are collected for the analysis of CYP-dependent metabolism.
Collapse
Affiliation(s)
- Juliane Rudeck
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Bettina Bert
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Gilbert Schönfelder
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; Charité - Universitätsmedizin Berlin, Cooperate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Clinical Pharmacology and Toxicology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Silvia Vogl
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| |
Collapse
|
9
|
Verapamil Targets Membrane Energetics in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2018; 62:AAC.02107-17. [PMID: 29463541 PMCID: PMC5923092 DOI: 10.1128/aac.02107-17] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/13/2018] [Indexed: 01/19/2023] Open
Abstract
Mycobacterium tuberculosis kills more people than any other bacterial pathogen and is becoming increasingly untreatable due to the emergence of resistance. Verapamil, an FDA-approved calcium channel blocker, potentiates the effect of several antituberculosis (anti-TB) drugs in vitro and in vivo. This potentiation is widely attributed to inhibition of the efflux pumps of M. tuberculosis, resulting in intrabacterial drug accumulation. Here, we confirmed and quantified verapamil's synergy with several anti-TB drugs, including bedaquiline (BDQ) and clofazimine (CFZ), but found that the effect is not due to increased intrabacterial drug accumulation. We show that, consistent with its in vitro potentiating effects on anti-TB drugs that target or require oxidative phosphorylation, the cationic amphiphile verapamil disrupts membrane function and induces a membrane stress response similar to those seen with other membrane-active agents. We recapitulated these activities in vitro using inverted mycobacterial membrane vesicles, indicating a direct effect of verapamil on membrane energetics. We observed bactericidal activity against nonreplicating “persister” M. tuberculosis that was consistent with such a mechanism of action. In addition, we demonstrated a pharmacokinetic interaction whereby human-equivalent doses of verapamil caused a boost of rifampin exposure in mice, providing a potential explanation for the observed treatment-shortening effect of verapamil in mice receiving first-line drugs. Our findings thus elucidate the mechanistic basis for verapamil's potentiation of anti-TB drugs in vitro and in vivo and highlight a previously unrecognized role for the membrane of M. tuberculosis as a pharmacologic target.
Collapse
|
10
|
Sterol 27-hydroxylase gene dosage and the antiatherosclerotic effect of Rifampicin in mice. Biosci Rep 2018; 38:BSR20171162. [PMID: 29191818 PMCID: PMC5784176 DOI: 10.1042/bsr20171162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/03/2017] [Accepted: 11/29/2017] [Indexed: 11/17/2022] Open
Abstract
Sterol 27-hydroxylase (CYP27A1) catalyzes the hydroxylation of cholesterol to 27-hydroxycholesterol (27-OHC) and regulates cholesterol homeostasis. In Cyp27a1/ Apolipoprotein E (ApoE) double knockout (KO) mice fed with Western diet (WD), the atherosclerotic phenotype found in ApoE KO mice was reversed. As protective mechanism, up-regulation of Cyp3a11 and Cyp7a1 was proposed. Cyp27a1 heterozygote/ApoE KO (het) mice, with reduced Cyp27a1 expression and normal levels of Cyp7a1 and Cyp3a11, developed more severe lesions than ApoE KO mice. To analyze the contribution of Cyp3a11 to the protection of atherosclerosis development, Cyp3a11 was induced by Rifampicin (RIF) in ApoE KO and het mice. Males were fed with WD and treated daily with RIF (10 mg/kg ip) or vehicle for 4 weeks. Atherosclerosis was quantified in the aortic valve. Plasma lipids and 27-hydroxycholesterol (27-OHC), expression of cytochromes P450 and genes involved in cholesterol transport and bile acids (BAs) signaling in liver and intestine, and intestinal cholesterol absorption were analyzed. RIF increased expression of hepatic but not intestinal Cyp3a11 4-fold in both genotypes. In ApoE KO mice treated with RIF, we found a 2-fold decrease in plasma cholesterol, and a 2-fold increase in high-density lipoprotein/low-density lipoprotein ratio and CY27A1 activity. Intestinal cholesterol absorption remained unchanged and atherosclerotic lesions decreased approximately 3-fold. In het mice, RIF had no effect on plasma lipids composition, CYP27A1 activity, and atherosclerotic plaque development, despite a reduction in cholesterol absorption. In conclusion, the antiatherogenic effect of Cyp3a11 induction by RIF was also dependent on Cyp27a1 expression.
Collapse
|
11
|
Verapamil Increases the Bioavailability and Efficacy of Bedaquiline but Not Clofazimine in a Murine Model of Tuberculosis. Antimicrob Agents Chemother 2017; 62:AAC.01692-17. [PMID: 29038265 DOI: 10.1128/aac.01692-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/07/2017] [Indexed: 11/20/2022] Open
Abstract
Drug efflux pumps play important roles in intrinsic and acquired drug resistance. Verapamil, an efflux inhibitor that enhances the activity of bedaquiline, clofazimine, and other drugs against Mycobacterium tuberculosis, has been proposed as a potential adjunctive agent for treatment of tuberculosis (TB). However, the extent to which verapamil enhances in vivo efficacy by inhibiting bacterial efflux pumps versus inhibiting mammalian drug transporters to improve oral bioavailability has not been delineated. We found that verapamil potentiated the in vitro activity of bedaquiline and clofazimine against M. tuberculosis clinical isolates, including those harboring rv0678 mutations. Verapamil increased the efficacy of bedaquiline in a murine TB model by the same extent to which it increased systemic bedaquiline exposure. However, verapamil showed no effect on the oral bioavailability or efficacy of clofazimine in mice. The addition of verapamil increased the sterilizing activity of a regimen composed of bedaquiline, clofazimine, and pyrazinamide. These results confirm that verapamil has adjunctive activity in vivo, but they also demonstrate that the adjunctive effect is likely due to enhanced systemic exposure to companion drugs via effects on mammalian transporters, rather than inhibition of bacterial pumps. Therefore, there may be no advantage to administering verapamil versus increasing the doses of companion drugs.
Collapse
|
12
|
Srivastava A, Panduga V, Saralaya R, K R P, Hameed S, Solapure S, Hosagrahara VP. Evaluation of the metabolism, bioactivation and pharmacokinetics of triaminopyrimidine analogs toward selection of a potential candidate for antimalarial therapy. Xenobiotica 2016; 47:962-972. [PMID: 27754725 DOI: 10.1080/00498254.2016.1247481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. During the course of metabolic profiling of lead Compound 1, glutathione (GSH) conjugates were detected in rat bile, suggesting the formation of reactive intermediate precursor(s). This was confirmed by the identification of GSH and N-acetylcysteine (NAC) conjugates in microsomal incubations. 2. It was proposed that bioactivation of Compound 1 occurs via the formation of a di-iminoquinone reactive intermediate through the involvement of the C-2 and C-5 nitrogens of the pyrimidine core. 3. To further investigate this hypothesis, structural analogs with modifications at the C-5 nitrogen were studied for metabolic activation in human liver microsomes supplemented with GSH/NAC. 4. Compounds 1 and 2, which bear secondary nitrogens at the C-5 of the pyrimidine core, were observed to form significant amounts of GSH/NAC-conjugates in vitro, whereas compounds with tertiary nitrogens at C-5 (Compound 3 and 4) formed no such conjugates. 5. These observations provide evidence that electron/hydrogen abstraction is required for the bioactivation of the triaminopyrimidines, potentially via a di-iminoquinone intermediate. The lack of a hydrogen and/or steric hindrance rendered Compound 3 and 4 incapable of forming thiol conjugates. 6. This finding enabled advancement of compound 4, with a desirable potency, safety and PK profile, as a lead candidate for further development in the treatment of malaria.
Collapse
Affiliation(s)
- Abhishek Srivastava
- a Safety and ADME Translational Sciences, Drug Safety and Metabolism IMED, AstraZeneca plc , Cambridge , United Kingdom of Great Britain and Northern Ireland
| | - Vijender Panduga
- b Infection IMED, AstraZeneca India Pvt. Ltd , Bangalore , India , and
| | | | - Prabhakar K R
- b Infection IMED, AstraZeneca India Pvt. Ltd , Bangalore , India , and
| | - Shahul Hameed
- b Infection IMED, AstraZeneca India Pvt. Ltd , Bangalore , India , and
| | - Suresh Solapure
- b Infection IMED, AstraZeneca India Pvt. Ltd , Bangalore , India , and
| | | |
Collapse
|
13
|
Krämer SD, Aschmann HE, Hatibovic M, Hermann KF, Neuhaus CS, Brunner C, Belli S. When barriers ignore the "rule-of-five". Adv Drug Deliv Rev 2016; 101:62-74. [PMID: 26877103 DOI: 10.1016/j.addr.2016.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/20/2022]
Abstract
Why are a few drugs with properties beyond the rule of 5 (bRo5) absorbed across the intestinal mucosa while most other bRo5 compounds are not? Are such exceptional bRo5 compounds exclusively taken up by carrier-mediated transport or are they able to permeate the lipid bilayer (passive lipoidal diffusion)? Our experimental data with liposomes indicate that tetracycline, which violates one rule of the Ro5, and rifampicin, violating three of the rules, significantly permeate a phospholipid bilayer with kinetics similar to labetalol and metoprolol, respectively. Published data from experimental work and molecular dynamics simulations suggest that the formation of intramolecular H-bonds and the possibility to adopt an elongated shape besides the presence of a significant fraction of net neutral species facilitate lipid bilayer permeation. As an alternative to lipid bilayer permeation, carrier proteins can be targeted to improve absorption, with the potential drawbacks of drug-drug interactions and non-linear pharmacokinetics.
Collapse
Affiliation(s)
- Stefanie D Krämer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland.
| | - Hélène E Aschmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Maja Hatibovic
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Katharina F Hermann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Claudia S Neuhaus
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Cyrill Brunner
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Sara Belli
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| |
Collapse
|
14
|
Wang W, Ren X, Cai Y, Chen L, Zhang W, Xu J. Rifampicin Induces Bicarbonate-Rich Choleresis in Rats: Involvement of Anion Exchanger 2. Dig Dis Sci 2016; 61:126-36. [PMID: 26319954 DOI: 10.1007/s10620-015-3850-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/10/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIM Previous studies have shown that rifampicin induced choleresis, the mechanisms of which have not been described. The aim of this study was to investigate the mechanisms underlying in vivo rifampicin-induced choleresis. METHODS In one experimental set, rats were treated chronically with rifampicin on days 1, 3 and 7. Serum and biliary parameters were assayed, and mRNA and protein levels, as well as the locations of the hepatic export transporters were analyzed by real-time PCR, western blot and immunofluorescence. Ductular mass was evaluated immunohistochemically. In another experimental set, rats received an acute infusion of rifampicin. The amount of rifampicin in bile was detected using HPLC. Biliary parameters were monitored following intrabiliary retrograde fluxes of the Cl(-)/HCO3 (-) exchange inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) or 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) in the infused rats. RESULTS Biliary bicarbonate output increased in parallel to the augmented bile flow in response to rifampicin, and this effect was abolished with intrabiliary administration of DIDS, but not NPPB. The biliary secretion of rifampicin with increases in bile flow and biliary rifampicin in response to different infused doses of the antibiotic show no significant correlations. After rifampicin treatment, the expression level of anion exchanger 2 (AE2) increased, while the location of hepatic transporters did not change. However, RIF treatment did not increase ductular mass significantly. CONCLUSIONS These results indicate that the increase in bile flow induced by rifampicin is mainly due to increased HCO3 (-) excretion mediated by increased AE2 protein expression and activity.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Xiaofei Ren
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Yi Cai
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Lihong Chen
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Weiping Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Jianming Xu
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
15
|
Srivastava A, Ramachandran S, Hameed SP, Ahuja V, Hosagrahara VP. Identification and Mitigation of a Reactive Metabolite Liability Associated with Aminoimidazoles. Chem Res Toxicol 2014; 27:1586-97. [DOI: 10.1021/tx500212c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | | | | | | | - Vinayak P. Hosagrahara
- Drug
Metabolism and Pharmacokinetics, Infection IMED, AstraZeneca, 35 Gatehouse
Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
16
|
Chan JGY, Bai X, Traini D. An update on the use of rifapentine for tuberculosis therapy. Expert Opin Drug Deliv 2014; 11:421-31. [PMID: 24397259 DOI: 10.1517/17425247.2014.877886] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Tuberculosis (TB) remains rampant throughout the world, in large part due to the lengthy treatment times of current therapeutic options. Rifapentine, a rifamycin antibiotic, is currently approved for intermittent dosing in the treatment of TB. Recent animal studies have shown that more frequent administration of rifapentine could shorten treatment times, for both latent and active TB infection. However, these results were not replicated in a subsequent human clinical trial. AREAS COVERED This review analyses the evidence for more frequent administration of rifapentine and the reasons for the apparent lack of efficacy in shortening treatment times in human patients. Inhaled delivery is discussed as a potential option to achieve the therapeutic effect of rifapentine by overcoming the barriers associated with oral administration of this drug. Avenues for developing an inhalable form of rifapentine are also presented. EXPERT OPINION Rifapentine is a promising active pharmaceutical ingredient with potential to accelerate treatment of TB if delivered by inhaled administration. Progression of current fundamental work on inhaled anti-tubercular therapies to human clinical trials is essential for determining their role in future treatment regimens. While the ultimate goal for global TB control is a vaccine, a short and effective treatment option is equally crucial.
Collapse
Affiliation(s)
- John Gar Yan Chan
- The University of Sydney, Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , NSW 2037, Sydney , Australia +61 2 91140352 ;
| | | | | |
Collapse
|