1
|
Chang SH, Song D, Oh S, Han SA, Jung JM, Song NJ, Kang H, Lee S, Ahn JY, Ahn S, Na YR, Yeom CH, Park KW, Ku JM. Butein derivatives prevent obesity and improve insulin resistance through the induction of energy expenditure in high-fat diet-fed obese mice. Eur J Pharm Sci 2024; 199:106820. [PMID: 38821248 DOI: 10.1016/j.ejps.2024.106820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Obesity is a global public health problem and is related with fatal diseases such as cancer and cardiovascular and metabolic diseases. Medical and lifestyle-related strategies to combat obesity have their limitations. White adipose tissue (WAT) browning is a promising strategy for increasing energy expenditure in individuals with obesity. Uncoupling protein 1 (UCP1) drives WAT browning. We previously screened natural products that enable induction of Ucp1 and demonstrated that these natural products induced WAT browning and increased energy expenditure in mice with diet-induced obesity. In this study, we aimed to extensively optimise the structure of compound 1, previously shown to promote WAT browning. Compound 3 s exhibited a significantly higher ability to induce Ucp1 in white and brown adipocytes than did compound 1. A daily injection of compound 3 s at 5 mg/kg prevented weight gain by 13.6 % in high-fat diet-fed mice without any toxicological observation. In addition, compound 3 s significantly improved glucose homeostasis, decreased serum triacylglycerol levels, and reduced total cholesterol and LDL cholesterol levels, without altering dietary intake or physical activity. Pharmaceutical properties such as solubility, lipophilicity, and membrane permeability as well as metabolic stability, half-life (T1/2), and blood exposure ratio of i.p to i.v were significantly improved in compound 3 s when compared with those in compound 1. Regarding the mode of action of WAT browning, the induction of Ucp1 and Prdm4 by compounds 1 and 3 s was dependent on Akt1 in mouse embryonic fibroblasts. Therefore, this study suggests the potential of compound 3 s as a therapeutic agent for individuals with obesity and related metabolic diseases, which acts through the induction of WAT browning as well as brown adipose tissue activation.
Collapse
Affiliation(s)
- Seo-Hyuk Chang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Dawoon Song
- Natural Biomaterials team, Gyeonggido Business and Science Accelerator, Suwon 443-270, Republic of Korea
| | - Seungjun Oh
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Saro-Areum Han
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Ji-Man Jung
- Natural Biomaterials team, Gyeonggido Business and Science Accelerator, Suwon 443-270, Republic of Korea
| | - No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Hee Kang
- Humanitas College Kyung Hee University1732 Deogyeongdae-ro, Yongin 17104, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | | | - Yu-Ran Na
- Rappeler Company, Anyang, 14118, Republic of Korea
| | | | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | - Jin-Mo Ku
- Natural Biomaterials team, Gyeonggido Business and Science Accelerator, Suwon 443-270, Republic of Korea.
| |
Collapse
|
2
|
Sampaio TB, Bilheri FN, Zeni GR, Nogueira CW. Dopaminergic system contribution to the antidepressant-like effect of 3-phenyl-4-(phenylseleno) isoquinoline in mice. Behav Brain Res 2020; 386:112602. [PMID: 32184159 DOI: 10.1016/j.bbr.2020.112602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Depression is a serious disorder characterized by imbalance of mood and emotions, which is accompanied by the reduction in the monoaminergic signaling. The monoamine oxidase inhibition could lead to an increase in monoaminergic neurotransmitter levels in the brain. According to our previous study, 3-phenyl-4-(phenylseleno) isoquinoline (PSI) is a selective and reversible MAO-B inhibitor in vitro. The present study investigated the putative ex vivo inhibitory effect of a single PSI dose on the cerebral MAO activity and its antidepressant-like action in the mouse forced swimming test (FST). Additionally, the dopaminergic system contribution to the antidepressant-like effect of PSI was also evaluated. For this, PSI was dissolved in canola oil to determine time-course (0.5-24 h) and dose-response (25-100 mg/kg, 10 ml/kg, intragastrically) curves of MAO activity inhibition using adult C57Bl/6 male mice. A single PSI dose of 100 mg/kg inhibited the MAO-B activity in the whole brain 8 h after administration to mice, while it did not alter the MAO-A activity. The FST was carried out 0.5, 8, and 24 h after the PSI administration (100 mg/kg) or vehicle, but its antidepressant-like effect was demonstrated only at 0.5 and 8 h after treatment. Lastly, the contribution of dopaminergic system in the PSI antidepressant-like effect was demonstrated by using dopamine receptors antagonists, SCH23390, haloperidol and sulpiride. Thus, a single PSI dose of 100 mg/kg had an antidepressant-like effect in mice subjected to the FST 0.5 and 8 h after its administration. Moreover, the inhibition of cerebral MAO-B activity and modulation of dopamine receptors contributed to the antidepressant-like effect of PSI in mice.
Collapse
|
3
|
Contribution of cholinergic system and Nrf2/HO-1 signaling to the anti-amnesic action of 7-fluoro-1,3-diphenylisoquinoline-1-amine in mice. Chem Biol Interact 2020; 317:108959. [PMID: 32001261 DOI: 10.1016/j.cbi.2020.108959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/27/2019] [Accepted: 01/19/2020] [Indexed: 01/24/2023]
Abstract
The isoquinoline 7-fluoro-1,3-diphenylisoquinoline-1-amine (FDPI) has been studied due to its multitarget properties, such as modulation of GABAergic and glutamatergic systems, antioxidant, and anti-inflammatory. This study investigated the contribution of oxidative stress, nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase (HO-1) signaling, and the cholinergic system to the anti-amnesic action of FDPI in mice. Adult male Swiss mice received FDPI for 5 days (5-25 mg/kg, i.g.); the animals received scopolamine (1 mg/kg, i.p) from day 3-5. The vehicle-control group was carried out. Afterward, mice performed object recognition tests (ORTs). Scopolamine induced amnesia and cholinergic dysfunction by increasing the acetylcholinesterase (AChE) activity and content, decreasing the muscarinic M1 receptor levels in the prefrontal cortex and hippocampus of mice. This study reveals that scopolamine altered oxidative stress parameters differently in the prefrontal cortex and hippocampus of mice. Whereas the prefrontal cortex was susceptible to oxidative stress, none of the parameters evaluated was altered in the hippocampus of scopolamine-treated mice. FDPI at doses of 10 and 25 mg/kg had an anti-amnesic effect in the ORT tests. FDPI 10 mg/kg reversed the increase in the AChE activity and content, oxidative stress parameters, and modulated Nrf2/HO-1 signaling in the prefrontal cortex of scopolamine-exposed mice. Pearson's correlation analyses reinforced the contribution of the prefrontal cortical cholinergic system, oxidative stress as well as Nrf2/HO-1 signaling in the anti-amnesic effect of FDPI. Considering FDPI effects on the hippocampus, it was effective against the cholinergic dysfunction, AChE activity and content, and M1 receptor levels, which collectively could contribute to its anti-amnesic effect.
Collapse
|
4
|
Pinz MP, Dos Reis AS, Vogt AG, Krüger R, Alves D, Jesse CR, Roman SS, Soares MP, Wilhelm EA, Luchese C. Current advances of pharmacological properties of 7-chloro-4-(phenylselanyl) quinoline: Prevention of cognitive deficit and anxiety in Alzheimer's disease model. Biomed Pharmacother 2018; 105:1006-1014. [PMID: 30021335 DOI: 10.1016/j.biopha.2018.06.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
This study investigated the effect of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) at a dose of 1 mg/kg in memory impairment and anxiety in an Alzheimer's disease (AD) model induced by amyloid β-peptide (Aβ) (fragment 25-35) in mice. The involvement of acetylcholinesterase (AChE) activity and lipid peroxidation in hippocampus and cerebral cortex was evaluated. Male Swiss mice were pretreated with 4-PSQ (1 mg/kg, intragastrically (i.g.), daily) for fourteen days. Thirty minutes after the first treatment with 4-PSQ, the animals received a single injection of Aβ (3 nmol/3 μl/per site, intracerebroventricular (i.c.v.)). Mice were submitted to the behavioral tasks (open-field, elevated plus maze, Barnes maze, object recognition and location, and step-down inhibitory avoidance tests) from the fifth day onwards. On the fifteenth day, blood was removed for analysis of biochemical markers (glucose, triglycerides, urea, aspartate (AST) and alanine (ALT) aminotrasferases), and cerebral cortex and hippocampus for determination of AChE activity and thiobarbituric acid reactive species (TBARS) levels. Aβ caused memory impairment, anxiogenic behavior, increased AChE activity in the cerebral structures and TBARS levels in the cerebral cortex. 4-PSQ was effective to protect against behavioral changes, AChE activity and TBARS levels. In conclusion, 4-PSQ protected against learning and memory impairment and anxiety in a mouse model of AD induced by Aβ, and anticholinesterase and antioxidant actions are involved in the pharmacological effect of the compound.
Collapse
Affiliation(s)
- Mikaela P Pinz
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Angélica S Dos Reis
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Ane G Vogt
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Roberta Krüger
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Cristiano R Jesse
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Silvane S Roman
- Universidade Regional Integrada, Campus Erechim, CEP 99700-000, RS, Brazil
| | - Mauro P Soares
- Laboratório Regional de Diagnóstico Faculdade de Veterinária, Universidade Federal de Pelotas, Capão do Leão, CEP: 96010-900, RS, Brazil
| | - Ethel A Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil.
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
5
|
Therapeutic and technological potential of 7-chloro-4-phenylselanyl quinoline for the treatment of atopic dermatitis-like skin lesions in mice. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
7-Fluoro-1,3-diphenylisoquinoline reverses motor and non-motor symptoms induced by MPTP in mice: Role of striatal neuroinflammation. Eur J Pharmacol 2017; 819:129-135. [PMID: 29217173 DOI: 10.1016/j.ejphar.2017.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/23/2017] [Accepted: 12/01/2017] [Indexed: 02/04/2023]
Abstract
Parkinson's disease (PD) is a dopaminergic neurodegenerative disorder, which presents motor and non-motor symptoms. 7-Fluoro-1,3-diphenylisoquinoline (FDPI) is an isoquinoline compound with antioxidant and antidepressant properties. This study investigated whether FDPI reverses motor and non-motor symptoms in an acute mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). It was also assessed the anti-inflammatory mechanisms in FDPI pharmacological action. C57Bl/6 male adult mice received four MPTP (20mg/kg, intraperitoneal) or saline (vehicle) injections to induce an acute PD model. FDPI (10mg/kg, intragastric) was daily administered to mice from the 2nd to 9th day after the induction and mice performed the behavioral tests on the 8th and 9th days. Striatum samples were collected for biochemical and molecular analyses. The results of the rotarod and challenging beam tests demonstrated that the administration of FDPI attenuated the impairments in balance and coordination of mice induced by MPTP. The FDPI reversed the short-term memory deficit and depressive-like behavior induced by MPTP in mice. FDPI attenuated the reduction in the striatal tyrosine hydroxylase levels, and it reversed the increase in the cyclooxygenase-2 levels and myeloperoxidase activity caused by MPTP in mice. Therefore, FDPI reversed motor and non-motor symptoms induced by an acute PD model and its restorative effects seem to be mediated by an anti-inflammatory action associated with a modulation of the striatal cyclooxygenase-2 levels and myeloperoxidase activity.
Collapse
|
7
|
Brain-derived neurotrophic factor signaling plays a role in resilience to stress promoted by isoquinoline in defeated mice. J Psychiatr Res 2017; 94:78-87. [PMID: 28688339 DOI: 10.1016/j.jpsychires.2017.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
Certain stressful life events have been associated with the onset of depression. This study aims to investigate if 7-fluoro-1,3-diphenylisoquinoline-1-amine (FDPI) is effective against social avoidance induced by social defeat stress model in mice. Furthermore, it was investigated the effects of FDPI in the mouse prefrontal cortical plasticity-related proteins and some parameters of toxicity. Adult Swiss mice were subjected to social defeat stress for 10 days. Two protocols with FDPI were carried out: 1- FDPI (25 mg/kg, intragastric) was administered to mice 24 h after the last social defeat stress episode; 2- FDPI (1-25 mg/kg, intragastric) was administered to mice once a day for 10 days concomitant with the social defeat stress. The mice performed social avoidance and locomotor tests. The prefrontal cortical protein contents of kinase B (Akt), extracellular signal-regulated kinase (ERK), cAMP-response element binding protein (CREB), pro-brain-derived neurotrophic factor (proBDNF), p75NTR, neuronal nuclear protein (NeuN) and nuclear factor-κB (NF-κB) were determined in mice. A single administration of FDPI (25 mg/kg) partially protected against social avoidance induced by stress in mice. Repeated administration of FDPI (25 mg/kg) protected against social avoidance induced by stress in mice. Social defeat stress decreased the protein contents of p75NTR, NeuN and the pERK/ERK ratio but increased those of proBDNF and the pCREB/CREB ratio, without changing that of NF-κB. Repeated administration of FDPI modulated signaling pathways altered by social defeat stress in mice. The present findings demonstrate that FDPI promoted resilience to stress in mice.
Collapse
|
8
|
Silva VDG, Reis AS, Pinz MP, da Fonseca CAR, Duarte LFB, Roehrs JA, Alves D, Luchese C, Wilhelm EA. Further analysis of acute antinociceptive and anti-inflammatory actions of 4-phenylselenyl-7-chloroquinoline in mice. Fundam Clin Pharmacol 2017; 31:513-525. [PMID: 28543930 DOI: 10.1111/fcp.12295] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/24/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022]
Abstract
A new quinoline containing selenium, 4-phenylselenyl-7-chloroquinoline (4-PSQ), was described and synthetized by our research group. Recently, we demonstrated the potential antinociceptive and anti-inflammatory of 4-PSQ. For this reason, the first objective of this study was to expand our previous findings by investigating the contribution of glutamatergic, serotonergic, and nitrergic systems to the acute antinociceptive action of this compound. Pretreatment with 4-PSQ (0.01-25 mg/kg, p.o.) reduced the nociception induced by glutamate. MK-801 (an uncompetitive antagonist of the N-Methyl-d-aspartate (NMDA) receptor) blocked the antinociceptive effect exerted by 4-PSQ (25 mg/kg, p.o.) in the acetic acid-induced abdominal writhing test. The pretreatment with WAY100635 (a selective antagonist of 5-HT1A receptor), ketanserin (a selective antagonist of 5-HT2A/2C receptor), and pindolol (a nonselective antagonist of 5-HT1A/1B receptors) partially blocked the antinociceptive effect caused by 4-PSQ (25 mg/kg, per oral, p.o.) in the acetic acid-induced abdominal writhing test. Nitric oxide precursor, l-arginine hydrochloride, partially reversed antinociception caused by 4-PSQ or ω-nitro-l-arginine (l-NOARG). Treatments did not modify the locomotor and exploratory activities of mice. Additionally, the acute anti-inflammatory effect of 4-PSQ in a model of pleurisy induced by carrageenan in mice was investigated. 4-PSQ reduced the cellular migration, pleural exudate accumulation, and myeloperoxidase activity induced by carrageenan exposure. 4-PSQ protected against the increase in reactive species levels and reduction of nonprotein thiol levels induced by carrageenan. Data presented here showed that the modulation of serotonergic, nitrergic, and glutamatergic systems contributed to the antinociceptive effect of 4-PSQ and it reinforced the therapeutic potential of this quinolinic compound for acute inflammation.
Collapse
Affiliation(s)
- Vanessa D G Silva
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio - Grupo de Pesquisa em Neurobiotecnologia, CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Angélica S Reis
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio - Grupo de Pesquisa em Neurobiotecnologia, CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Mikaela P Pinz
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio - Grupo de Pesquisa em Neurobiotecnologia, CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Caren A R da Fonseca
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio - Grupo de Pesquisa em Neurobiotecnologia, CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Luis Fernando B Duarte
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Juliano A Roehrs
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio - Grupo de Pesquisa em Neurobiotecnologia, CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio - Grupo de Pesquisa em Neurobiotecnologia, CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
9
|
Pesarico AP, Rosa SG, Stangherlin EC, Mantovani AC, Zeni G, Nogueira CW. 7-Fluoro-1,3-diphenylisoquinoline-1-amine reverses the reduction in self-care behavior induced by maternal separation stress in rats by modulating glutamatergic/GABAergic systems. J Psychiatr Res 2017; 89:28-37. [PMID: 28153643 DOI: 10.1016/j.jpsychires.2017.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 12/18/2022]
Abstract
7-Fluoro-1,3-diphenylisoquinoline-1-amine (FDPI) is a promising isoquinoline that elicits an antidepressant-like action in rodents. In this study, an animal model of stress induced by maternal separation was used to investigate the effects of FDPI in Wistar rats of 30 and 90 days of age. It was investigated the effects of maternal separation in the self-care behavior and the contribution of glutamatergic and gamma-aminobutyric acid (GABA)ergic systems in the FDPI action. Male Wistar rats were separated from their mothers for 3 h/day from postnatal day (PND) 1-10. The rats were treated at different ages (PND-30 and PND-90) with FDPI (5 mg/kg, intragastrically/7 days) and performed the splash test. Maternal separation reduced total grooming time in the splash test, an index of motivational and self-care behavior, and FDPI treatment was effective in reversing this behavior in rats at both ages. The neurochemical parameters were differently affected, dependent on the age of rats, by maternal separation and FDPI. Maternal separation increased the GABA uptake and the excitatory amino acid transporter 1 levels in the prefrontal cortices of rats at PND-30 and FDPI was effective against these alterations. At PND-90, maternal separation decreased the glutamate uptake and increased the GABA uptake and the N-methyl-D-aspartate (NMDA) receptor 2B levels in the prefrontal cortices of rats. FDPI reversed the neurochemical alterations caused by maternal separation in the prefrontal cortices of rats at PND-90. The results of this study demonstrated that FDPI reversed the reduction in self-care behavior induced by maternal separation stress in rats by modulating the glutamatergic/GABAergic systems in rats.
Collapse
Affiliation(s)
- Ana Paula Pesarico
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Suzan G Rosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Eluza C Stangherlin
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Anderson C Mantovani
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
10
|
Reis AS, Pinz M, Duarte LFB, Roehrs JA, Alves D, Luchese C, Wilhelm EA. 4-phenylselenyl-7-chloroquinoline, a novel multitarget compound with anxiolytic activity: Contribution of the glutamatergic system. J Psychiatr Res 2017; 84:191-199. [PMID: 27756019 DOI: 10.1016/j.jpsychires.2016.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/12/2016] [Accepted: 10/10/2016] [Indexed: 01/09/2023]
Abstract
A growing body of evidence demonstrates that quinoline compounds have attracted much attention in the field of drug development. Accordingly, 4-phenylselenyl-7-chloroquinoline (4-PSQ) is a new quinoline derivative containing selenium, which showed a potential antioxidant, antinociceptive and anti-inflammatory effect. The present study was undertaken to evaluate the anxiolytic-like properties of 4-PSQ. Mice were orally pretreated with 4-PSQ (5-50 mg/kg) or vehicle, 30 min prior to the elevated plus-maze (EPM), light-dark (LDT) or open field (OFT) tests. A time-response curve was carried out by administration of 4-PSQ (50 mg/kg) at different times before the EPM test. The involvement of glutamate uptake/release and Na+, K+-ATPase activity in the anxiolytic-like effect was investigated in cerebral cortices. In addition, the effectiveness of acute treatment with 4-PSQ was evaluated in a model of kainate (KA)-induced anxiety-related behavior. Finally, acute toxicity of this compound was investigated. 4-PSQ produced an anxiolytic-like action, both in EPM and LDT. In OFT, 4-PSQ did not affect locomotor and exploratory activities. 4-PSQ anxiolytic-like effect started at 0.5 h and remained significant up to 72 h after administration. Treatment with 4-PSQ reduced [3H] glutamate uptake, but the [3H] glutamate release and Na+, K+-ATPase activity were not altered. KA-induced anxiety-related behavior was protected by 4-PSQ pretreatment. Additionally, 4-PSQ exposure did not alter urea levels, aspartate (AST) and alanine aminotrasferase (ALT) activities in plasma. Parameters of oxidative stress in brain and liver of mice were not modified by 4-PSQ. Taken together these data demonstrated that the anxiolytic-like effect caused by 4-PSQ seems to be mediated by involvement of the glutamatergic system.
Collapse
Affiliation(s)
- Angélica S Reis
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - Mikaela Pinz
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - Luis Fernando B Duarte
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brasil
| | - Juliano A Roehrs
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brasil
| | - Diego Alves
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brasil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil.
| | - Ethel A Wilhelm
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil.
| |
Collapse
|
11
|
Abel AS, Grigorova OK, Averin AD, Maloshitskaya OA, Butov GM, Savelyev EN, Orlinson BS, Novakov IA, Beletskaya IP. Amination of chloro-substituted heteroarenes with adamantane-containing amines. Russ Chem Bull 2016. [DOI: 10.1007/s11172-016-1516-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
4-Phenylselenyl-7-chloroquinoline, a new quinoline derivative containing selenium, has potential antinociceptive and anti-inflammatory actions. Eur J Pharmacol 2016; 780:122-8. [DOI: 10.1016/j.ejphar.2016.03.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 11/18/2022]
|
13
|
Singh A, Ramanathan G. Rational Design of Heterogeneous Silver Catalysts by Exploitation of Counteranion-Induced Coordination Geometry. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ashish Singh
- Department of Chemistry; Indian Institute of Technology; Kanpur 208016 India
| | - Gurunath Ramanathan
- Department of Chemistry; Indian Institute of Technology; Kanpur 208016 India
| |
Collapse
|
14
|
Pesarico AP, Stangherlin EC, Rosa SG, Mantovani AC, Zeni G, Nogueira CW. Contribution of NMDA, GABAA and GABAB receptors and l-arginine-NO-cGMP, MEK1/2 and CaMK-II pathways in the antidepressant-like effect of 7-fluoro-1,3-diphenylisoquinoline-1-amine in mice. Eur J Pharmacol 2016; 782:6-13. [PMID: 27112660 DOI: 10.1016/j.ejphar.2016.04.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022]
Abstract
It has been reported that the antidepressant-like effect of 7-fluoro-1,3-diphenylisoquinoline-1-amine (FDPI) may result from the modulation of brain monoaminergic systems. However, the mechanisms of FDPI action are not fully understood. The aim of this study was to investigate the contribution of N-methyl-d-aspartate (NMDA) and gamma-aminobutyric acid (GABA) systems as well as l-arginine-nitric oxide-(NO)-cyclic guanosine monophosphate-(cGMP), mitogen-activated protein/extracellular signal-regulated kinase (MEK1/2) and Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) signaling pathways in the antidepressant-like effect of FDPI in the mouse forced swimming test (FST). The levels of NO and uptake of [(3)H]glutamate and [(3)H]GABA were determined in prefrontal cortices of Swiss mice. Pretreatments with NMDA (0.1 pmol/site, i.c.v., a NMDA receptor agonist), bicuculline (1mg/kg, i.p., a GABAA receptor antagonist), phaclofen (2mg/kg, i.p., a GABAB receptor antagonist) and l-arginine (750mg/kg, i.p., a NO precursor), KN-62 (1μg/site, a CaMK-II inhibitor), U0126 (5μg/site, a MEK1/2 inhibitor) and PD09058 (5μg/site, a MEK1/2 inhibitor) blocked the antidepressant-like effect of FDPI, at a dose of 1mg/kg, in the FST. ODQ (30 pmol/site, i.c.v., a soluble guanylate cyclase (sGC) inhibitor) in combination with a sub-effective dose of FDPI (0.1mg/kg, i.g.) reduced the immobility time in the FST. The administration of FDPI (50mg/kg) to mice increased the glutamate uptake and reduced NO levels in the prefrontal cortex of mice. The results suggest a contribution of NMDA, GABAA and GABAB receptors and l-arginine-NO-cGMP pathway in the antidepressant-like action of FDPI in mice, and this effect is related to CaMK-II and MEK 1/2 activation.
Collapse
Affiliation(s)
- Ana Paula Pesarico
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Eluza Curte Stangherlin
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Suzan Gonçalves Rosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Anderson C Mantovani
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
15
|
4-Organoseleno-Isoquinolines Selectively and Reversibly Inhibit the Cerebral Monoamine Oxidase B Activity. J Mol Neurosci 2016; 59:135-45. [DOI: 10.1007/s12031-016-0743-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/22/2016] [Indexed: 12/15/2022]
|
16
|
Pesarico AP, Sartori G, Brüning CA, Mantovani AC, Duarte T, Zeni G, Nogueira CW. A novel isoquinoline compound abolishes chronic unpredictable mild stress-induced depressive-like behavior in mice. Behav Brain Res 2016; 307:73-83. [PMID: 27036647 DOI: 10.1016/j.bbr.2016.03.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
Abstract
Chronic unpredictable mild stress (CUMS) elicits aspects of cognitive and behavioral alterations that can be used to model comparable aspects of depression in humans. The aim of the present study was to investigate the antidepressant-like potential of 7-fluoro-1,3-diphenylisoquinoline-1-amine (FDPI), a novel isoquinoline compound, in CUMS, a model that meets face, construct and predictive criteria for validity. Swiss mice were subjected to different stress paradigms daily for a period of 35 days to induce the depressive-like behavior. The animals received concomitant FDPI (0.1 and 1mg/kg, intragastric) or paroxetine (8mg/kg, intraperitoneal) and CUMS. The behavioral tests (splash test, tail suspension test, modified forced swimming test and locomotor activity) were performed. The levels of cytokines, corticosterone and adrenocorticotropic (ACTH) hormones were determined in the mouse prefrontal cortex and serum. The synaptosomal [(3)H] serotonin (5-HT) uptake, nuclear factor (NF)-κB, tyrosine kinase receptor (TrkB) and pro-brain-derived neurotrophic factor (BDNF) levels were determined in the mouse prefrontal cortex. CUMS induced a depressive-like behavior in mice, which was demonstrated in the modified forced swimming, tail suspension and splash tests. FDPI at both doses prevented depressive-like behavior induced by CUMS, without altering the locomotor activity of mice. FDPI at the highest dose prevented the increase in the levels of NF-kB, pro-inflammatory cytokines, corticosterone and ACTH and modulated [(3)H]5-HT uptake and the proBDNF/TrkB signaling pathway altered by CUMS. The present findings demonstrated that FDPI elicited an antidepressant-like effect in a model of stress-induced depression.
Collapse
Affiliation(s)
- Ana Paula Pesarico
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Gláubia Sartori
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - César A Brüning
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Anderson C Mantovani
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Thiago Duarte
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
17
|
Pesarico AP, Stangherlin EC, Mantovani AC, Zeni G, Nogueira CW. 7-Fluoro-1,3-diphenylisoquinoline-1-amine abolishes depressive-like behavior and prefrontal cortical oxidative damage induced by acute restraint stress in mice. Physiol Behav 2015; 149:294-302. [DOI: 10.1016/j.physbeh.2015.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/22/2015] [Accepted: 06/10/2015] [Indexed: 02/07/2023]
|
18
|
Pesarico AP, Sampaio TB, Stangherlin EC, Mantovani AC, Zeni G, Nogueira CW. The antidepressant-like effect of 7-fluoro-1,3-diphenylisoquinoline-1-amine in the mouse forced swimming test is mediated by serotonergic and dopaminergic systems. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:179-86. [PMID: 24936772 DOI: 10.1016/j.pnpbp.2014.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 01/02/2023]
Abstract
The aim of the present study was to investigate the role of monoaminergic system in the antidepressant-like action of 7-fluoro-1,3-diphenylisoquinoline-1-amine (FDPI), a derivative of isoquinoline class, in Swiss mice. The antidepressant-like effect of FDPI was characterized in the modified forced swimming test (FST) and the possible mechanism of action was investigated by using serotonergic, dopaminergic and noradrenergic antagonists. Monoamine oxidase (MAO) activity and [(3)H]serotonin (5-HT) uptake were determined in prefrontal cortices of mice. The results showed that FDPI (1, 10 and 20mg/kg, i.g.) reduced the immobility time and increased the swimming time but did not alter climbing time in the modified FST. These effects were similar to those of paroxetine (8mg/kg, i.p.), a positive control. Pretreatments with p-chlorophenylalanine (100mg/kg, i.p., an inhibitor of 5-HT synthesis), WAY100635 (0.1mg/kg, s.c., 5-HT1A antagonist), ondansetron (1mg/kg, i.p., a 5-HT3 receptor antagonist), haloperidol (0.2mg/kg, i.p., a non-selective D2 receptor antagonist) and SCH23390 (0.05mg/kg, s.c., a D1 receptor antagonist) were effective to block the antidepressant-like effect of FDPI at a dose of 1mg/kg in the FST. Ritanserin (1mg/kg, i.p., a 5-HT2A/2C receptor antagonist), sulpiride (50mg/kg, i.p., a D2 and D3 receptor antagonist), prazosin (1mg/kg, i.p., an α1 receptor antagonist), yohimbine (1mg/kg, i.p., an α2 receptor antagonist) and propranolol (2mg/kg, i.p., a β receptor antagonist) did not modify the effect of FDPI in the FST. FDPI did not change synaptosomal [(3)H]5-HT uptake. At doses of 10 and 20mg/kg FDPI inhibited MAO-A and MAO-B activities. These results suggest that antidepressant-like effect of FDPI is mediated mostly by serotonergic and dopaminergic systems.
Collapse
Affiliation(s)
- Ana Paula Pesarico
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brasil
| | - Tuane Bazanella Sampaio
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brasil
| | - Eluza Curte Stangherlin
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brasil
| | - Anderson C Mantovani
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brasil
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brasil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brasil.
| |
Collapse
|