1
|
LeFors JE, Anderson LM, Hanson MA, Raiciulescu S. Assessment of 2 Hair Removal Methods in New Zealand White Rabbits ( Oryctolagus cuniculus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:296-303. [PMID: 35227364 PMCID: PMC9137288 DOI: 10.30802/aalas-jaalas-21-000110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/13/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Rabbits are frequently used as surgical models in research. However, studies assessing the effects of various hair removal methods on wound healing and surgical site infection (SSI) in rabbits are sparse. Here we evaluated the effects of 2 hair removal methods-clipping with electric clippers and using a commercial depilatory agent-on wound healing and SSI as assessed via wound scoring and histology. Incisions were assigned ASEPSIS scores on days 3 and 7. To assess whether the hair removal methods influenced aseptic preparation, swabs for bacterial culture were obtained just after hair removal on day 0, after aseptic skin preparation on day 0, and on day 1. For histopathologic assessment, full-thickness punch biopsies were obtained on days 0, 1, 3, 7, and 21. Histopathology revealed significant differences between the 2 methods, with the depilatory method having consistently higher scores (that is, more abnormalities). We conclude that for a surgical preparation regimen, clipping is safer, more efficacious, and less traumatic to tissues in rabbits.
Collapse
Affiliation(s)
| | | | - Margaret A Hanson
- Pathology, Walter Reed Army Institute of Research, Silver Spring, MD
| | - Sorana Raiciulescu
- Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD
| |
Collapse
|
2
|
Bouwstra JA, Helder RW, El Ghalbzouri A. Human skin equivalents: Impaired barrier function in relation to the lipid and protein properties of the stratum corneum. Adv Drug Deliv Rev 2021; 175:113802. [PMID: 34015420 DOI: 10.1016/j.addr.2021.05.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022]
Abstract
To advance drug development representative reliable skin models are indispensable. Animal skin as test model for human skin delivery is restricted as their properties greatly differ from human skin. In vitro 3D-human skin equivalents (HSEs) are valuable tools as they recapitulate important aspects of the human skin. However, HSEs still lack the full barrier functionality as observed in native human skin, resulting in suboptimal screening outcome. In this review we provide an overview of established in-house and commercially available HSEs and discuss in more detail to what extent their skin barrier biology is mimicked in vitro focusing on the lipid properties and cornified envelope. Further, we will illustrate how underlying factors, such as culture medium improvements and environmental factors affect the barrier lipids. Lastly, potential improvements in skin barrier function will be proposed aiming at a new generation of HSEs that may replace animal skin delivery studies fully.
Collapse
|
3
|
Ko J, Mandal A, Dhawan S, Shevachman M, Mitragotri S, Joshi N. Clinical translation of choline and geranic acid deep eutectic solvent. Bioeng Transl Med 2021; 6:e10191. [PMID: 34027084 PMCID: PMC8126811 DOI: 10.1002/btm2.10191] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/03/2023] Open
Abstract
Choline geranate deep eutectic solvent/ionic liquid (CAGE) has shown several desirable therapeutic properties including antimicrobial activity and ability to deliver drugs transdermally in research laboratories. Here, we describe the first report of clinical translation of CAGE from the lab into the clinic for the treatment of rosacea, a common chronic inflammatory skin disorder that affects the face. We describe the seven steps of clinical translation including (a) scale-up, (b) characterization, (c) stability analysis, (d) mechanism of action, (e) dose determination, (f) GLP toxicity study, and (g) human clinical study. We describe the challenges and outcomes in these steps, especially those that uniquely arise from the deep eutectic nature of CAGE. Our translational efforts led to a 12-week open-label phase 1b cosmetic study with CAGE1:2 gel (CGB400) in mild-moderate facial rosacea in 26 patients where CGB400 exhibited a marked reduction in the number of inflammatory lesions. These results demonstrate the therapeutic potential of CGB400 for treating rosacea as well as it provides insights into the translational journey of deep eutectic solvents, in particular CAGE, for dermatological applications.
Collapse
Affiliation(s)
- Justin Ko
- Department of DermatologyStanford University School of MedicineRedwood CityCaliforniaUSA
| | | | - Sunil Dhawan
- Center for Dermatology Clinical Research, Inc.FremontCaliforniaUSA
| | | | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired Engineering at Harvard UniversityBostonMassachusettsUSA
| | | |
Collapse
|
4
|
Leboux RJT, Schipper P, van Capel TMM, Kong L, van der Maaden K, Kros A, Jiskoot W, de Jong EC, Bouwstra JA. Antigen Uptake After Intradermal Microinjection Depends on Antigen Nature and Formulation, but Not on Injection Depth. FRONTIERS IN ALLERGY 2021; 2:642788. [PMID: 35386985 PMCID: PMC8974696 DOI: 10.3389/falgy.2021.642788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
The skin is an attractive alternative administration route for allergy vaccination, as the skin is rich in dendritic cells (DCs) and is easily accessible. In the skin multiple subsets of DCs with distinct roles reside at different depths. In this study antigen (=allergen for allergy) formulations were injected in ex vivo human skin in a depth-controlled manner by using a hollow microneedle injection system. Biopsies were harvested at the injection site, which were then cultured for 72 h. Subsequently, the crawled-out cells were collected from the medium and analyzed with flow cytometry. Intradermal administration of ovalbumin (OVA, model antigen) solution at various depths in the skin did not affect the migration and maturation of DCs. OVA was taken up efficiently by the DCs, and this was not affected by the injection depth. In contrast, Bet v 1, the major allergen in birch pollen allergy, was barely taken up by dermal DCs (dDCs). Antigens were more efficiently taken up by CD14+ dDCs than CD1a+ dDCs, which in turn were more efficient at taken up antigen than Langerhans cells. Subsequently, both OVA and Bet v 1 were formulated in cationic and anionic liposomes, which altered antigen uptake drastically following intradermal microinjection. While OVA uptake was reduced by formulation in liposomes, Bet v 1 uptake in dDCs was increased by encapsulation in both cationic and anionic liposomes. This highlights the potential use of liposomes as adjuvant in intradermal allergy vaccine delivery. In conclusion, we observed that antigen uptake after intradermal injection was not affected by injection depth, but varied between different antigens and formulation.
Collapse
Affiliation(s)
- Romain J. T. Leboux
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Pim Schipper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Toni M. M. van Capel
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands
| | - Lily Kong
- Division of Supramolecular Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan, China
| | - Koen van der Maaden
- Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- TECO Development GmbH, Rheinbach, Germany
| | - Alexander Kros
- Division of Supramolecular Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Esther C. de Jong
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands
- Esther C. de Jong
| | - Joke A. Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
- *Correspondence: Joke A. Bouwstra
| |
Collapse
|
5
|
Ghani SMA, Roslan NZI, Muda R, Abdul-Aziz A. Encapsulation of Ficus deltoidea Extract in Nanostructured Lipid Carrier for Anti-melanogenic Activity. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00786-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Berkers T, van Dijk L, Absalah S, van Smeden J, Bouwstra JA. Topically applied fatty acids are elongated before incorporation in the stratum corneum lipid matrix in compromised skin. Exp Dermatol 2018; 26:36-43. [PMID: 27305861 DOI: 10.1111/exd.13116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 01/02/2023]
Abstract
In several skin diseases, both the lipid composition and organization in the stratum corneum (SC) are altered which contributes to the impaired skin barrier function in patients. One of the approaches for skin barrier repair is treatment with topical formulations to normalize SC lipid composition and organization. Vernix caseosa (VC), a white cheesy cream on the skin during gestational delivery, has shown to enhance skin barrier repair. In this study, we examined how a fatty acid (FA) containing formulation mimicking the lipid composition of VC interacts with the lipid matrix in the SC. The formulation was applied on ex vivo human skin after SC removal. Subsequently, the ex vivo human skin generated SC during culture. The effect of FA containing formulations on the lipid organization and composition in the regenerated SC was analysed by Fourier transform infrared (FTIR) spectroscopy and liquid chromatography mass spectroscopy (LC/MS), respectively. FTIR results demonstrate that the FAs are intercalated in the lipid matrix of the regenerated SC and partition in the same lattice with the endogenous SC lipids, thereby enhancing the fraction of lipids forming an orthorhombic (very dense) packing in the SC. LC/MS data show that the topically applied FAs are elongated before intercalation in the lipid matrix and are thus involved in the lipid biosynthesis in the skin.
Collapse
Affiliation(s)
- Tineke Berkers
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Lauri van Dijk
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Samira Absalah
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jeroen van Smeden
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Joke A Bouwstra
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
7
|
Berkers T, Visscher D, Gooris GS, Bouwstra JA. Topically Applied Ceramides Interact with the Stratum Corneum Lipid Matrix in Compromised Ex Vivo Skin. Pharm Res 2018; 35:48. [PMID: 29411158 PMCID: PMC5801391 DOI: 10.1007/s11095-017-2288-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/19/2017] [Indexed: 11/24/2022]
Abstract
PURPOSE To determine whether formulations containing ceramides (including a ceramide with a long hydroxyl acyl chain linked to a linoleate, CER EOS) and fatty acids are able to repair the skin barrier by normalizing the lipid organization in stratum corneum (SC). METHODS The formulations were applied on a skin barrier repair model consisting of ex vivo human skin from which SC was removed by stripping. The effect of formulations on the lipid organization and conformational ordering in the regenerated SC were analyzed using Fourier transform infrared spectroscopy and small angle X-ray diffraction. RESULTS Application of the formulation containing only one ceramide on regenerating SC resulted in a higher fraction of lipids adopting an orthorhombic organization. A similar fraction of lipids forming an orthorhombic organization was observed after application of a formulation containing two ceramides and a fatty acid on regenerating SC. No effects on the lamellar lipid organization were observed. CONCLUSIONS Application of a formulation containing either a single ceramide or two ceramides and a fatty acid on regenerating SC, resulted in a denser lateral lipid packing of the SC lipids in compromised skin. The strongest effect was observed after application of a formulation containing a single ceramide.
Collapse
Affiliation(s)
- Tineke Berkers
- Department of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Dani Visscher
- Department of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Gert S Gooris
- Department of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Joke A Bouwstra
- Department of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
| |
Collapse
|
8
|
Wei JCJ, Edwards GA, Martin DJ, Huang H, Crichton ML, Kendall MAF. Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: from mice, rats, rabbits, pigs to humans. Sci Rep 2017; 7:15885. [PMID: 29162871 PMCID: PMC5698453 DOI: 10.1038/s41598-017-15830-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/02/2017] [Indexed: 12/23/2022] Open
Abstract
Emerging micro-scale medical devices are showing promise, whether in delivering drugs or extracting diagnostic biomarkers from skin. In progressing these devices through animal models towards clinical products, understanding the mechanical properties and skin tissue structure with which they interact will be important. Here, through measurement and analytical modelling, we advanced knowledge of these properties for commonly used laboratory animals and humans (~30 g to ~150 kg). We hypothesised that skin's stiffness is a function of the thickness of its layers through allometric scaling, which could be estimated from knowing a species' body mass. Results suggest that skin layer thicknesses are proportional to body mass with similar composition ratios, inter- and intra-species. Experimental trends showed elastic moduli increased with body mass, except for human skin. To interpret the relationship between species, we developed a simple analytical model for the bulk elastic moduli of skin, which correlated well with experimental data. Our model suggest that layer thicknesses may be a key driver of structural stiffness, as the skin layer constituents are physically and therefore mechanically similar between species. Our findings help advance the knowledge of mammalian skin mechanical properties, providing a route towards streamlined micro-device research and development onto clinical use.
Collapse
Affiliation(s)
- Jonathan C J Wei
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia QLD, 4072, Australia
| | - Grant A Edwards
- Martin group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia QLD, 4072, Australia
| | - Darren J Martin
- Martin group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia QLD, 4072, Australia
| | - Han Huang
- Nanomechanics and Nanomanufacturing Group, School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia QLD, 4072, Australia
| | - Michael L Crichton
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia QLD, 4072, Australia.
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| | - Mark A F Kendall
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia QLD, 4072, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia QLD, 4072, Australia.
- Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital, Herston QLD, 4006, Australia.
| |
Collapse
|
9
|
Poirier D, Renaud F, Dewar V, Strodiot L, Wauters F, Janimak J, Shimada T, Nomura T, Kabata K, Kuruma K, Kusano T, Sakai M, Nagasaki H, Oyamada T. Hepatitis B surface antigen incorporated in dissolvable microneedle array patch is antigenic and thermostable. Biomaterials 2017; 145:256-265. [PMID: 28915391 DOI: 10.1016/j.biomaterials.2017.08.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/16/2017] [Accepted: 08/25/2017] [Indexed: 01/16/2023]
Abstract
Alternatives to syringe-based administration are considered for vaccines. Intradermal vaccination with dissolvable microneedle arrays (MNA) appears promising in this respect, as an easy-to-use and painless method. In this work, we have developed an MNA patch (MNAP) made of hydroxyethyl starch (HES) and chondroitin sulphate (CS). In swines, hepatitis B surface antigen (HBsAg) formulated with the saponin QS-21 as adjuvant, both incorporated in HES-based MNAP, demonstrated the same level of immunogenicity as a commercially available aluminum-adjuvanted HBsAg vaccine, after two immunizations 28 days apart. MNAP application was associated with transient skin reactions (erythema, lump, scab), particularly evident when the antigen was delivered with the adjuvant. The thermostability of the adjuvanted antigen when incorporated in the HES-based matrix was also assessed by storing MNAP at 37, 45 or 50 °C for up to 6 months. We could demonstrate that antigenicity was retained at 37 and 45 °C and only a 10% loss was observed after 6 months at 50 °C. Our results are supportive of MNAP as an attractive alternative to classical syringe-based vaccination.
Collapse
|
10
|
Kalhapure RS, Sikwal DR, Rambharose S, Mocktar C, Singh S, Bester L, Oh JK, Renukuntla J, Govender T. Enhancing targeted antibiotic therapy via pH responsive solid lipid nanoparticles from an acid cleavable lipid. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2067-2077. [DOI: 10.1016/j.nano.2017.04.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/01/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023]
|
11
|
|
12
|
A cell culture-derived whole virus influenza A vaccine based on magnetic sulfated cellulose particles confers protection in mice against lethal influenza A virus infection. Vaccine 2016; 34:6367-6374. [DOI: 10.1016/j.vaccine.2016.10.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/15/2016] [Accepted: 10/17/2016] [Indexed: 12/28/2022]
|
13
|
Hervé PL, Descamps D, Deloizy C, Dhelft V, Laubreton D, Bouguyon E, Boukadiri A, Dubuquoy C, Larcher T, Benhamou PH, Eléouët JF, Bertho N, Mondoulet L, Riffault S. Non-invasive epicutaneous vaccine against Respiratory Syncytial Virus: Preclinical proof of concept. J Control Release 2016; 243:146-159. [DOI: 10.1016/j.jconrel.2016.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 11/29/2022]
|
14
|
Vaccines against pseudorabies virus (PrV). Vet Microbiol 2016; 206:3-9. [PMID: 27890448 DOI: 10.1016/j.vetmic.2016.11.019] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 12/26/2022]
Abstract
Aujeszkýs disease (AD, pseudorabies) is a notifiable herpesvirus infection of pigs causing substantial economic losses to swine producers. AD in pigs is controlled by the use of vaccination with inactivated and attenuated live vaccines. Starting with classically attenuated live vaccines derived from low virulent field isolates, AD vaccination has pioneered novel strategies in animal disease control by the first use of genetically engineered live virus vaccines lacking virulence-determining genes, and the concept of DIVA, i.e. the serological differentiation of vaccinated from field-virus infected animals by the use of marker vaccines and respective companion diagnostic tests. The basis for this concept has been the molecular characterization of PrV and the identification of so-called nonessential envelope glycoproteins, e.g. glycoprotein E, which could be eliminated from the virus without harming viral replication or immunogenicity. Eradication of AD using the strategy of vaccination-DIVA testing has successfully been performed in several countries including Germany and the United States. Furthermore, by targeted genetic modification PrV has been developed into a powerful vector system for expression of foreign genes to vaccinate against several infectious diseases of swine, while heterologous vector systems have been used for expression of major immunogens of PrV. This small concise review summarizes the state-of-the-art information on PrV vaccines and provides an outlook for the future.
Collapse
|
15
|
Schipper P, van der Maaden K, Romeijn S, Oomens C, Kersten G, Jiskoot W, Bouwstra J. Determination of Depth-Dependent Intradermal Immunogenicity of Adjuvanted Inactivated Polio Vaccine Delivered by Microinjections via Hollow Microneedles. Pharm Res 2016; 33:2269-79. [PMID: 27317570 DOI: 10.1007/s11095-016-1965-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/27/2016] [Indexed: 01/30/2023]
Abstract
PURPOSE The aim of this study was to investigate the depth-dependent intradermal immunogenicity of inactivated polio vaccine (IPV) delivered by depth-controlled microinjections via hollow microneedles (HMN) and to investigate antibody response enhancing effects of IPV immunization adjuvanted with CpG oligodeoxynucleotide 1826 (CpG) or cholera toxin (CT). METHODS A novel applicator for HMN was designed to permit depth- and volume-controlled microinjections. The applicator was used to immunize rats intradermally with monovalent IPV serotype 1 (IPV1) at injection depths ranging from 50 to 550 μm, or at 400 μm for CpG and CT adjuvanted immunization, which were compared to intramuscular immunization. RESULTS The applicator allowed accurate microinjections into rat skin at predetermined injection depths (50-900 μm), -volumes (1-100 μL) and -rates (up to 60 μL/min) with minimal volume loss (±1-2%). HMN-mediated intradermal immunization resulted in similar IgG and virus-neutralizing antibody titers as conventional intramuscular immunization. No differences in IgG titers were observed as function of injection depth, however IgG titers were significantly increased in the CpG and CT adjuvanted groups (7-fold). CONCLUSION Intradermal immunogenicity of IPV1 was not affected by injection depth. CpG and CT were potent adjuvants for both intradermal and intramuscular immunization, allowing effective vaccination upon a minimally-invasive single intradermal microinjection by HMN.
Collapse
Affiliation(s)
- Pim Schipper
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Koen van der Maaden
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Stefan Romeijn
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Cees Oomens
- Soft Tissue Biomechanics and Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gideon Kersten
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Joke Bouwstra
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
16
|
Renukaradhya GJ, Narasimhan B, Mallapragada SK. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation. J Control Release 2015; 219:622-631. [PMID: 26410807 PMCID: PMC4760633 DOI: 10.1016/j.jconrel.2015.09.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/14/2022]
Abstract
Vaccine development has had a huge impact on human health. However, there is a significant need to develop efficacious vaccines for several existing as well as emerging respiratory infectious diseases. Several challenges need to be overcome to develop efficacious vaccines with translational potential. This review focuses on two aspects to overcome some barriers - 1) the development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as well as those based on virus-like particles offer several key advantages to help overcome the barriers to effective vaccine development. These include the ability to deliver combinations of antigens, target the vaccine formulation to specific immune cells, enable cross-protection against divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, enable single dose delivery, and potentially obviate the cold chain. While mouse models have provided several important insights into the mechanisms of infectious diseases, they are often a limiting step in translation of new vaccines to the clinic. An overview of different animal models involved in vaccine research for respiratory infections, with advantages and disadvantages of each model, is discussed. Taken together, advances in nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine development for respiratory infections.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|