1
|
Jara MO, Behrend-Keim B, Bedogni G, Michelena LV, Davis DA, Miller DA, Salomon C, Williams RO. Comparative study of Hot-Melt Extrusion, spray drying, and KinetiSol® processing to formulate a poorly water-soluble and thermolabile drug. Int J Pharm 2025; 676:125582. [PMID: 40210102 DOI: 10.1016/j.ijpharm.2025.125582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Fenbendazole (FBZ), a benzimidazole-carbamate anthelmintic, shows promising chemotherapeutic properties. However, it is a poorly water-soluble molecule, leading to low and variable oral bioavailability. This study investigated hot-melt extrusion (HME), spray drying, and KinetiSol processing (KSD) using Soluplus (SOL) to enhance FBZ's solubility. Formulating FBZ as an amorphous solid dispersion (ASD) by HME at a barrel temperature of 120 °C led to extensive chemical degradation of FBZ, generating the degradation product fenbendazoleamine. On the other hand, spray-drying (SD) generated an ASD, but its usefulness was greatly limited by the low solubility of FBZ in the cosolvent system required in the SD process. Given FBZ's poor solubility in both water and organic solvents and its thermolabile propensity, KSD was explored. Conventional KSD parameters reduced the impurity levels to 6.4 % at a discharge temperature of 64 °C. To further minimize impurity levels, we investigated alternative KSD parameters that terminate the process before reaching the melt agglomeration phase. These conditions resulted in powder-discharged KSD samples (pKSD) that avoided causing chemical degradation of FBZ. The pKSD samples exhibited trace crystallinity, as confirmed by Wide Angle X-ray Scattering (WAXS). Scanning electron microscopy (SEM) revealed that these samples comprised nano- and micron-sized particle aggregates. These results were confirmed by processing FBZ with other excipients, such as semi-crystalline polymers and cyclodextrins. The pKSD samples demonstrated improved dissolution performance of FBZ compared to the physical mixture and crystalline neat FBZ due to the smaller particle size of FBZ. pKSD FBZ provides a solution for formulating thermolabile molecules like FBZ while only requiring a few seconds of exposure to the pKSD manufacturing process conditions, thus eliminating the disadvantages of SD (e.g., requiring sufficiently high solubility in the organic solvent system) and HME (e.g., exposure to high shear and heat during the process).
Collapse
Affiliation(s)
- Miguel O Jara
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Beatriz Behrend-Keim
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Giselle Bedogni
- Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, Rosario 2000, Argentina; Área Técnica Farmacéutica, Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Lina Vargas Michelena
- Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, Rosario 2000, Argentina; Área Técnica Farmacéutica, Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Daniel A Davis
- AustinPx, 111 W. Cooperative Way, Georgetown, TX 78626, USA
| | - Dave A Miller
- AustinPx, 111 W. Cooperative Way, Georgetown, TX 78626, USA
| | - Claudio Salomon
- Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, Rosario 2000, Argentina; Área Técnica Farmacéutica, Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Robert O Williams
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| |
Collapse
|
2
|
Kapourani A, Pantazos I, Valkanioti V, Chatzitheodoridou M, Kalogeri C, Barmpalexis P. Unveiling the impact of preparation methods, matrix/carrier type selection and drug loading on the supersaturation performance of amorphous solid dispersions. Int J Pharm 2025; 671:125242. [PMID: 39842744 DOI: 10.1016/j.ijpharm.2025.125242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Amorphous solid dispersions (ASDs) are widely recognized for their potential to enhance the solubility of poorly water-soluble drugs, with factors such as molecular mobility, intermolecular interactions, and storage conditions playing critical roles in their performance. However, the influence of preparation methods on their performance remains underexplored, especially regarding their supersaturation . To address this gap, the present study systematically investigates ASDs of ibuprofen (IBU, used as a model drug) prepared using two widely utilized techniques (solvent evaporation, SE, and melt-quench cooling, M-QC). Three different matrices/carriers (Soluplus®, SOL, povidone, PVP, and copovidone, PVPVA) were employed to evaluate the combined influence of preparation method, matrix/carrier type, and drug loading on ASD performance. Supersaturation behavior during dissolution, particularly its dependence on the Sink Index (SI), was a key focus. All ASDs showed successful amorphization, but molecular near-order structures differed based on the preparation method. ATR-FTIR spectroscopy revealed stronger molecular interactions in M-QC ASDs (compared to SE). Dissolution studies under supersaturation conditions (SI = 0.1 and SI = 0.2) highlighted significant performance differences. M-QC ASDs consistently exhibited higher in vitro AUC(0→t) values under non-sink conditions compared to crystalline IBU. Conversely, SE ASDs showed improved supersaturation primarily under low SI conditions, especially with SOL at low drug loadings. The findings underscore the need for a systematic approach in developing ASDs, considering preparation method, matrix/carrier type, drug loading and dissolution study conditions collectively. These factors significantly influence dissolution behavior and supersaturation, emphasizing that they should not be independently studied but evaluated comprehensively to optimize ASD performance.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Ioannis Pantazos
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Vasiliki Valkanioti
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Melina Chatzitheodoridou
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Christina Kalogeri
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Panagiotis Barmpalexis
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece.
| |
Collapse
|
3
|
Moseson DE, Taylor LS. Crystallinity: A Complex Critical Quality Attribute of Amorphous Solid Dispersions. Mol Pharm 2023; 20:4802-4825. [PMID: 37699354 DOI: 10.1021/acs.molpharmaceut.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Does the performance of an amorphous solid dispersion rely on having 100% amorphous content? What specifications are appropriate for crystalline content within an amorphous solid dispersion (ASD) drug product? In this Perspective, the origin and significance of crystallinity within amorphous solid dispersions will be considered. Crystallinity can be found within an ASD from one of two pathways: (1) incomplete amorphization, or (2) crystal creation (nucleation and crystal growth). While nucleation and crystal growth is the more commonly considered pathway, where crystals originate as a physical stability failure upon accelerated or prolonged storage, manufacturing-based origins of crystallinity are possible as well. Detecting trace levels of crystallinity is a significant analytical challenge, and orthogonal methods should be employed to develop a holistic assessment of sample properties. Probing the impact of crystallinity on release performance which may translate to meaningful clinical significance is inherently challenging, requiring optimization of dissolution test variables to address the complexity of ASD formulations, in terms of drug physicochemical properties (e.g., crystallization tendency), level of crystallinity, crystal reference material selection, and formulation characteristics. The complexity of risk presented by crystallinity to product performance will be illuminated through several case studies, highlighting that a one-size-fits-all approach cannot be used to set specification limits, as the risk of crystallinity can vary widely based on a multitude of factors. Risk assessment considerations surrounding drug physicochemical properties, formulation fundamentals, physical stability, dissolution, and crystal micromeritic properties will be discussed.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Worldwide Research and Development Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Naser YA, Tekko IA, Vora LK, Peng K, Anjani QK, Greer B, Elliott C, McCarthy HO, Donnelly RF. Hydrogel-forming microarray patches with solid dispersion reservoirs for transdermal long-acting microdepot delivery of a hydrophobic drug. J Control Release 2023; 356:416-433. [PMID: 36878320 DOI: 10.1016/j.jconrel.2023.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Hydrogel-forming microarray patches (HF-MAPs) are used to circumvent the skin barrier and facilitate the noninvasive transdermal delivery of many hydrophilic substances. However, their use in the delivery of hydrophobic agents is a challenging task. This work demonstrates, for the first time, the successful transdermal long-acting delivery of the hydrophobic atorvastatin (ATR) via HF-MAPs using poly(ethylene)glycol (PEG)-based solid dispersion (SD) reservoirs. PEG-based SDs of ATR were able to completely dissolve within 90 s in vitro. Ex vivo results showed that 2.05 ± 0.23 mg of ATR/0.5 cm2 patch was delivered to the receiver compartment of Franz cells after 24 h. The in vivo study, conducted using Sprague Dawley rats, proved the versatility of HF-MAPs in delivering and maintaining therapeutically-relevant concentrations (> 20 ng·mL-1) of ATR over 14 days, following a single HF-MAP application for 24 h. The long-acting delivery of ATR suggests the successful formation of hydrophobic microdepots within the skin, allowing for the subsequent sustained delivery as they gradually dissolve over time, as shown in this work. When compared to the oral group, the use of the HF-MAP formulation improved the overall pharmacokinetics profile of ATR in plasma, where significantly higher AUC values resulting in ∼10-fold higher systemic exposure levels were obtained. This novel system offers a promising, minimally-invasive, long-acting alternative delivery system for ATR that is capable of enhancing patient compliance and therapeutic outcomes. It also proposes a unique promising platform for the long-acting transdermal delivery of other hydrophobic agents.
Collapse
Affiliation(s)
- Yara A Naser
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ismaiel A Tekko
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Aleppo University, Aleppo, Syria
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ke Peng
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita K Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Brett Greer
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Christopher Elliott
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
5
|
Guner G, Amjad A, Berrios M, Kannan M, Bilgili E. Nanoseeded Desupersaturation and Dissolution Tests for Elucidating Supersaturation Maintenance in Amorphous Solid Dispersions. Pharmaceutics 2023; 15:pharmaceutics15020450. [PMID: 36839772 PMCID: PMC9964794 DOI: 10.3390/pharmaceutics15020450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The impact of residual drug crystals that are formed during the production and storage of amorphous solid dispersions (ASDs) has been studied using micron-sized seed crystals in solvent-shift (desupersaturation) and dissolution tests. This study examines the impacts of the seed size loading on the solution-mediated precipitation from griseofulvin ASDs. Nanoparticle crystals (nanoseeds) were used as a more realistic surrogate for residual crystals compared with conventional micron-sized seeds. ASDs of griseofulvin with Soluplus (Sol), Kollidon VA64 (VA64), and hydroxypropyl methyl cellulose (HPMC) were prepared by spray-drying. Nanoseeds produced by wet media milling were used in the dissolution and desupersaturation experiments. DLS, SEM, XRPD, and DSC were used for characterization. The results from the solvent-shift tests suggest that the drug nanoseeds led to a faster and higher extent of desupersaturation than the as-received micron-sized crystals and that the higher seed loading facilitated desupersaturation. Sol was the only effective nucleation inhibitor; the overall precipitation inhibition capability was ranked: Sol > HPMC > VA64. In the dissolution tests, only the Sol-based ASDs generated significant supersaturation, which decreased upon an increase in the nanoseed loading. This study has demonstrated the importance of using drug nanocrystals in lieu of conventional coarse crystals in desupersaturation and dissolution tests in ASD development.
Collapse
Affiliation(s)
| | | | | | | | - Ecevit Bilgili
- Correspondence: ; Tel.: +1-973-596-2998; Fax: +1-973-596-8436
| |
Collapse
|
6
|
Comparison of Differential Scanning Calorimetry, Powder X-ray Diffraction, and Solid-state Nuclear Magnetic Resonance Spectroscopy for Measuring Crystallinity in Amorphous Solid Dispersions - Application to Drug-in-Polymer Solubility. J Pharm Sci 2022; 111:2765-2778. [DOI: 10.1016/j.xphs.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/15/2022]
|
7
|
Boel E, Reniers F, Dehaen W, Van den Mooter G. The Value of Bead Coating in the Manufacturing of Amorphous Solid Dispersions: A Comparative Evaluation with Spray Drying. Pharmaceutics 2022; 14:pharmaceutics14030613. [PMID: 35335989 PMCID: PMC8955898 DOI: 10.3390/pharmaceutics14030613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the fact that an amorphous solid dispersion (ASD)-coated pellet formulation offers potential advantages regarding the minimization of physical stability issues, there is still a lack of in-depth understanding of the bead coating process and its value in relation to spray drying. Therefore, bead coating and spray drying were both evaluated for their ability to manufacture high drug-loaded ASDs and for their ability to generate physically stable formulations. For this purpose, naproxen (NAP)–poly(vinyl-pyrrolidone-co-vinyl acetate) (PVP-VA) was selected as an interacting drug–polymer model system, whilst naproxen methyl ester (NAPME)–PVP-VA served as a non-interacting model system. The solvent employed in this study was methanol (MeOH). First, a crystallization tendency study revealed the rapid crystallization behavior of both model drugs. In the next step, ASDs were manufactured with bead coating as well as with spray drying and for each technique the highest possible drug load that still results in an amorphous system was defined via a drug loading screening approach. Bead coating showed greater ability to manufacture high drug-loaded ASDs as compared to spray drying, with a rather small difference for the interacting drug–polymer model system studied but with a remarkable difference for the non-interacting system. In addition, the importance of drug–polymer interactions in achieving high drug loadings is demonstrated. Finally, ASDs coated onto pellets were found to be more physically stable in comparison to the spray dried formulations, strengthening the value of bead coating for ASD manufacturing purposes.
Collapse
Affiliation(s)
- Eline Boel
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, 3000 Leuven, Belgium;
| | - Felien Reniers
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, 3001 Leuven, Belgium; (F.R.); (W.D.)
| | - Wim Dehaen
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, 3001 Leuven, Belgium; (F.R.); (W.D.)
| | - Guy Van den Mooter
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, 3000 Leuven, Belgium;
- Correspondence: ; Tel.: +32-16-33-03-04
| |
Collapse
|
8
|
Thompson SA, Davis DA, Moon C, Williams RO. Increasing Drug Loading of Weakly Acidic Telmisartan in Amorphous Solid Dispersions through pH Modification during Hot-Melt Extrusion. Mol Pharm 2022; 19:318-331. [PMID: 34846902 DOI: 10.1021/acs.molpharmaceut.1c00805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oral drug therapy requiring large quantities of active pharmaceutical ingredients (APIs) can cause a substantial pill burden, which can increase nonadherence and worsen healthcare outcomes. Maximizing the drug loading of APIs in oral dosage forms is essential to reduce pill burden. This can be challenging for poorly water-soluble APIs without compromising performance. We show a promising strategy for maximizing the drug loading of pH-dependent APIs in amorphous solid dispersions (ASDs) produced by hot-melt extrusion (HME) without compromising their dissolution performance. We examine potential increases in the drug loading (w/w) of telmisartan in ASDs by incorporating bases to modify pH during HME. Telmisartan is a weakly acidic, poorly water-soluble API with pH-dependent solubility. It is practically insoluble at physiological pH, but its solubility increases exponentially at pH values above 10. Telmisartan was extruded with the polymer Soluplus and various bases. With no base, the maximum drug loading achieved by extrusion was only 5% before crystalline telmisartan was detected. Including a strong, water-soluble base (NaOH or KOH) increased the maximum amorphous drug loading to 50%. These results indicate that telmisartan has pH-dependent solubility in a molten polymer, similar to that in an aqueous solution. We also examine the stability of Soluplus when extruded with a strong base, using solid-state nuclear magnetic resonance (ssNMR) to determine that NaOH (but not KOH) causes degradation by hydrolysis. Supersaturation was maintained for at least 20 h during dissolution testing of a 50% telmisartan ASD in biorelevant media.
Collapse
Affiliation(s)
- Stephen A Thompson
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin College of Pharmacy, Austin, Texas 78712, United States
| | - Daniel A Davis
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin College of Pharmacy, Austin, Texas 78712, United States
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin College of Pharmacy, Austin, Texas 78712, United States
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin College of Pharmacy, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Schönfeld BV, Westedt U, Wagner KG. Compression of amorphous solid dispersions prepared by hot-melt extrusion, spray drying and vacuum drum drying. Int J Pharm X 2021; 3:100102. [PMID: 34877525 PMCID: PMC8632852 DOI: 10.1016/j.ijpx.2021.100102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
The present study explored vacuum drum drying (VDD) as an alternative technology for amorphous solid dispersions (ASDs) manufacture compared to hot-melt extrusion (HME) and spray drying (SD) focusing on downstream processability (powder properties, compression behavior and tablet performance). Ritonavir (15% w/w) in a copovidone/sorbitan monolaurate matrix was used as ASD model system. The pure ASDs and respective tablet blends (TB) (addition of filler, glidant, lubricant) were investigated. Milled extrudate showed superior powder properties (e.g., flowability, bulk density) compared to VDD and SD, which could be compensated by the addition of 12.9% outer phase. Advantageously, the VDD intermediate was directly compressible, whereas the SD material was not, resulting in tablets with defects based on a high degree of elastic recovery. Compared to HME, the VDD material showed superior tabletability when formulated as TB, resulting in stronger compacts at even lower solid fraction values. Despite the differences in tablet processing, tablets showed similar tablet performance in terms of disintegration and dissolution independent of the ASD origin. In conclusion, VDD is a valid alternative to manufacture ASDs. VDD offered advantageous downstream processability compared to SD: less solvents and process steps required (no second drying), improved powder properties and suitable for direct compression. ASD technology has influence on particle morphology Compression behavior dominated by particle morphology Vacuum drum dried intermediate direct compressible into tablets Vacuum drum dried material shows better tabletability as milled extrudate ASD technology: no impact on tablet disintegration/dissolution
Collapse
Key Words
- API, active pharmaceutical ingredient
- ASD, amorphous solid dispersion
- Amorphous solid dispersion
- CP, compaction pressure
- Compression analysis
- D, tablet diameter
- Downstream processing
- FFC, flow function coefficient
- HME, hot-melt extrusion
- Hot-melt extrusion
- LOD, loss on drying
- P, breaking force
- PSD, particle size distribution
- PSmin, minimal punch separation
- RTV, ritonavir
- Ritonavir
- SD, spray drying
- SE, secondary electron
- SEM, scanning electron microscope
- SF, solid fraction
- SSA, specific surface area
- Spray drying
- TER, Total elastic recovery
- TS, tensile strength
- Tg, glass transition temperature
- V, volume
- VDD, vacuum drum drying
- Vacuum drum drying
- X-ray μCT, X-ray microcomputed tomography
- f1, difference factor
- f2, similarity factor
- n.d., not determined
- na, not applicable
- t, tablet thickness
- w, tablet wall height
Collapse
Affiliation(s)
- Barbara V. Schönfeld
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany
- AbbVie Deutschland GmbH & Co. KG, Knollstraße 50, 67061 Ludwigshafen, Germany
| | - Ulrich Westedt
- AbbVie Deutschland GmbH & Co. KG, Knollstraße 50, 67061 Ludwigshafen, Germany
| | - Karl G. Wagner
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany
- Corresponding author.
| |
Collapse
|
10
|
Machine Learning for Process Monitoring and Control of Hot-Melt Extrusion: Current State of the Art and Future Directions. Pharmaceutics 2021; 13:pharmaceutics13091432. [PMID: 34575508 PMCID: PMC8466632 DOI: 10.3390/pharmaceutics13091432] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 01/11/2023] Open
Abstract
In the last few decades, hot-melt extrusion (HME) has emerged as a rapidly growing technology in the pharmaceutical industry, due to its various advantages over other fabrication routes for drug delivery systems. After the introduction of the ‘quality by design’ (QbD) approach by the Food and Drug Administration (FDA), many research studies have focused on implementing process analytical technology (PAT), including near-infrared (NIR), Raman, and UV–Vis, coupled with various machine learning algorithms, to monitor and control the HME process in real time. This review gives a comprehensive overview of the application of machine learning algorithms for HME processes, with a focus on pharmaceutical HME applications. The main current challenges in the application of machine learning algorithms for pharmaceutical processes are discussed, with potential future directions for the industry.
Collapse
|
11
|
Moseson DE, Corum ID, Lust A, Altman KJ, Hiew TN, Eren A, Nagy ZK, Taylor LS. Amorphous Solid Dispersions Containing Residual Crystallinity: Competition Between Dissolution and Matrix Crystallization. AAPS JOURNAL 2021; 23:69. [PMID: 34002256 DOI: 10.1208/s12248-021-00598-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/13/2021] [Indexed: 01/28/2023]
Abstract
Crystallinity in an amorphous solid dispersion (ASD) may negatively impact dissolution performance by causing lost solubility advantage and/or seeding crystal growth leading to desupersaturation. The goal of the study was to evaluate underlying dissolution and crystallization mechanisms resulting from residual crystallinity contained within bicalutamide (BCL)/polyvinylpyrrolidone vinyl acetate copolymer (PVPVA) ASDs produced by hot melt extrusion (HME). In-line Raman spectroscopy, polarized light microscopy, and scanning electron microscopy were used to characterize crystallization kinetics and mechanisms. The fully amorphous ASD (0% crystallinity) did not dissolve completely, and underwent crystallization to the metastable polymorph (form 2), initiating in the amorphous matrix at the interface of the amorphous solid with water. Under non-sink conditions, higher extents of supersaturation were achieved because dissolution initially proceeded unhindered prior to nucleation. ASDs containing residual crystallinity had markedly reduced supersaturation. Solid-mediated crystallization (matrix crystallization) consumed the amorphous solid, growing the stable polymorph (form 1). Under sink conditions, both the fully amorphous ASD and crystalline physical mixture achieve faster release than the ASDs containing residual crystallinity. In the latter systems, matrix crystallization leads to highly agglomerated crystals with high relative surface area. Solution-mediated crystallization was not a significant driver of concentration loss, due to slow crystal growth from solution in the presence of PVPVA. The high risk stemming from residual crystallinity in BCL/PVPVA ASDs stems from (1) fast matrix crystallization propagating from crystal seeds, and (2) growth of the stable crystal form. This study has implications for dissolution performance outcomes of ASDs containing residual crystallinity.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Isaac D Corum
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Andres Lust
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Kevin J Altman
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Tze Ning Hiew
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Ayse Eren
- Charles B. Davidson School of Chemical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Zoltan K Nagy
- Charles B. Davidson School of Chemical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
12
|
Butreddy A, Bandari S, Repka MA. Quality-by-design in hot melt extrusion based amorphous solid dispersions: An industrial perspective on product development. Eur J Pharm Sci 2021; 158:105655. [PMID: 33253883 PMCID: PMC7855693 DOI: 10.1016/j.ejps.2020.105655] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
An industrially feasible approach to overcome the solubility and bioavailability limitations of poorly soluble active pharmaceutical ingredients is the development of amorphous solid dispersions (ASDs) using hot-melt extrusion (HME) technique. The application of Quality by Design (QbD) had a profound impact on the development of HME-based ASDs. The formulation and process optimization of ASDs manufactured via HME techniques require an understanding of critical quality attributes, critical material attributes, critical process parameters, risk assessment tools, and experimental designs. The knowledge gained from each of these QbD elements helps ensure the consistency of product quality. The selection and implementation of appropriate Design of Experiments (DoE) methodology to screen and optimize the formulation and process variables remain a major challenge. This review provides a comprehensive overview on QbD concepts in HME-based ASDs with an emphasis on DoE methodologies. Further, the information provided in this review can assist researchers in selecting a suitable design with optimal experimental conditions. Specifically, this review has focused on the prediction of drug-polymer miscibility, the elements and sequence of QbD, and various screening and optimization designs, to provide insights into the formulation and process variables that are encountered routinely in the production of HME-based ASDs.
Collapse
Affiliation(s)
- Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
13
|
Neilly JP, Yin L, Leonard SE, Kenis PJA, Danzer GD, Pawate AS. Quantitative Measures of Crystalline Fenofibrate in Amorphous Solid Dispersion Formulations by X-Ray Microscopy. J Pharm Sci 2020; 109:3078-3085. [PMID: 32679216 DOI: 10.1016/j.xphs.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 11/30/2022]
Abstract
In the pharmaceutical industry, amorphous solid dispersion can be utilized to enhance the solubility, hence bioavailability, of poorly solubility active pharmaceutical ingredients owing to the higher free energy of the amorphous state. Measuring the concentration, size and spatial distribution of crystalline API particles that may be present in amorphous solid dispersions (ASD) is critical to understanding product performance and developing improved formulations. In this study X-Ray Microscopy (XRM) was used to nondestructively measure these attributes in ASDs. Model tablets of amorphous fenofibrate in a copovidone matrix spiked with known concentrations of crystalline fenofibrate were examined by XRM to measure the concentration, size and distribution of crystalline particles in the tablets. Data collection and analysis conditions were evaluated and reported. XRM images showed contrast between the crystalline API and the amorphous matrix of the tablet. Image analysis using basic thresholding provided quantitative and distribution data of the crystallinity present. Crystals as small as 10 μm were detected and practical quantitation limits of 0.2% (w/w of total tablet) crystallinity were demonstrated. The aspects of manual data thresholding were tested for operator influence and threshold selection and found to be robust. This technique was demonstrated to provide quantitative measures of crystallinity below standard X-Ray Powder Diffraction (XRPD) techniques, provide three-dimensional information regarding size, shape and distribution of API crystals and can be performed nondestructively.
Collapse
Affiliation(s)
| | - Leilei Yin
- University of Illinois, Beckman Institute, Urbana-Champaign, IL, USA
| | - Sarah-Ellen Leonard
- University of Illinois, Department of Chemical and Biomolecular Engineering, Urbana-Champaign, IL, USA
| | - Paul J A Kenis
- University of Illinois, Department of Chemical and Biomolecular Engineering, Urbana-Champaign, IL, USA
| | | | - Ashtamurthy S Pawate
- University of Illinois, Department of Chemical and Biomolecular Engineering, Urbana-Champaign, IL, USA
| |
Collapse
|
14
|
De Mohac LM, Raimi-Abraham B, Caruana R, Gaetano G, Licciardi M. Multicomponent solid dispersion a new generation of solid dispersion produced by spray-drying. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Moseson DE, Parker AS, Beaudoin SP, Taylor LS. Amorphous solid dispersions containing residual crystallinity: Influence of seed properties and polymer adsorption on dissolution performance. Eur J Pharm Sci 2020; 146:105276. [DOI: 10.1016/j.ejps.2020.105276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/01/2022]
|
16
|
Hate SS, Reutzel-Edens SM, Taylor LS. Absorptive Dissolution Testing: An Improved Approach to Study the Impact of Residual Crystallinity on the Performance of Amorphous Formulations. J Pharm Sci 2020; 109:1312-1323. [DOI: 10.1016/j.xphs.2019.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/24/2019] [Accepted: 11/15/2019] [Indexed: 12/25/2022]
|
17
|
Panini P, Rampazzo M, Singh A, Vanhoutte F, Van den Mooter G. Myth or Truth: The Glass Forming Ability Class III Drugs Will Always Form Single-Phase Homogenous Amorphous Solid Dispersion Formulations. Pharmaceutics 2019; 11:pharmaceutics11100529. [PMID: 31614985 PMCID: PMC6835334 DOI: 10.3390/pharmaceutics11100529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/25/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
The physical stability of amorphous solid dispersions (ASD) of active pharmaceutical ingredients (APIs) of high glass forming ability (GFA class III) is generally expected to be high among the scientific community. In this study, the ASD of ten-selected class III APIs with the two polymers, PVPVA 64 and HPMC-E5, have been prepared by spray-drying, film-casting, and their amorphicity at T0 was investigated by modulated differential scanning calorimetry and powder X-ray diffraction. It was witnessed that only five out of ten APIs form good quality amorphous solid dispersions with no phase separation and zero crystalline content, immediately after the preparation and drying process. Hence, it was further established that the classification of an API as GFA class III does not guarantee the formulation of single phase amorphous solid dispersions.
Collapse
Affiliation(s)
- Piyush Panini
- Drug Delivery and Disposition, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | | | - Abhishek Singh
- Janssen Pharmaceutica, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Filip Vanhoutte
- Janssen Pharmaceutica, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
18
|
Zi P, Zhang C, Ju C, Su Z, Bao Y, Gao J, Sun J, Lu J, Zhang C. Solubility and bioavailability enhancement study of lopinavir solid dispersion matrixed with a polymeric surfactant - Soluplus. Eur J Pharm Sci 2019; 134:233-245. [PMID: 31028820 DOI: 10.1016/j.ejps.2019.04.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/28/2019] [Accepted: 04/23/2019] [Indexed: 01/29/2023]
Abstract
As a biopharmaceutical classification system Class IV drug, lopinavir (LPV) shows relatively poor water solubility and permeation in vivo. In the study, we developed novel solid dispersions (SD) of LPV to improve its bioavailability and to describe their overall behaviors. By employing solvent evaporation for a preliminary formulation screening, the SDs of LPV-polymer-sorbitan monolaurate (SBM, as the wetting agent) at 1:4:0.4 (w/w) dramatically enhanced the LPV dissolution in a non-sink medium, and then hot-melt extrusion (HME) was applied to improve the dissolution further. A hydrophilic polymer - Kollidon VA 64 (VA64) and a polymeric surfactant Soluplus were employed as matrix respectively in the optimized formulations. The dissolution profiles of extrudates were significantly higher than those of SDs prepared with solvent-evaporation method. It was attributed to the stronger intermolecular interactions between LPV and the polymers in the HME process, which was also supported by the stability analysis after 6 months storage under 25 °C/60% RH. The differential scanning calorimetry, fourier transform infrared spectroscopy and equilibrium studies showed VA64 only created hydrogen bonding (H-bond) with LPV, but Soluplus generated both H-bond and micelle thanks to its amphiphilic structure. In addition, the bioavailability of LPV in Soluplus matrixed extrudate was 1.70-fold of VA64 matrixed extrudate and 3.70-fold of LPV crystal. In situ permeability and Caco-2 cell transport studies revealed that Soluplus significantly enhanced the permeability of LPV through rat intestine and Caco-2 cell monolayers by P-glycoprotein (P-gp) inhibition. Herein, Soluplus matrixed extrudate improved the LPV bioavailability through three mechanisms: H-bond with LPV, micelle formation in water and P-gp inhibition in vivo. These unique advantages of Soluplus suggested it is a promising carrier for poorly water soluble drugs, especially the substrates of P-gp.
Collapse
Affiliation(s)
- Peng Zi
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Cheng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Caoyun Ju
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Zhigui Su
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Yusheng Bao
- Nanjing Heron Pharmaceutical Science and Technology Co. Ltd., No.18 Zhilan Road, Jiangning District, Nanjing 211100, China
| | - Jie Gao
- BASF (China) Co., Ltd., 300 Jiang Xin Sha Road, Pudong District, Shanghai 200137, China
| | - Juan Sun
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Jiannan Lu
- Evelo Bioscience, 620 Memorial Drive, Suite 500, Cambridge, MA 02139, USA
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| |
Collapse
|
19
|
Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the Manufacturing Methods of Solid Dispersion Technology for Improving the Solubility of Poorly Water-Soluble Drugs and Application to Anticancer Drugs. Pharmaceutics 2019; 11:E132. [PMID: 30893899 PMCID: PMC6470797 DOI: 10.3390/pharmaceutics11030132] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/11/2023] Open
Abstract
Approximately 40% of new chemical entities (NCEs), including anticancer drugs, have been reported as poorly water-soluble compounds. Anticancer drugs are classified into biologic drugs (monoclonal antibodies) and small molecule drugs (nonbiologic anticancer drugs) based on effectiveness and safety profile. Biologic drugs are administered by intravenous (IV) injection due to their large molecular weight, while small molecule drugs are preferentially administered by gastrointestinal route. Even though IV injection is the fastest route of administration and ensures complete bioavailability, this route of administration causes patient inconvenience to visit a hospital for anticancer treatments. In addition, IV administration can cause several side effects such as severe hypersensitivity, myelosuppression, neutropenia, and neurotoxicity. Oral administration is the preferred route for drug delivery due to several advantages such as low cost, pain avoidance, and safety. The main problem of NCEs is a limited aqueous solubility, resulting in poor absorption and low bioavailability. Therefore, improving oral bioavailability of poorly water-soluble drugs is a great challenge in the development of pharmaceutical dosage forms. Several methods such as solid dispersion, complexation, lipid-based systems, micronization, nanonization, and co-crystals were developed to improve the solubility of hydrophobic drugs. Recently, solid dispersion is one of the most widely used and successful techniques in formulation development. This review mainly discusses classification, methods for preparation of solid dispersions, and use of solid dispersion for improving solubility of poorly soluble anticancer drugs.
Collapse
Affiliation(s)
- Phuong Tran
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Yong-Chul Pyo
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Dong-Hyun Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sang-Eun Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jin-Ki Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Korea.
| | - Jeong-Sook Park
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
20
|
Melt-based screening method with improved predictability regarding polymer selection for amorphous solid dispersions. Eur J Pharm Sci 2018; 124:339-348. [DOI: 10.1016/j.ejps.2018.08.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 11/15/2022]
|
21
|
Moseson DE, Taylor LS. The application of temperature-composition phase diagrams for hot melt extrusion processing of amorphous solid dispersions to prevent residual crystallinity. Int J Pharm 2018; 553:454-466. [PMID: 30393199 DOI: 10.1016/j.ijpharm.2018.10.055] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 11/26/2022]
Abstract
Hot melt extrusion (HME) can be used to produce amorphous solid dispersions (ASDs) at temperatures below the drug's melting point if the drug and polymer exhibit melting point depression. However, the risk of residual crystallinity becomes significant. The purpose of this study was to apply the temperature-composition phase diagram to the HME process, correlating process conditions to ASD residual crystallinity, and identifying the formulation critical temperature, which defines the theoretical minimum processing temperature. The phase diagram of indomethacin (IDM) and polyvinylpyrrolidone/vinyl acetate copolymer (PVPVA) was generated using melting point depression measurements coupled with Flory-Huggins theory. Extrudates were manufactured above, at, and below the formulation critical temperature (Tc) as identified from the phase diagram, with a range of residence times, and characterized for crystallinity. Below the Tc, a fully amorphous sample could not be prepared. Above Tc, sufficient residence time led to amorphous samples. A processing operating design space diagram with three regimes was generated to correlate temperature and residence time factors with process outcome. In conclusion, phase diagrams provide a rational basis for designing hot melt extrusion processes of amorphous solid dispersions to minimize residual crystalline content, delineating the minimum processing temperature based on thermodynamic considerations.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
22
|
Comparison of a Novel Miniaturized Screening Device with Büchi B290 Mini Spray-Dryer for the Development of Spray-Dried Solid Dispersions (SDSDs). Processes (Basel) 2018. [DOI: 10.3390/pr6080129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spray-drying is an increasingly popular technology for the production of amorphous solid dispersions (ASDs) in the pharmaceutical industry that is used in the early evaluation and industrial production of formulations. Efficient screening of ASD in the earliest phase of drug development is therefore critical. A novel miniaturized atomization equipment for screening spray-dried solid dispersions (SDSDs) in early formulation and process development was developed. An in-depth comparison between the equipment/process parameters and performance of our novel screening device and a laboratory Büchi B290 mini spray-dryer was performed. Equipment qualification was conducted by comparing the particle/powder attributes, i.e., miscibility/solid state, residual solvent, and morphological properties of binary SDSDs of itraconazole prepared at both screening and laboratory scales. The operating mode of the miniaturized device was able to reproduce similar process conditions/parameters (e.g., outlet temperature (Tout)) and to provide particles with similar drug–polymer miscibility and morphology as laboratory-scale SDSDs. These findings confirm that the design and operation of this novel screening equipment mimic the microscale evaporation mechanism of a larger spray-dryer. The miniaturized spray-dryer was therefore able to provide a rational prediction of adequate polymer and drug loading (DL) for SDSD development while reducing active pharmaceutical ingredient (API) consumption by a factor of 120 and cycle time by a factor of 4.
Collapse
|
23
|
Censi R, Gigliobianco MR, Casadidio C, Di Martino P. Hot Melt Extrusion: Highlighting Physicochemical Factors to Be Investigated While Designing and Optimizing a Hot Melt Extrusion Process. Pharmaceutics 2018; 10:E89. [PMID: 29997332 PMCID: PMC6160992 DOI: 10.3390/pharmaceutics10030089] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/22/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
Hot-melt extrusion (HME) is a well-accepted and extensively studied method for preparing numerous types of drug delivery systems and dosage forms. It offers several advantages: no solvents are required, it is easy to scale up and employ on the industrial level, and, in particular, it offers the possibility of improving drug bioavailability. HME involves the mixing of a drug with one or more excipients, in general polymers and even plasticizers, which can melt, often forming a solid dispersion of the drug in the polymer. The molten mass is extruded and cooled, giving rise to a solid material with designed properties. This process, which can be realized using different kinds of special equipment, may involve modifications in the drug physicochemical properties, such as chemical, thermal and mechanical characteristics thus affecting the drug physicochemical stability and bioavailability. During process optimization, the evaluation of the drug solid state and stability is thus of paramount importance to guarantee stable drug properties for the duration of the drug product shelf life. This manuscript reviews the most important physicochemical factors that should be investigated while designing and optimizing a hot melt extrusion process, and by extension, during the different pre-formulation, formulation and process, and post-formulation phases. It offers a comprehensive evaluation of the chemical and thermal stability of extrudates, the solid physical state of extrudates, possible drug-polymer interactions, the miscibility/solubility of the drug-polymer system, the rheological properties of extrudates, the physicomechanical properties of films produced by hot melt extrusion, and drug particle dissolution from extrudates. It draws upon the last ten years of research, extending inquiry as broadly as possible.
Collapse
Affiliation(s)
- Roberta Censi
- School of Pharmacy, University of Camerino, Via S. Agostino, 62032 Camerino, Italy.
| | | | - Cristina Casadidio
- School of Pharmacy, University of Camerino, Via S. Agostino, 62032 Camerino, Italy.
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, Via S. Agostino, 62032 Camerino, Italy.
| |
Collapse
|
24
|
Huang S, Williams RO. Effects of the Preparation Process on the Properties of Amorphous Solid Dispersions. AAPS PharmSciTech 2018; 19:1971-1984. [PMID: 28924730 DOI: 10.1208/s12249-017-0861-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/11/2017] [Indexed: 11/30/2022] Open
Abstract
The use of amorphous solid dispersions to improve the bioavailability of active ingredients from the BCS II and IV classifications continues to gain interest in the pharmaceutical industry. Over the last decade, methods for generating amorphous solid dispersions have been well established in commercially available products and in the literature. However, the amorphous solid dispersions manufactured by different technologies differ in many aspects, primarily chemical stability, physical stability, and performance, both in vitro and in vivo. This review analyzes the impact of manufacturing methods on those properties of amorphous solid dispersions. For example, the chemical stability of drugs and polymers can be influenced by differences in the level of thermal exposure during fusion-based and solvent-based processes. The physical stability of amorphous content varies according to the thermal history, particle morphology, and nucleation process of amorphous solid dispersions produced by different methods. The in vitro and in vivo performance of amorphous formulations are also affected by differences in particle morphology and in the molecular interactions caused by the manufacturing method. Additionally, we describe the mechanism of manufacturing methods and the thermodynamic theories that relate to amorphous formulations.
Collapse
|
25
|
Liavitskaya T, Birx L, Vyazovkin S. Thermal Stability of Malonic Acid Dissolved in Poly(vinylpyrrolidone) and Other Polymeric Matrices. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00516] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tatsiana Liavitskaya
- Department of Chemistry, University of Alabama at Birmingham, 901 S. 14th Street, Birmingham, Alabama 35294, United States
| | - Lily Birx
- Department of Chemistry, University of Alabama at Birmingham, 901 S. 14th Street, Birmingham, Alabama 35294, United States
| | - Sergey Vyazovkin
- Department of Chemistry, University of Alabama at Birmingham, 901 S. 14th Street, Birmingham, Alabama 35294, United States
| |
Collapse
|
26
|
Haser A, Zhang F. New Strategies for Improving the Development and Performance of Amorphous Solid Dispersions. AAPS PharmSciTech 2018; 19:978-990. [PMID: 29340977 DOI: 10.1208/s12249-018-0953-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023] Open
Abstract
The understanding of amorphous solid dispersions has grown significantly in the past decade. This is evident from the number of approved commercial amorphous solid dispersion products. While amorphous formulation is considered an enabling technology, it has become the norm for formulating poorly soluble compounds. Despite this success, improvements can still be made that enable early development formulation decisions, to develop a rationale for selecting a manufacturing process, to overcome degradation and phase separation during processing, to help achieve physical stability during storage, and to optimize dissolution behavior. The purpose of this literature review is to present recently reported strategies for improving the development and performance of ASDs. The benefits and limitations of each strategy as well as recent relevant case studies will be presented in this review. The strategies are presented from three different aspects: (a) prediction techniques that enable formulation decisions, (b) manufacturing considerations that help produce physically and chemically stable ASDs, and
Collapse
|
27
|
Davis M, Walker G. Recent strategies in spray drying for the enhanced bioavailability of poorly water-soluble drugs. J Control Release 2017; 269:110-127. [PMID: 29117503 DOI: 10.1016/j.jconrel.2017.11.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/07/2023]
Abstract
Poorly water-soluble drugs are a significant and ongoing issue for the pharmaceutical industry. An overview of recent developments for the preparation of spray-dried delivery systems is presented. Examples include amorphous solid dispersions, spray dried dispersions, microparticles, nanoparticles, surfactant systems and self-emulsifying drug delivery systems. Several aspects of formulation are considered, such as pre-screening, choosing excipient(s), the effect of polymer structure on performance, formulation optimisation, ternary dispersions, fixed-dose combinations, solvent selection and component miscibility. Process optimisation techniques including nozzle selection are discussed. Comparisons are drawn with other preparation techniques such as hot melt extrusion, freeze drying, milling, electro spinning and film casting. Novel analytical and dissolution techniques for the characterization of amorphous solid dispersions are included. Progress in understanding of amorphous supersaturation or recrystallisation from solution gathered from mechanistic studies is discussed. Aspects of powder flow and compression are considered in a section on downstream processing. Overall, spray drying has a bright future due to its versatility, efficiency and the driving force of poorly soluble drugs.
Collapse
Affiliation(s)
- Mark Davis
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Gavin Walker
- Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|