1
|
Mottola M, Valdivia Pérez JA, Fanani ML. The role of biophysical properties in defining the functional applications of alkyl esters of L-ascorbic acid. Biochem Biophys Res Commun 2025; 748:151311. [PMID: 39809139 DOI: 10.1016/j.bbrc.2025.151311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Lipophilic derivatives of vitamin C, known as ascorbyl-6-O-alkanoates (ASCn), have been mainly developed for use in cosmetics, pharmaceuticals, and the food industry as antioxidant additives. These derivatives are of biotechnological interest due to their antioxidant properties, amphiphilic behavior, capacity to self-organize into nano- and micro-structures, anionic nature, and low cost of synthesis. In this review, we will focus on the commercial amphiphile, 6-O-palmitoyl L-ascorbic acid (ASC16), and the shorter acyl chains derivatives, such as 6-O-myristoyl (ASC14) and 6-O-lauroyl L-ascorbic acid (ASC12). The biophysical characteristics of the ASCn family members make them promising candidates for applications such as antioxidant additives, drug carriers in topical pharmaceutical formulations, skin permeation enhancers, and vaccine adjuvants. Furthermore, they exhibit antimicrobial and antibiofilm activities, drawing attention from new biotechnology frontiers. By exploring the biophysical properties of ASCn derivatives, this review highlights their potential applications and the fundamental mechanisms driving their functionality.
Collapse
Affiliation(s)
- Milagro Mottola
- Depto. de Química Biológica Ranwel Caputto. Facultad. Ciencias Químicas. Univ. Nacional de Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina
| | - Jessica Aye Valdivia Pérez
- Depto. de Química Biológica Ranwel Caputto. Facultad. Ciencias Químicas. Univ. Nacional de Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina
| | - María Laura Fanani
- Depto. de Química Biológica Ranwel Caputto. Facultad. Ciencias Químicas. Univ. Nacional de Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina.
| |
Collapse
|
2
|
Makvandi P, Shabani M, Rabiee N, Anjani QK, Maleki A, Zare EN, Sabri AHB, De Pasquale D, Koskinopoulou M, Sharifi E, Sartorius R, Seyedhamzeh M, Bochani S, Hirata I, Paiva-Santos AC, Mattos LS, Donnelly RF, Mattoli V. Engineering and Development of a Tissue Model for the Evaluation of Microneedle Penetration Ability, Drug Diffusion, Photothermal Activity, and Ultrasound Imaging: A Promising Surrogate to Ex Vivo and In Vivo Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210034. [PMID: 36739591 DOI: 10.1002/adma.202210034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/13/2023] [Indexed: 05/05/2023]
Abstract
Driven by regulatory authorities and the ever-growing demands from industry, various artificial tissue models have been developed. Nevertheless, there is no model to date that is capable of mimicking the biomechanical properties of the skin whilst exhibiting the hydrophilicity/hydrophobicity properties of the skin layers. As a proof-of-concept study, tissue surrogates based on gel and silicone are fabricated for the evaluation of microneedle penetration, drug diffusion, photothermal activity, and ultrasound bioimaging. The silicone layer aims to imitate the stratum corneum while the gel layer aims to mimic the water-rich viable epidermis and dermis present in in vivo tissues. The diffusion of drugs across the tissue model is assessed, and the results reveal that the proposed tissue model shows similar behavior to a cancerous kidney. In place of typical in vitro aqueous solutions, this model can also be employed for evaluating the photoactivity of photothermal agents since the tissue model shows a similar heating profile to skin of mice when irradiated with near-infrared laser. In addition, the designed tissue model exhibits promising results for biomedical applications in optical coherence tomography and ultrasound imaging. Such a tissue model paves the way to reduce the use of animals testing in research whilst obviating ethical concerns.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera, 56025, Pisa, Italy
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK
| | - Majid Shabani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, 56025, Pisa, Italy
- Bioinspired Soft Robotics Laboratory, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Aziz Maleki
- Zanjan Pharmaceutical, Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | | | | | - Daniele De Pasquale
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera, 56025, Pisa, Italy
| | - Maria Koskinopoulou
- Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Mohammad Seyedhamzeh
- Zanjan Pharmaceutical, Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Shayesteh Bochani
- Zanjan Pharmaceutical, Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Ikue Hirata
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera, 56025, Pisa, Italy
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, Coimbra, 3000-548, Portugal
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, Coimbra, 3000-548, Portugal
| | - Leonardo S Mattos
- Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Virgilio Mattoli
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera, 56025, Pisa, Italy
| |
Collapse
|
3
|
Hermet M, Yanis Espinosa R, Elisa Fait M, Yenisleidy de las Zulueta Díaz M, Morcelle S, Laura Bakás S, Ariel Alvarez H, Laura Fanani M. Arginine-based surfactants alter the rheological and in-plane structural properties of stratum corneum model membranes. J Colloid Interface Sci 2022; 631:224-238. [DOI: 10.1016/j.jcis.2022.10.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2022]
|
4
|
Fanani ML, Nocelli NE, Zulueta Díaz YDLM. What can we learn about amphiphile-membrane interaction from model lipid membranes? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183781. [PMID: 34555419 DOI: 10.1016/j.bbamem.2021.183781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Surface-active amphiphiles find applications in a wide range of areas of industry such as agrochemicals, personal care, and pharmaceuticals. In many of these applications, interaction with cell membranes is a key factor for achieving their purpose. How do amphiphiles interact with lipid membranes? What are their bases for membrane specificity? Which biophysical properties of membranes are susceptible to modulation by amphiphilic membrane-effectors? What aspects of this interaction are important for performing their function? In our work on membrane biophysics over the years, questions like these have arisen and we now share some of our findings and discuss them in this review. This topic was approached focusing on the membrane properties and their alterations rather than on the amphiphile structure requirements for their interaction. Here, we do not aim to provide a comprehensive list of the modes of action of amphiphiles of biological interest but to help in understanding them.
Collapse
Affiliation(s)
- Maria Laura Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina.
| | - Natalia E Nocelli
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina
| | - Yenisleidy de Las Mercedes Zulueta Díaz
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina
| |
Collapse
|
5
|
Strati F, Oliveira JSL, Opalka L, Mukhina T, Dobner B, Neubert RHH, Brezesinski G. Two- and Three-Dimensional Physical-Chemical Characterization of CER[AP]: A Study of Stereochemistry and Chain Symmetry. J Phys Chem B 2021; 125:9960-9969. [PMID: 34463098 DOI: 10.1021/acs.jpcb.1c05572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stratum corneum represents the first skin barrier against chemical and physical damage. These unique properties are based on its peculiar lipid composition with ceramides (CERs) as the main protagonists. In this study, the structural and chemical properties of the α-OH phytosphingosine [AP] CER class have been investigated. α-OH CERs are present in the stratum corneum in their d-forms; however, in most model systems the diastereomer mixture with the synthetically produced l-form is used. The d-form is well-known to form a hydrogen bonding network that helps to reduce the permeability of the lipid matrix, while the l-form does not show any hydrogen bonding network formation. In this paper, 2D (monolayers) and 3D (aqueous dispersions) models have been used to thoroughly study the physical-chemical behaviors of CER[AP] diastereomers taking into account how the symmetry of the chain pattern influences the behavior of the molecules. The chains of both diastereomers arrange in an oblique unit cell, but only the d-CER[AP] forms a supramolecular lattice (subgel phase) in both model systems. Interestingly, the chain pattern does not play any role in structure formation since the hydrogen bonding network dictates the packing properties. The 1:1 mixture of the diastereomers phase separates into two domains: one is composed of practically pure d-form and the other one is composed of a mixture of the l-form with a certain amount of d-form molecules.
Collapse
Affiliation(s)
- Fabio Strati
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, 06120 Halle (Saale), Germany
| | - Joana S L Oliveira
- Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Lukas Opalka
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Tetiana Mukhina
- Institute for Condensed Matter Physics, Technical University Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany
| | - Bodo Dobner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, 06120 Halle (Saale), Germany
| | - Gerald Brezesinski
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, 06120 Halle (Saale), Germany
| |
Collapse
|
6
|
Strati F, Neubert RHH, Opálka L, Kerth A, Brezesinski G. Non-ionic surfactants as innovative skin penetration enhancers: insight in the mechanism of interaction with simple 2D stratum corneum model system. Eur J Pharm Sci 2021; 157:105620. [PMID: 33122012 DOI: 10.1016/j.ejps.2020.105620] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
Transdermal drug delivery is a passive diffusion process of an active compound through the skin which is affected by drug solubility in the multilamellar lipidic matrix of the stratum corneum (SC). Widely used non-ionic surfactants (NIS) can be added into transdermal formulations to enhance the penetration of drugs by influencing the packing of the stratum corneum lipidic matrix. Objective of our study was to analyse the interaction between selected NIS and a simple SC lipidic matrix model system using a variety of surface-sensitive techniques based on the application of Langmuir monolayers. In this work, the well-known surfactant Polysorbate 80 was compared with a modern surfactant Sucrose monolaurate. Infrared reflection-absorption spectroscopy (IRRAS) and epifluorescence microscopy provide information about the effects of those surfactants on the SC model system. Monolayer isotherms of the SC model mixture indicate a very stiff and well-packed layer, however, packing defects are evidenced in epifluorescence studies. The injection of the two NIS underneath the SC monolayers proved their potential to penetrate into the SC model at the air-water interface having a maximum insertion pressure (MIP) above the assumed lateral pressure of biological membranes. The NIS adsorbed preferentially into packing defects seen in epifluorescence microscopy studies with Sucrose monolaurate being more active than Polysorbate 80 in disordering the SC monolayer.
Collapse
Affiliation(s)
- Fabio Strati
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, D-06120 Halle (Saale), Germany.
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, D-06120 Halle (Saale), Germany
| | - Lukáš Opálka
- Charles University, Faculty of Pharmacy in Hradec Kralove, Akademika Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Andreas Kerth
- Institute of Chemistry - Physical Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - Gerald Brezesinski
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, D-06120 Halle (Saale), Germany
| |
Collapse
|
7
|
Biological Evaluation of Oil-in-Water Microemulsions as Carriers of Benzothiophene Analogues for Dermal Applications. Biomimetics (Basel) 2021; 6:biomimetics6010010. [PMID: 33514031 PMCID: PMC7931112 DOI: 10.3390/biomimetics6010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
During the last decade, many studies have been reported on the design and formulation of novel drug delivery systems proposed for dermal or transdermal administration. The efforts focus on the development of biocompatible nanodispersions that can be delivered to the skin and treat severe skin disorders, including cancer. In this context, oil-in-water (O/W) microemulsions have been developed to encapsulate and deliver lipophilic bioactive molecules for dermal application. An O/W biocompatible microemulsion composed of PBS buffer, Tween 80, and triacetin was assessed for its efficacy as a drug carrier of DPS-2, a lead compound, initially designed in-house to inhibit BRAFV600E oncogenic kinase. The system was evaluated through both in vitro and ex vivo approaches. The cytotoxic effect, in the presence and absence of DPS-2, was examined through the thiazolyl blue tetrazolium bromide (MTT) cell proliferation assay using various cell lines. Further investigation through Western blotting revealed that cells died of necrosis. Porcine ear skin was used as a skin model to evaluate the degree of permeation of DPS-2 through skin and assess its retention. Through the ex vivo experiments, it was clarified that encapsulated DPS-2 was distributed within the full thickness of the stratum corneum (SC) and had a high affinity to hair follicles.
Collapse
|
8
|
Drescher S, van Hoogevest P. The Phospholipid Research Center: Current Research in Phospholipids and Their Use in Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12121235. [PMID: 33353254 PMCID: PMC7766331 DOI: 10.3390/pharmaceutics12121235] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
This review summarizes the research on phospholipids and their use for drug delivery related to the Phospholipid Research Center Heidelberg (PRC). The focus is on projects that have been approved by the PRC since 2017 and are currently still ongoing or have recently been completed. The different projects cover all facets of phospholipid research, from basic to applied research, including the use of phospholipids in different administration forms such as liposomes, mixed micelles, emulsions, and extrudates, up to industrial application-oriented research. These projects also include all routes of administration, namely parenteral, oral, and topical. With this review we would like to highlight possible future research directions, including a short introduction into the world of phospholipids.
Collapse
|
9
|
Zhang D, Bian Q, Zhou Y, Huang Q, Gao J. The application of label-free imaging technologies in transdermal research for deeper mechanism revealing. Asian J Pharm Sci 2020; 16:265-279. [PMID: 34276818 PMCID: PMC8261078 DOI: 10.1016/j.ajps.2020.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/23/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
The penetration behavior of topical substances in the skin not only relates to the transdermal delivery efficiency but also involves the safety and therapeutic effect of topical products, such as sunscreen and hair growth products. Researchers have tried to illustrate the transdermal process with diversified theories and technologies. Directly observing the distribution of topical substances on skin by characteristic imaging is the most convincing approach. Unfortunately, fluorescence labeling imaging, which is commonly used in biochemical research, is limited for transdermal research for most topical substances with a molecular mass less than 500 Da. Label-free imaging technologies possess the advantages of not requiring any macromolecular dyes, no tissue destruction and an extensive substance detection capability, which has enabled rapid development of such technologies in recent years and their introduction to biological tissue analysis, such as skin samples. Through the specific identification of topical substances and endogenous tissue components, label-free imaging technologies can provide abundant tissue distribution information, enrich theoretical and practical guidance for transdermal drug delivery systems. In this review, we expound the mechanisms and applications of the most popular label-free imaging technologies in transdermal research at present, compare their advantages and disadvantages, and forecast development prospects.
Collapse
Affiliation(s)
- Danping Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhou
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaoling Huang
- The Third People's Hospital of Hangzhou, Hangzhou 310012, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jiangsu Engineering Research Center for New-Type External and Transdermal Preparations, Changzhou 213000, China
- Corresponding author.
| |
Collapse
|
10
|
l-Ascorbic acid alkyl esters action on stratum corneum model membranes: An insight into the mechanism for enhanced skin permeation. Colloids Surf B Biointerfaces 2020; 185:110621. [PMID: 31726308 DOI: 10.1016/j.colsurfb.2019.110621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/26/2022]
Abstract
L-ascorbic acid alkyl esters (ASCn) are lipophilic forms of vitamin C, which act as skin permeation enhancers. We investigated the physical changes induced by incorporating ASCn into stratum corneum (SC) lipid membranes and correlated this with the mechanism proposed in the literature for skin permeation enhancement phenomena. We used lipid monolayers to explore the 2D structure and elasticity of the lipid-enhancer systems. As a comparison, the classic permeation enhancer, oleic acid (OA) and the non-enhancer analogue stearic acid (SA) were analysed. The incorporation of ASCn or OA into SC membranes resulted in more liquid-like films, with a dose-dependent lowering of the compressibility modulus. Brewster angle microscopy (BAM) evidenced partial miscibility of the enhancer with SC lipid components, stabilising the liquid-expanded phase. At the nanoscale, AFM showed that SC lipids form heterogeneous membranes, which underwent structural alterations after incorporating ASCn and fatty acids, such as SA and OA. The lower, cholesterol-enriched phase appears to concentrate the enhancers, whilst the higher ceramide-enriched phase concentrated the non-enhancer SA. Our results and previously reported pieces of evidence indicate a strong pattern in which the rheological properties of SC lipid films are determinant for skin permeation phenomena.
Collapse
|
11
|
Effect of synthetic surfactants and soapwort (Saponaria officinalis L.) extract on skin-mimetic model lipid monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:556-564. [DOI: 10.1016/j.bbamem.2018.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
|
12
|
Ren W, Chen S, Li S, Zhang Y, Liu J, Guan M, Yang H, Li N, Han C, Li T, Zhao Z, Ge J. Photoluminescence Enhancement of Carbon Dots by Surfactants at Room Temperature. Chemistry 2018; 24:15806-15811. [DOI: 10.1002/chem.201804436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Wei Ren
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center; Beijing 100190 P. R. China
- Graduate School; University of Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Shiqing Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and CityU-CAS Joint Laboratory of Functional Materials and Devices; Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Shumu Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center; Beijing 100190 P. R. China
| | - Yangyang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center; Beijing 100190 P. R. China
- Graduate School; University of Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Jianan Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center; Beijing 100190 P. R. China
| | - Ming Guan
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center; Beijing 100190 P. R. China
- Graduate School; University of Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Hui Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center; Beijing 100190 P. R. China
- Graduate School; University of Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center; Beijing 100190 P. R. China
- Graduate School; University of Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Chao Han
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center; Beijing 100190 P. R. China
- Graduate School; University of Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Tuo Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center; Beijing 100190 P. R. China
- Graduate School; University of Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center; Beijing 100190 P. R. China
- Graduate School; University of Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and CityU-CAS Joint Laboratory of Functional Materials and Devices; Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
13
|
Self-Assembled Composite Langmuir Films via Fluorine-Containing Bola-Type Derivative with Metal Ions. COATINGS 2018. [DOI: 10.3390/coatings8040141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Pireddu R, Sinico C, Ennas G, Schlich M, Valenti D, Murgia S, Marongiu F, Fadda AM, Lai F. The effect of diethylene glycol monoethyl ether on skin penetration ability of diclofenac acid nanosuspensions. Colloids Surf B Biointerfaces 2018; 162:8-15. [DOI: 10.1016/j.colsurfb.2017.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/07/2017] [Accepted: 11/04/2017] [Indexed: 02/08/2023]
|