1
|
Kuchler L, Azimi A, Damiri H, Martinuzzi S, Steinberger M, Rehrl J, Poms J, Kureck M, Kirschneck D, Horn M, Khinast J, Sacher S. A universal digital control concept for end-to-end manufacturing. Int J Pharm 2025; 676:125599. [PMID: 40239876 DOI: 10.1016/j.ijpharm.2025.125599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
With the implementation of advanced manufacturing concepts (e.g., continuous operation, integration of different process routes and modular manufacturing), control of the process and the related product quality becomes more complex. Unlike traditional in-process controls and end-product testing, modern high-speed manufacturing does not allow for delays due to measurements between unit operations and requires real-time information about the material state and associated control actions. This study presents a universally applicable control concept, which offers the highest level of control together with flexibility for processing, equipment and automation. The concept can deal with a combination of batch and continuously operated process steps, manual and automated operation, different scales of equipment, and digital and manual data acquisition. It was demonstrated using a compact end-to-end manufacturing line for tablets, which included the active pharmaceutical ingredient (API) synthesis, crystallization, filtration and washing, as well as the formulation part. A suspension of API was directly fed into hot melt extrusion (HME), which was combined with direct compaction (DC). The control strategy was based on data not only from classical process analytical technology (PAT) sensors, but also from the equipment and soft sensors (e.g., the content was monitored and controlled using the soft sensors and the feeder data). The process and quality information were fed into a digital twin of the entire process, which executed the model-based control strategy.
Collapse
Affiliation(s)
- L Kuchler
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - A Azimi
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; Institute of Automation and Control, Graz University of Technology, Inffeldgasse 21B, 8010 Graz, Austria
| | - H Damiri
- Institute of Automation and Control, Graz University of Technology, Inffeldgasse 21B, 8010 Graz, Austria
| | - S Martinuzzi
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - M Steinberger
- Institute of Automation and Control, Graz University of Technology, Inffeldgasse 21B, 8010 Graz, Austria
| | - J Rehrl
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - J Poms
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - M Kureck
- Evon GmbH, Wollsdorf 154, 8181 St. Ruprecht an der Raab, Austria
| | - D Kirschneck
- Microinnova Engineering GmbH, Europapark, 8412 Allerheiligen bei Wildon, Austria
| | - M Horn
- Institute of Automation and Control, Graz University of Technology, Inffeldgasse 21B, 8010 Graz, Austria
| | - J Khinast
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/3, 8010 Graz, Austria
| | - S Sacher
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.
| |
Collapse
|
2
|
Schneider P, Maus M, Paul S, Wagner KG. Powder dosing within continuous manufacturing: A lean approach for gravimetric dosing configuration and equipment selection. Int J Pharm 2024; 667:124903. [PMID: 39522835 DOI: 10.1016/j.ijpharm.2024.124903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
This work presents a novel approach to select gravimetric dosing configurations for continuous unit operations in pharmaceutical processing. It optimizes material, time, and personnel use, and allows selections for configurations of materials not included in the model by robust material attribute-based interpolation. The approach does not apply Principal Component Analysis (PCA) and Partial Least Squares (PLS). Instead, a reduced set of material attributes that require measurement was determined from existing material attribute libraries found in literature. Only those identified 17 attributes were measured for 13 materials and employed in this study. The established model proved to be predictive for an even further reduced attribute set of 12 attributes. The model introduces a simplified method for selecting feeding equipment combining precision metrics (relative mean intra-bin variability) and model parameters (fmax, fmin, β). The reduction of Material Attributes (MAs) in this short-cut method enables fast evaluation and enhances resource efficiency by incorporating only a few selected MAs into the model and therefore introduces a different line of thinking. It was also possible to compare feeding of different hopper geometries, showing that flat bottom-hoppers have higher dosing precision than round bottom-hoppers. In conclusion, this work introduces a smart and innovative model that simplifies the equipment selection process and brings objectivity through a comprehensive numerical description of the discharge characteristics, and provides new options for continuous dosing in pharma through combining precision and curve fitting parameters.
Collapse
Affiliation(s)
- Petra Schneider
- Pharmaceutical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach, Germany; Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany
| | - Martin Maus
- Pharmaceutical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach, Germany
| | - Shubhajit Paul
- Material and Analytical Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 900 Ridgebury Rd, Ridgefield, CT 06877, United States
| | - Karl G Wagner
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany.
| |
Collapse
|
3
|
Janssen PHM, Fathollahi S, Dickhoff BHJ, Frijlink HW. Critical review on the role of excipient properties in pharmaceutical powder-to-tablet continuous manufacturing. Expert Opin Drug Deliv 2024; 21:1069-1079. [PMID: 39129595 DOI: 10.1080/17425247.2024.2384698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION The pharmaceutical industry is gradually changing batch-wise manufacturing processes to continuous manufacturing processes, due to the advantages it has to offer. The final product quality and process efficiency of continuous manufacturing processes is among others impacted by the properties of the raw materials. Existing knowledge on the role of raw material properties in batch processing is however not directly transferable to continuous processes, due to the inherent differences between batch and continuous processes. AREAS COVERED A review is performed to evaluate the role of excipient properties for different unit operations used in continuous manufacturing processes. Unit operations that will be discussed include feeding, blending, granulation, final blending, and compression. EXPERT OPINION Although the potency of continuous manufacturing is widely recognized, full utilization still requires a number of challenges to be addressed effectively. An expert opinion will be provided that discusses those challenges and potential solutions to overcome those challenges. The provided overview can serve as a framework for the pharmaceutical industry to push ahead process optimization and formulation development for continuous manufacturing processes.
Collapse
Affiliation(s)
- Pauline H M Janssen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
- Innovation & Technical Solutions, DFE Pharma, Goch, Germany
| | | | | | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Lyytikäinen J, Stasiak P, Kubelka T, Bogaerts I, Wanek A, Stynen B, Holman J, Ketolainen J, Ervasti T, Korhonen O. Continuous direct compression of a commercially batch-manufactured tablet formulation with two different processing lines. Eur J Pharm Biopharm 2024; 199:114278. [PMID: 38583787 DOI: 10.1016/j.ejpb.2024.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The transfer from batch-based to continuous tablet manufacturing increases the quality and efficiency of processes. Nonetheless, as in the development of a batch process, the continuous process design requires optimization studies to ensure a robust process. In this study, processing of a commercially batch-manufactured tablet product was tested with two continuous direct compression lines while keeping the original formulation composition and tablet quality requirements. Tableting runs were conducted with different values of process parameters. Changes in parameter settings were found to cause differences in tablet properties. Most of these quality properties could be controlled and maintained within the set limits effortlessly already at this stage of studies. However, the API content and content uniformity seemed to require more investigation. The observed content uniformity challenges were traced to individual tablets with a high amount of API. This was suspected to be caused by API micro-agglomerates since tablet weight variability did not explain the issue. This could be solved by adding a mill between two blenders in the process line. Overall, this case study produced promising results with both tested manufacturing lines since many tablet properties complied with the test result limits without optimization of process parameter settings.
Collapse
Affiliation(s)
- Jenna Lyytikäinen
- School of Pharmacy, PromisLab, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | - Adam Wanek
- Zentiva, Prague, Czech Republic; UCT Prague, Prague, Czech Republic.
| | - Bart Stynen
- GEA Process Engineering, Wommelgem, Belgium.
| | | | - Jarkko Ketolainen
- School of Pharmacy, PromisLab, University of Eastern Finland, Kuopio, Finland.
| | - Tuomas Ervasti
- School of Pharmacy, PromisLab, University of Eastern Finland, Kuopio, Finland.
| | - Ossi Korhonen
- School of Pharmacy, PromisLab, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
5
|
Bekaert B, Janssen P, Fathollahi S, Vanderroost D, Roelofs T, Dickhoff B, Vervaet C, Vanhoorne V. Batch vs. continuous direct compression - a comparison of material processability and final tablet quality. Int J Pharm X 2024; 7:100226. [PMID: 38235316 PMCID: PMC10792456 DOI: 10.1016/j.ijpx.2023.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, an in-depth comparison was made between batch and continuous direct compression using similar compression set-ups. The overall material processability and final tablet quality were compared and evaluated. Correlations between material properties, process parameters and final tablet properties were made via multivariate data analyses. In total, 10 low-dosed (1% w/w) and 10 high-dosed (40% w/w) formulations were processed, using a total of 10 different fillers/filler combinations. The trials indicated that the impact of filler type, drug load or process settings was similar for batch and continuous direct compression. The main differentiator between batch and continuous was the flow dynamics in the operating system, where properties related to flow, compressibility and permeability played a crucial role. The less consistent flow throughout a batch process resulted in a significantly higher variability within the tablet press (σCF) and for the tablet quality responses (σMass, σTS). However, the better controlled blending procedure prior to batch processing was reflected in a more consistent API concentration variability. Overall, the comparison showed the benefits of selecting appropriate excipients and process settings to achieve a specific outcome, keeping in mind some key differentiators between both processes.
Collapse
Affiliation(s)
- B. Bekaert
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - P.H.M. Janssen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
- DFE Pharma, Klever Strasse 187, 47568 Goch, Germany
| | | | - D. Vanderroost
- GEA Process Engineering, Keerbaan 70, B-2160 Wommelgem, Belgium
| | - T. Roelofs
- DFE Pharma, Klever Strasse 187, 47568 Goch, Germany
| | | | - C. Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - V. Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
6
|
Leane M, Pitt K, Reynolds G, Tantuccio A, Moreton C, Crean A, Kleinebudde P, Carlin B, Gamble J, Gamlen M, Stone E, Kuentz M, Gururajan B, Khimyak YZ, Van Snick B, Andersen S, Misic Z, Peter S, Sheehan S. Ten years of the manufacturing classification system: a review of literature applications and an extension of the framework to continuous manufacture. Pharm Dev Technol 2024; 29:395-414. [PMID: 38618690 DOI: 10.1080/10837450.2024.2342953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The MCS initiative was first introduced in 2013. Since then, two MCS papers have been published: the first proposing a structured approach to consider the impact of drug substance physical properties on manufacturability and the second outlining real world examples of MCS principles. By 2023, both publications had been extensively cited by over 240 publications. This article firstly reviews this citing work and considers how the MCS concepts have been received and are being applied. Secondly, we will extend the MCS framework to continuous manufacture. The review structure follows the flow of drug product development focussing first on optimisation of API properties. The exploitation of links between API particle properties and manufacturability using large datasets seems particularly promising. Subsequently, applications of the MCS for formulation design include a detailed look at the impact of percolation threshold, the role of excipients and how other classification systems can be of assistance. The final review section focusses on manufacturing process development, covering the impact of strain rate sensitivity and modelling applications. The second part of the paper focuses on continuous processing proposing a parallel MCS framework alongside the existing batch manufacturing guidance. Specifically, we propose that continuous direct compression can accommodate a wider range of API properties compared to its batch equivalent.
Collapse
Affiliation(s)
- Michael Leane
- Drug Product Development, Bristol Myers Squibb, Moreton, UK
| | - Kendal Pitt
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Gavin Reynolds
- Oral Product Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Anthony Tantuccio
- Technology Intensification, Hovione LLC, East Windsor, New Jersey, USA
| | | | - Abina Crean
- SSPC, the SFI Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Peter Kleinebudde
- Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Brian Carlin
- Owner, Carlin Pharma Consulting, Lawrenceville, New Jersey, USA
| | - John Gamble
- Drug Product Development, Bristol Myers Squibb, Moreton, UK
| | - Michael Gamlen
- Chief Scientific Officer, Gamlen Tableting Ltd, Heanor, UK
| | - Elaine Stone
- Consultant, Stonepharma Ltd. ATIC, Loughborough, UK
| | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Muttenz, Switzerland
| | - Bindhu Gururajan
- Pharmaceutical Development, Novartis Pharma AG, Basel, Switzerland
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Bernd Van Snick
- Oral Solids Development, Drug Product Development, JnJ Innovative Medicine, Beerse, Belgium
| | - Sune Andersen
- Oral Solids Development, Drug Product Development, JnJ Innovative Medicine, Beerse, Belgium
| | - Zdravka Misic
- Innovation Research and Development, dsm-firmenich, Kaiseraugst, Switzerland
| | - Stefanie Peter
- Research and Development Division, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Stephen Sheehan
- External Development and Manufacturing, Alkermes Pharma Ireland Limited, Dublin 4, Ireland
| |
Collapse
|
7
|
Celikovic S, Poms J, Khinast J, Horn M, Rehrl J. Development and Application of Control Concepts for Twin-Screw Wet Granulation in the ConsiGma TM-25: Part 1 Granule Composition. Int J Pharm 2024; 657:124124. [PMID: 38636678 DOI: 10.1016/j.ijpharm.2024.124124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Continuous manufacturing of pharmaceuticals offers several benefits, such as increased production efficiency, enhanced product quality control, and lower environmental footprint. To fully exploit these benefits, standard operation mode (production processes with no or minimal disturbance mitigation measures) should be supported by adopting novel quality-by-control (QbC) methodologies. The paper at hand is the first part of a study focused on developing QbC algorithms for optimizing twin-screw wet granulation in the industrial manufacturing line ConsiGmaTM-25, specifically addressing granule composition. This work relies on previously established process-analytical-technology (PAT) equipment for real-time monitoring of the granule composition, i.e., the active pharmaceutical ingredient (API) and liquid content in wet granules. The developed control platform integrates model-based process control algorithms that aim to keep the API- and liquid content at target values through real-time adjustments of the process parameters. Furthermore, the platform integrates a digital operator assistant, which aims to detect and classify granulation disturbances and provides messages and instructions for the plant operator. The present manuscript systematically outlines all design steps from the development phase in the simulation environment to the final real system application and validation. The control platform's performance is demonstrated through selected test scenarios on the ConsiGmaTM-25 manufacturing line. The obtained results indicate improved disturbance robustness and an increase in intermediate/final product quality (compared to conventional operating modes): The process control algorithms successfully maintained the API- and liquid content at target values despite process disturbances. Furthermore, realistic disturbances (feeder, pump, and material) were accurately detected and classified by the digital assistant algorithm. The information was provided through a user interface, offering real-time support for plant personnel.
Collapse
Affiliation(s)
- Selma Celikovic
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria; Institute of Automation and Control, Graz University of Technology, Inffeldgasse 21b, 8010 Graz, Austria
| | - Johannes Poms
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria
| | - Johannes Khinast
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/3, 8010 Graz, Austria
| | - Martin Horn
- Institute of Automation and Control, Graz University of Technology, Inffeldgasse 21b, 8010 Graz, Austria
| | - Jakob Rehrl
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria.
| |
Collapse
|
8
|
Liu J, Benyahia B. Single and Multiobjective Shutdown Optimization of a Multistage Continuous Crystallizer. Ind Eng Chem Res 2024; 63:7300-7314. [PMID: 38681867 PMCID: PMC11046430 DOI: 10.1021/acs.iecr.3c03441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
This study presents the first model-based optimal shutdown procedure of a multistage continuous crystallization process which aims at the maximization of on-spec production and minimization of the shutdown time. The cooling antisolvent crystallization of Aspirin (acetylsalicylic acid) in a three-stage continuous crystallizer was used as a case study. To address the optimal shutdown problem, several single optimization scenarios were considered to assess the impact of the degrees of freedom, discretization schemes, and optimization settings such as the constraints. The proposed optimal shutdown procedures showed that significant amounts of on-spec crystals can be produced both at fixed and variable shutdown times. Most importantly, the optimal shutdown procedures can match the steady-state productivity, based on the shutdown to steady-state productivity ratio (STSPR) which can easily reach 100%. Moreover, the residual shutdown material, considered as waste, can be dramatically reduced by >80% compared to the current standard shutdown procedures. Given the conflicting nature of the maximization of on-spec production and minimization of the shutdown time, multiobjective optimization of the shutdown operation was also addressed to identify the set of Pareto optimal solutions. Finally, a multicriteria decision-aiding method, based on multiattribute utility theory, was proposed to rank the Pareto optimal solutions to support the decision-making and help identify a suitable and feasible single optimal shutdown solution.
Collapse
Affiliation(s)
- Jiaxu Liu
- Chemical Engineering Department, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, U.K.
| | - Brahim Benyahia
- Chemical Engineering Department, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, U.K.
| |
Collapse
|
9
|
Kunnath KT, Tripathi S, Kim SS, Chen L, Zheng K, Davé RN. Selection of Silica Type and Amount for Flowability Enhancements via Dry Coating: Contact Mechanics Based Predictive Approach. Pharm Res 2023; 40:2917-2933. [PMID: 37468827 DOI: 10.1007/s11095-023-03561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
PURPOSE To investigate the effect of dry coating the amount and type of silica on powder flowability enhancement using a comprehensive set of 19 pharmaceutical powders having different sizes, surface roughness, morphology, and aspect ratios, as well as assess flow predictability via Bond number estimated using a mechanistic multi-asperity particle contact model. METHOD Particle size, shape, density, surface energy and area, SEM-based morphology, and FFC were assessed for all powders. Hydrophobic (R972P) or hydrophilic (A200) nano-silica were dry coated for each powder at 25%, 50%, and 100% surface area coverage (SAC). Flow predictability was assessed via particle size and Bond number. RESULTS Nearly maximal flow enhancement, one or more flow category, was observed for all powders at 50% SAC of either type of silica, equivalent to 1 wt% or less for both the hydrophobic R972P or hydrophilic A200, while R972P generally performed slightly better. Silica amount as SAC better helped understand the relative performance. The power-law relation between FFC and Bond number was observed. CONCLUSION Significant flow enhancements were achieved at 50% SAC, validating previous models. Most uncoated very cohesive powders improved by two flow categories, attaining easy flow. Flowability could not be predicted for both the uncoated and dry coated powders via particle size alone. Prediction was significantly better using Bond number computed via the mechanistic multi-asperity particle contact model accounting for the particle size, surface energy, roughness, and the amount and type of silica. The widely accepted 200 nm surface roughness was not valid for most pharmaceutical powders.
Collapse
Affiliation(s)
- Kuriakose T Kunnath
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Siddharth Tripathi
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Sangah S Kim
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Liang Chen
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kai Zheng
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
10
|
Lyytikäinen J, Kyllönen S, Ervasti T, Komulainen E, Pekarek T, Slunečková J, Leskinen J, Ketolainen J, Kubelka T, Stasiak P, Korhonen O. Challenges encountered in the transfer of atorvastatin tablet manufacturing - commercial batch-based production as a basis for small-scale continuous tablet manufacturing tests. Int J Pharm 2023; 647:123509. [PMID: 37832703 DOI: 10.1016/j.ijpharm.2023.123509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
As is the case with batch-based tableting processes, continuous tablet manufacturing can be conducted by direct compression or with a granulation step such as dry or wet granulation included in the production procedure. In this work, continuous manufacturing tests were performed with a commercial tablet formulation, while maintaining its original material composition. Challenges were encountered with the feeding performance of the API during initial tests which required designing different powder pre-blend compositions. After the pre-blend optimization phase, granules were prepared with a roller compactor. Tableting was conducted with the granules and an additional brief continuous direct compression run was completed with some ungranulated mixture. The tablets were assessed with off-line tests, applying the quality requirements demanded for the batch-manufactured product. Chemical maps were obtained by Raman mapping and elemental maps by scanning electron microscopy with energy-dispersive X-ray spectroscopy. Large variations in both tablet weights and breaking forces were observed in all tested samples, resulting in significant quality complications. It was suspected that the API tended to adhere to the process equipment, accounting for the low API content in the powder mixture and tablets. These results suggest that this API or the tablet composition was unsuitable for manufacturing in a continuous line; further testing could be continued with different materials and changes in the process.
Collapse
Affiliation(s)
- Jenna Lyytikäinen
- School of Pharmacy, PromisLab, University of Eastern Finland, Kuopio, Finland.
| | - Saini Kyllönen
- School of Pharmacy, PromisLab, University of Eastern Finland, Kuopio, Finland.
| | - Tuomas Ervasti
- School of Pharmacy, PromisLab, University of Eastern Finland, Kuopio, Finland.
| | - Eelis Komulainen
- School of Pharmacy, PromisLab, University of Eastern Finland, Kuopio, Finland.
| | | | | | - Jari Leskinen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| | - Jarkko Ketolainen
- School of Pharmacy, PromisLab, University of Eastern Finland, Kuopio, Finland.
| | | | | | - Ossi Korhonen
- School of Pharmacy, PromisLab, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
11
|
Jones-Salkey O, Chu Z, Ingram A, Windows-Yule CRK. Reviewing the Impact of Powder Cohesion on Continuous Direct Compression (CDC) Performance. Pharmaceutics 2023; 15:1587. [PMID: 37376036 DOI: 10.3390/pharmaceutics15061587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023] Open
Abstract
The pharmaceutical industry is undergoing a paradigm shift towards continuous processing from batch, where continuous direct compression (CDC) is considered to offer the most straightforward implementation amongst powder processes due to the relatively low number of unit operations or handling steps. Due to the nature of continuous processing, the bulk properties of the formulation will require sufficient flowability and tabletability in order to be processed and transported effectively to and from each unit operation. Powder cohesion presents one of the greatest obstacles to the CDC process as it inhibits powder flow. As a result, there have been many studies investigating potential manners in which to overcome the effects of cohesion with, to date, little consideration of how these controls may affect downstream unit operations. The aim of this literature review is to explore and consolidate this literature, considering the impact of powder cohesion and cohesion control measures on the three-unit operations of the CDC process (feeding, mixing, and tabletting). This review will also cover the consequences of implementing such control measures whilst highlighting subject matter which could be of value for future research to better understand how to manage cohesive powders for CDC manufacture.
Collapse
Affiliation(s)
- Owen Jones-Salkey
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, UK
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Zoe Chu
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, UK
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew Ingram
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
12
|
Gamble JF, Akseli I, Ferreira AP, Leane M, Thomas S, Tobyn M, Wadams RC. Morphological distribution mapping: Utilisation of modelling to integrate particle size and shape distributions. Int J Pharm 2023; 635:122743. [PMID: 36804520 DOI: 10.1016/j.ijpharm.2023.122743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
The aim of this work was to develop approaches to utilize whole particle distributions for both particle size and particle shape parameters to map the full range of particle properties in a curated dataset. It is hoped that such an approach may enable a more complete understanding of the particle landscape as a step towards improving the link between particle properties and processing behaviour. A 1-dimensional principal component analysis (PCA) approach was applied to create a 'morphological distribution landscape'. A dataset of imaged APIs, intermediates and excipients encompassing particle size, particle shape (elongation, length and width) and distribution shape was curated between 2008 and 2022. The curated dataset encompassed over 200 different materials, which included over 150 different APIs, and approximately 3500 unique samples. For the purposes of the current work, only API samples were included. The morphological landscape enables differentiation of materials of equivalent size but varying shape and vice versa. It is hoped that this type of approach can be utilised to better understand the influence of particle properties on pharmaceutical processing behaviour and thereby enable scientists to leverage historical knowledge to highlight and mitigate risks associated to materials of similar morphological nature.
Collapse
Affiliation(s)
- John F Gamble
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral CH46 1QW, UK.
| | | | - Ana P Ferreira
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral CH46 1QW, UK
| | - Michael Leane
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral CH46 1QW, UK
| | | | - Mike Tobyn
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral CH46 1QW, UK
| | | |
Collapse
|
13
|
Bekaert B, Van Snick B, Pandelaere K, Dhondt J, Di Pretoro G, De Beer T, Vervaet C, Vanhoorne V. Continuous direct compression: Development of an empirical predictive model and challenges regarding PAT implementation. Int J Pharm X 2022; 4:100110. [PMID: 35024605 PMCID: PMC8732775 DOI: 10.1016/j.ijpx.2021.100110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, an empirical predictive model was developed based on the quantitative relationships between blend properties, critical quality attributes (CQA) and critical process parameters (CPP) related to blending and tableting. The blend uniformity and API concentration in the tablets were used to elucidate challenges related to the processability as well as the implementation of PAT tools. Thirty divergent ternary blends were evaluated on a continuous direct compression line (ConsiGma™ CDC-50). The trials showed a significant impact of the impeller configuration and impeller speed on the blending performance, whereas a limited impact of blend properties was observed. In contrast, blend properties played a significant role during compression, where changes in blend composition significantly altered the tablet quality. The observed correlations allowed to develop an empirical predictive model for the selection of process configurations based on the blend properties, reducing the number of trial runs needed to optimize a process and thus reducing development time and costs of new drug products. Furthermore, the trials elucidated several challenges related to blend properties that had a significant impact on PAT implementation and performance of the CDC-platform, highlighting the importance of further process development and optimization in order to solve the remaining challenges.
Collapse
Key Words
- #BP, Number of blade passes
- #RMB1, Number of radial mixing blades of the main blender
- API, Active pharmaceutical ingredient
- API_sd, Spray dried API
- BRT, Bulk residence time
- BU, Blend uniformity
- CDC, Continuous direct compression
- CDC-50
- CU, Content uniformity
- C_P, Caffeine anhydrous powder
- Continuous direct compression
- Continuous manufacturing
- DCP, Dicalcium phosphate / Emcompress AN
- FD, Fill depth
- HM1/HM2, Hold-up mass main blender/Hold-up mass lubricant blender
- Imp1, Impeller speed main blender
- LC, Percentage label claim
- MCF, Main compression force
- MCH, Main compression height
- MPT_μ, Metoprolol micronized
- MgSt, Magnesium stearate/Ligamed MF-2-V
- Multivariate data-analysis
- NIR, Near infrared
- PAT
- PAT, Process Analytical Technology
- PC, Principle component
- PCA, Principle component analysis
- PCD, Pre-compression displacement
- PCF, Pre-compression force
- PCH, Pre-compression height
- PH101, Microcrystalline cellulose / Avicel PH-101
- PH200, Microcrystalline cellulose / Avicel PH-200
- PLS, Partial least squares
- P_DP, Paracetamol dense powder
- P_P, Paracetamol powder
- P_μ, Paracetamol micronized
- Predictive modeling
- Q2, Goodness of prediction
- R2Y, Goodness of fit
- RMSEcv, Root mean squared error of cross validation
- RSDTW, Relative standard deviation of tablet weight
- SD100, Mannitol / Pearlitol 100 SD
- T80, Lactose / Tablettose 80
- T_P, Theophylline anhydrous powder
- rpm, Revolutions per minute
- σForce, Main compression force variability
- σPCD, Variability in pre-compression displacement
Collapse
Affiliation(s)
- B. Bekaert
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - B. Van Snick
- Oral Solid Dosage, Drug Product Development, Discovery Product Development and Supplies, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - K. Pandelaere
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - J. Dhondt
- Oral Solid Dosage, Drug Product Development, Discovery Product Development and Supplies, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - G. Di Pretoro
- Oral Solid Dosage, Drug Product Development, Discovery Product Development and Supplies, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - T. De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - C. Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - V. Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
14
|
Parameter optimization in a continuous direct compression process of commercially batch-produced bisoprolol tablets. Int J Pharm 2022; 628:122355. [DOI: 10.1016/j.ijpharm.2022.122355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
15
|
Klinken S, Quodbach J. Sums of amplitudes analysis – A new non-parametric classification method for time series deviation evaluation in pharmaceutical processes. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Effect of batch-to-batch variation of spray dried lactose on the performance of feeders. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Barimani S, Šibanc R, Tomaževič D, Meier R, Kleinebudde P. 100% visual inspection of tablets produced with continuous direct compression and coating. Int J Pharm 2022; 614:121465. [PMID: 35026312 DOI: 10.1016/j.ijpharm.2022.121465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/28/2022]
Abstract
Visual appearance of tablets is an important property for patients. Since the visual appearance is most strongly influenced by the applied coating, this necessitates a high level of process control and homogeneity in the coating process. In recent years, a number of tablet coaters have been developed that can be used in combination with continuous tablet production lines. In this study, 180 kg of tablets were produced using a continuous direct compaction line with a throughput of 25 kg/h. Tablets were consequently subdivided into 12 lots and coated in a semi-batch drum coater directly after compression. For a detailed understanding of intra-lot and lot-to-lot variability, a 100% visual inspection of the tablets was performed using an automatic tablet inspection and sorting machine. All tablets were analyzed from all 6 sides and the unsuitable tablets were sorted out. In the worst lot, only 1 out of around 300 tablets was sorted out due to color mismatch. For some tablets, edge chipping was also observed, which would presumably not be detected during routine sampling. Root causes for the defects could be found in the intentionally chosen set of old punches and in the operation parameters of the coater. Nonetheless, the lot-to-lot variability according to all criteria was very low.
Collapse
Affiliation(s)
- Shirin Barimani
- Heinrich-Heine-Universitaet Duesseldorf, Institute of Pharmaceutics and Biopharmaceutics, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Rok Šibanc
- Heinrich-Heine-Universitaet Duesseldorf, Institute of Pharmaceutics and Biopharmaceutics, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Dejan Tomaževič
- Sensum, Computer Vision Systems, Tehnološki Park 21, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Imaging Technologies, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Robin Meier
- L.B. Bohle Maschinen und Verfahren GmbH, Industriestraße 18, 59320 Ennigerloh, Germany
| | - Peter Kleinebudde
- Heinrich-Heine-Universitaet Duesseldorf, Institute of Pharmaceutics and Biopharmaceutics, Universitaetsstraße 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
18
|
Bekaert B, Van Snick B, Pandelaere K, Dhondt J, Di Pretoro G, De Beer T, Vervaet C, Vanhoorne V. In-depth analysis of the long-term processability of materials during continuous feeding. Int J Pharm 2022; 614:121454. [PMID: 35026314 DOI: 10.1016/j.ijpharm.2022.121454] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
This study determined the feasibility of long-term continuous powder feeding and its effect on the overall process performance. Additionally, quantitative relationships were established between material properties, process settings and screw feeding responses during gravimetric feeding. Twelve divergent raw materials were processed over longer periods using a GEA Compact Feeder integrated in a continuous direct compression line (ConsiGma™ CDC-50). The resulting gravimetric feeding responses were combined with the material properties and process settings into an overall PLS model. The model elucidated the impact of the material descriptors for density; powder flow; particle size; compressibility; permeability and wall friction angle on the feeding process. Furthermore, long-term processing of the materials exhibited challenges related to the processability and refill consistency where a significant impact of the compressibility and cohesive/adhesive properties of the materials was observed. Overall, this approach provided insights into the feasibility of long-term continuous feeding which is not possible through 'short-term' feeding trials. Additionally, throughout this study, the need for material-specific adjustments of the feeding and refill equipment was highlighted.
Collapse
Affiliation(s)
- B Bekaert
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - B Van Snick
- Oral Solid Dosage, Drug Product Development, Discovery Product Development and Supplies, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - K Pandelaere
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - J Dhondt
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - G Di Pretoro
- Oral Solid Dosage, Drug Product Development, Discovery Product Development and Supplies, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - T De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - C Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - V Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
19
|
Impact of blend properties and process variables on the blending performance. Int J Pharm 2021; 613:121421. [PMID: 34954006 DOI: 10.1016/j.ijpharm.2021.121421] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
In this study, quantitative relationships were established between blend properties, process settings and blending responses via multivariate data-analysis. Four divergent binary blends were composed in three different ratios and processed at various throughputs and impeller speeds. Additionally, different impeller configurations were tested to see their impact on the overall blending performance. During each run, feeder mass flows were compared with the API concentration (BU) in order to investigate the dampening potential of the blender. The blender hold-up mass (HM), mean residence time (MRT), strain on the powder (#BP) and BU variability (RSDBU) were determined as blending descriptors and analyzed via PLS-regression. This elucidated the correlation between process settings (i.e. throughput and impeller speed) and blending responses, as well as the impact of blend properties on MRT and RSDBU. Furthermore, the study revealed that HM does not need to be in steady state conditions to assure a stable BU, while it became clear that long/large feeder deviations can only be dampened by the blender when using dedicated impeller configurations. Overall, this study demonstrated the generic application of the blender, while the developed PLS models could be used to predict the blender performance based on the blend properties.
Collapse
|
20
|
Sacher S, Poms J, Rehrl J, Khinast JG. PAT implementation for advanced process control in solid dosage manufacturing - A practical guide. Int J Pharm 2021; 613:121408. [PMID: 34952147 DOI: 10.1016/j.ijpharm.2021.121408] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023]
Abstract
The implementation of continuous pharmaceutical manufacturing requires advanced control strategies rather than traditional end product testing or an operation within a small range of controlled parameters. A high level of automation based on process models and hierarchical control concepts is desired. The relevant tools that have been developed and successfully tested in academic and industrial environments in recent years are now ready for utilization on the commercial scale. To date, the focus in Process Analytical Technology (PAT) has mainly been on achieving process understanding and quality control with the ultimate goal of real-time release testing (RTRT). This work describes the workflow for the development of an in-line monitoring strategy to support PAT-based real-time control actions and its integration into solid dosage manufacturing. All stages are discussed in this paper, from process analysis and definition of the monitoring task to technology assessment and selection, its process integration and the development of data acquisition.
Collapse
Affiliation(s)
- Stephan Sacher
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria.
| | - Johannes Poms
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria
| | - Jakob Rehrl
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria
| | - Johannes G Khinast
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria; Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/3, 8010 Graz, Austria
| |
Collapse
|
21
|
Determination of a quantitative relationship between material properties, process settings and screw feeding behavior via multivariate data-analysis. Int J Pharm 2021; 602:120603. [PMID: 33862133 DOI: 10.1016/j.ijpharm.2021.120603] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/21/2022]
Abstract
In this study, a quantitative relationship between material properties, process settings and screw feeding responses of a high-throughput feeder was established via multivariate models (PLS). Thirteen divergent powders were selected and characterized for 44 material property descriptors. During volumetric feeder trials, the maximum feed capacity (FCCmax), the relative standard deviation on the maximum feed capacity (RSDFCmax), the short term variability (STRSD) and feed capacity decay (FCdecay) were determined. The gravimetric feeder trials generated values for the mass flow rate variability (RSDLC), short term variability (STRSD) and refill responses (Vrefill and RSDrefill). The developed PLS models elucidated that the material properties and process settings were clearly correlated to the feeding behavior. The extended volumetric feeder trials pointed out that there was a significant influence of the chosen screw type and screw speed on the feeding process. Furthermore, the process could be optimized by reducing the feeding variability through the application of optimized mass flow filters, high frequency vibrations, independent agitator control and optimized top-up systems. Overall, the models could allow the prediction of the feeding performance for a wide range of materials based on the characterization of a subset of material properties greatly reducing the number of required feeding experiments.
Collapse
|
22
|
Applications of machine vision in pharmaceutical technology: A review. Eur J Pharm Sci 2021; 159:105717. [DOI: 10.1016/j.ejps.2021.105717] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
|
23
|
Domokos A, Nagy B, Szilágyi B, Marosi G, Nagy ZK. Integrated Continuous Pharmaceutical Technologies—A Review. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00504] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- András Domokos
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Brigitta Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Botond Szilágyi
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, H-1111 Budapest, Hungary
| | - György Marosi
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| |
Collapse
|
24
|
Loss-in-weight feeding, powder flow and electrostatic evaluation for direct compression hydroxypropyl methylcellulose (HPMC) to support continuous manufacturing. Int J Pharm 2021; 596:120259. [PMID: 33486020 DOI: 10.1016/j.ijpharm.2021.120259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 11/23/2022]
Abstract
Minimizing variability in the feeding process is important for continuous manufacturing since materials are fed individually and can impact the final product. This study demonstrates the importance of measuring powder properties and highlights the need to characterize the feeding performance both offline with multiple refills and in the intended configuration for the continuous manufacturing equipment. The standard grade hydroxypropyl methylcellulose (HPMC) had material buildup on the loss-in-weight feeder barrel from triboelectric charging and resulted in more mass flow excursions and failed refills which were not observed with the direct compression grades. The location of the electrostatic buildup changed when the feeder was connected to a hopper instead of feeding offline into a collection bucket. Overall, the direct compression HPMC exhibited better flow which resulted in more accurate loss-in-weight feeding with less excursions from the target mass flow and all refills were completed in the first attempt. The improvements with the direct compression HPMC would be beneficial when running any continuous process (wet granulation, roller compaction, or direct compression) or other processes where loss-in-weight feeding is utilized, such as melt extrusion or twin screw granulation.
Collapse
|
25
|
Shi G, Lin L, Liu Y, Chen G, Luo Y, Wu Y, Li H. Pharmaceutical application of multivariate modelling techniques: a review on the manufacturing of tablets. RSC Adv 2021; 11:8323-8345. [PMID: 35423324 PMCID: PMC8695199 DOI: 10.1039/d0ra08030f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
The tablet manufacturing process is a complex system, especially in continuous manufacturing (CM). It includes multiple unit operations, such as mixing, granulation, and tableting. In tablet manufacturing, critical quality attributes are influenced by multiple factorial relationships between material properties, process variables, and interactions. Moreover, the variation in raw material attributes and manufacturing processes is an inherent characteristic and seriously affects the quality of pharmaceutical products. To deepen our understanding of the tablet manufacturing process, multivariable modeling techniques can replace univariate analysis to investigate tablet manufacturing. In this review, the roles of the most prominent multivariate modeling techniques in the tablet manufacturing process are discussed. The review mainly focuses on applying multivariate modeling techniques to process understanding, optimization, process monitoring, and process control within multiple unit operations. To minimize the errors in the process of modeling, good modeling practice (GMoP) was introduced into the pharmaceutical process. Furthermore, current progress in the continuous manufacturing of tablets and the role of multivariate modeling techniques in continuous manufacturing are introduced. In this review, information is provided to both researchers and manufacturers to improve tablet quality.
Collapse
Affiliation(s)
- Guolin Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Gongsen Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yuting Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yanqiu Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| |
Collapse
|
26
|
Tian G, Koolivand A, Gu Z, Orella M, Shaw R, O’Connor TF. Development of an RTD-Based Flowsheet Modeling Framework for the Assessment of In-Process Control Strategies. AAPS PharmSciTech 2021; 22:25. [PMID: 33400033 DOI: 10.1208/s12249-020-01913-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022] Open
Abstract
Continuous manufacturing (CM) is an emerging technology which can improve pharmaceutical manufacturing and reduce drug product quality issues. One challenge that needs to be addressed when adopting CM technology is material traceability through the entire continuous process, which constitutes one key aspect of control strategy. Residence time distribution (RTD) plays an important role in material traceability as it characterizes the material spreading through the process. The propagation of upstream disturbances could be predictively tracked through the entire process by convolution of the disturbance and the RTD. The present study sets up the RTD-based modeling framework in a commonly used process modeling environment, gPROMS, and integrates it with existing modules and built-in tools (e.g., parameter estimation). Concentration calculations based on the convolution integral requires access to historical stream property information, which is not readily available in flowsheet modeling platforms. Thus, a novel approach is taken whereby a partial differential equation is used to propagate and store historical data as the simulation marches forward in time. Other stream properties not modeled by an RTD are determined in auxiliary modules. To illustrate the application of the framework, an integrated RTD-auxiliary model for a continuous direct compression manufacturing line was developed. An excellent agreement was found between the model predictions and experiments. The validated model was subsequently used to assess in-process control strategies for feeder and material traceability through the process. Our simulation results show that the employed modeling approach facilitates risk-based assessment of the continuous line by promoting our understanding on the process.
Collapse
|
27
|
Kunnath K, Chen L, Zheng K, Davé RN. Assessing predictability of packing porosity and bulk density enhancements after dry coating of pharmaceutical powders. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Escotet-Espinoza MS, Scicolone JV, Moghtadernejad S, Sanchez E, Cappuyns P, Van Assche I, Di Pretoro G, Ierapetritou M, Muzzio FJ. Improving Feedability of Highly Adhesive Active Pharmaceutical Ingredients by Silication. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09448-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Madarász L, Köte Á, Gyürkés M, Farkas A, Hambalkó B, Pataki H, Fülöp G, Marosi G, Lengyel L, Casian T, Csorba K, Nagy ZK. Videometric mass flow control: A new method for real-time measurement and feedback control of powder micro-feeding based on image analysis. Int J Pharm 2020; 580:119223. [DOI: 10.1016/j.ijpharm.2020.119223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
|
30
|
Impact of Particle and Equipment Properties on Residence Time Distribution of Pharmaceutical Excipients in Rotary Tablet Presses. Pharmaceutics 2020; 12:pharmaceutics12030283. [PMID: 32245219 PMCID: PMC7151020 DOI: 10.3390/pharmaceutics12030283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 11/17/2022] Open
Abstract
Paddle feeders are devices commonly used in rotary tablet presses to facilitate constant and efficient die filling. Adversely, the shear stress applied by the rotating paddles is known to affect the bulk properties of the processed powder dependent on the residence time. This study focuses on the residence time distribution (RTD) of two commonly applied excipients (microcrystalline cellulose, MCC; dicalcium phosphate, DCP), which exhibit different flow properties inside rotary tablet presses. To realistically depict the powder flow inside rotary tablet presses, custom-made tracer powder was developed. The applied method was proven to be appropriate as the tracer and bulk powder showed comparable properties. The RTDs of both materials were examined in two differently scaled rotary tablet presses and the influence of process parameters was determined. To analyze RTDs independent of the mass flow, the normalized variance was used to quantify intermixing. Substantial differences between both materials and tablet presses were found. Broader RTDs were measured for the poorer flowing MCC as well as for the production scale press. The obtained results can be used to improve the general understanding of powder flow inside rotary tablet presses and amplify scale-up and continuous production process development.
Collapse
|
31
|
Szabó E, Démuth B, Galata DL, Vass P, Hirsch E, Csontos I, Marosi G, Nagy ZK. Continuous Formulation Approaches of Amorphous Solid Dispersions: Significance of Powder Flow Properties and Feeding Performance. Pharmaceutics 2019; 11:E654. [PMID: 31817454 PMCID: PMC6955740 DOI: 10.3390/pharmaceutics11120654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Preparation and formulation of amorphous solid dispersions (ASDs) are becoming more and more popular in the pharmaceutical field because the dissolution of poorly water-soluble drugs can be effectively improved this way, which can lead to increased bioavailability in many cases. During downstream processing of ASDs, technologists need to keep in mind both traditional challenges and the newest trends. In the last decade, the pharmaceutical industry began to display considerable interest in continuous processing, which can be explained with their potential advantages such as smaller footprint, easier scale-up, and more consistent product, better quality and quality assurance. Continuous downstream processing of drug-loaded ASDs opens new ways for automatic operation. Therefore, the formulation of poorly water-soluble drugs may be more effective and safe. However, developments can be challenging due to the poor flowability and feeding properties of ASDs. Consequently, this review pays special attention to these characteristics since the feeding of the components greatly influences the content uniformity in the final dosage form. The main purpose of this paper is to summarize the most important steps of the possible ASD-based continuous downstream processes in order to give a clear overview of current course lines and future perspectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zsombor K. Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rakpart 3, H-1111 Budapest, Hungary; (E.S.); (B.D.); (D.L.G.); (P.V.); (E.H.); (I.C.); (G.M.)
| |
Collapse
|
32
|
Integrated continuous manufacturing in pharmaceutical industry: current evolutionary steps toward revolutionary future. Pharm Pat Anal 2019; 8:139-161. [DOI: 10.4155/ppa-2019-0011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Continuous manufacturing (CM) has the potential to provide pharmaceutical products with better quality, improved yield and with reduced cost and time. Moreover, ease of scale-up, small manufacturing footprint and on-line/in-line monitoring and control of the process are other merits for CM. Regulating authorities are supporting the adoption of CM by pharmaceutical manufacturers through issuing proper guidelines. However, implementation of this technology in pharmaceutical industry is encountered by a number of challenges regarding the process development and quality assurance. This article provides a background on the implementation of CM in pharmaceutical industry, literature survey of the most recent state-of-the-art technologies and critically discussing the encountered challenges and its future prospective in pharmaceutical industry.
Collapse
|
33
|
Schaller BE, Moroney KM, Castro-Dominguez B, Cronin P, Belen-Girona J, Ruane P, Croker DM, Walker GM. Systematic development of a high dosage formulation to enable direct compression of a poorly flowing API: A case study. Int J Pharm 2019; 566:615-630. [PMID: 31158454 DOI: 10.1016/j.ijpharm.2019.05.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
Abstract
In this work, the transfer of oral solid dosage forms, currently manufactured via wet granulation, to a continuous direct compression process was considered. Two main challenges were addressed: (1) a poorly flowing API (Canagliflozin) and (2) high drug loading (51 wt%). A scientific approach was utilised for formulation development, targeting flow and compaction behaviour suitable for manufacturing scale. This was achieved through systematic screening of excipients to identify feasible formulations. Targeted design of experiments based on factors such as formulation mixture and processing parameters were utilised to investigate key responses for tablet properties, flow and compaction behaviour. Flow behaviour was primarily evaluated from percentage compressibility and shear cell testing on a powder flow rheometer (FT4). The compaction behaviour was studied using a compaction simulator (Gamlen). The relationships between tablet porosity, tensile strength and compaction pressure were used to evaluate tabletability, compactibility and compressibility to assess scale-up. The success of this design procedure is illustrated by scaling up from the compaction simulator to a Riva Piccola rotary tablet press, while maintaining critical quality attributes (CQAs). Compactibility was identified as a suitable scale-up relationship. The developed procedure should allow accelerated development of formulations for continuous direct compression.
Collapse
Affiliation(s)
- Barbara E Schaller
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Kevin M Moroney
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick, Ireland; MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland
| | | | - Patrick Cronin
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick, Ireland
| | - Jorge Belen-Girona
- Johnson & Johnson Supply Chain, Product Supply - Manufacturing Engineering and Technology, USA
| | - Patrick Ruane
- Johnson & Johnson Supply Chain, Product Supply - Manufacturing Engineering and Technology, USA
| | - Denise M Croker
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick, Ireland
| | - Gavin M Walker
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
34
|
Costandy JG, Edgar TF, Baldea M. Switching from Batch to Continuous Reactors Is a Trajectory Optimization Problem. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Joseph G. Costandy
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas F. Edgar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Energy Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael Baldea
- Energy Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
35
|
Bostijn N, Van Renterghem J, Vanbillemont B, Dhondt W, Vervaet C, De Beer T. Continuous manufacturing of a pharmaceutical cream: Investigating continuous powder dispersing and residence time distribution (RTD). Eur J Pharm Sci 2019; 132:106-117. [DOI: 10.1016/j.ejps.2019.02.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 01/09/2023]
|
36
|
Bostijn N, Dhondt J, Ryckaert A, Szabó E, Dhondt W, Van Snick B, Vanhoorne V, Vervaet C, De Beer T. A multivariate approach to predict the volumetric and gravimetric feeding behavior of a low feed rate feeder based on raw material properties. Int J Pharm 2019; 557:342-353. [DOI: 10.1016/j.ijpharm.2018.12.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
|
37
|
Dülle M, Özcoban H, Leopold C. Analysis of the powder behavior and the residence time distribution within a production scale rotary tablet press. Eur J Pharm Sci 2018; 125:205-214. [DOI: 10.1016/j.ejps.2018.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
|
38
|
Edinger M, Jacobsen J, Bar-Shalom D, Rantanen J, Genina N. Analytical aspects of printed oral dosage forms. Int J Pharm 2018; 553:97-108. [PMID: 30316794 DOI: 10.1016/j.ijpharm.2018.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/30/2018] [Accepted: 10/10/2018] [Indexed: 12/19/2022]
Abstract
Printing technologies, both 2D and 3D, have gained considerable interest during the last years for manufacturing of personalized dosage forms, tailored to each patient. Here we review the research work on 2D printing techniques, mainly inkjet printing, for manufacturing of film-based oral dosage forms. We describe the different printing techniques and give an overview of film-based oral dosage forms produced using them. The main part of the review focuses on the non-destructive analytical methods used for evaluation of qualitative aspects of printed dosage forms, e.g., solid-state properties, as well as for quantification of the active pharmaceutical ingredient (API) in the printed dosage forms, with an emphasis on spectroscopic methods. Finally, the authors share their view on the future of printed dosage forms.
Collapse
Affiliation(s)
- Magnus Edinger
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Daniel Bar-Shalom
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Natalja Genina
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark.
| |
Collapse
|
39
|
Residence time distribution of a continuously-operated capsule filling machine: Development of a measurement technique and comparison of three volume-reducing inserts. Int J Pharm 2018; 550:180-189. [DOI: 10.1016/j.ijpharm.2018.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 01/20/2023]
|
40
|
Chattoraj S, Daugherity P, McDermott T, Olsofsky A, Roth WJ, Tobyn M. Sticking and Picking in Pharmaceutical Tablet Compression: An IQ Consortium Review. J Pharm Sci 2018; 107:2267-2282. [DOI: 10.1016/j.xphs.2018.04.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022]
|
41
|
Rehrl J, Karttunen AP, Nicolaï N, Hörmann T, Horn M, Korhonen O, Nopens I, De Beer T, Khinast JG. Control of three different continuous pharmaceutical manufacturing processes: Use of soft sensors. Int J Pharm 2018; 543:60-72. [DOI: 10.1016/j.ijpharm.2018.03.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/26/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022]
|
42
|
RTD modeling of a continuous dry granulation process for process control and materials diversion. Int J Pharm 2017; 528:334-344. [DOI: 10.1016/j.ijpharm.2017.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 11/23/2022]
|
43
|
Martinetz MC, Rehrl J, Aigner I, Sacher S, Khinast J. A Continuous Operation Concept for a Rotary Tablet Press Using Mass Flow Operating Points. CHEM-ING-TECH 2017. [DOI: 10.1002/cite.201700017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Jakob Rehrl
- Research Center Pharmaceutical Engineering GmbH; Inffeldgasse 13/II 8010 Graz Austria
| | - Isabella Aigner
- Research Center Pharmaceutical Engineering GmbH; Inffeldgasse 13/II 8010 Graz Austria
| | - Stephan Sacher
- Research Center Pharmaceutical Engineering GmbH; Inffeldgasse 13/II 8010 Graz Austria
| | - Johannes Khinast
- Research Center Pharmaceutical Engineering GmbH; Inffeldgasse 13/II 8010 Graz Austria
- Graz University of Technology; Institute of Process and Particle Engineering; Inffeldgasse 13/III 8010 Graz Austria
| |
Collapse
|
44
|
Blackshields CA, Crean AM. Continuous powder feeding for pharmaceutical solid dosage form manufacture: a short review. Pharm Dev Technol 2017; 23:554-560. [DOI: 10.1080/10837450.2017.1339197] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Caroline A. Blackshields
- School of Pharmacy, Pharmaceutical Manufacturing Technology Centre, University College Cork, Cork, Ireland
| | - Abina M. Crean
- School of Pharmacy, Pharmaceutical Manufacturing Technology Centre, University College Cork, Cork, Ireland
- School of Pharmacy, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| |
Collapse
|
45
|
Van Snick B, Holman J, Cunningham C, Kumar A, Vercruysse J, De Beer T, Remon J, Vervaet C. Continuous direct compression as manufacturing platform for sustained release tablets. Int J Pharm 2017; 519:390-407. [DOI: 10.1016/j.ijpharm.2017.01.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
|